1 /*- 2 * Copyright (c) 1982, 1986, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * (c) UNIX System Laboratories, Inc. 5 * All or some portions of this file are derived from material licensed 6 * to the University of California by American Telephone and Telegraph 7 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 8 * the permission of UNIX System Laboratories, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 4. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * From: @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_kdtrace.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/bus.h> 45 #include <sys/callout.h> 46 #include <sys/condvar.h> 47 #include <sys/interrupt.h> 48 #include <sys/kernel.h> 49 #include <sys/ktr.h> 50 #include <sys/lock.h> 51 #include <sys/malloc.h> 52 #include <sys/mutex.h> 53 #include <sys/proc.h> 54 #include <sys/sdt.h> 55 #include <sys/sleepqueue.h> 56 #include <sys/sysctl.h> 57 #include <sys/smp.h> 58 59 #ifdef SMP 60 #include <machine/cpu.h> 61 #endif 62 63 SDT_PROVIDER_DEFINE(callout_execute); 64 SDT_PROBE_DEFINE(callout_execute, kernel, , callout_start, callout-start); 65 SDT_PROBE_ARGTYPE(callout_execute, kernel, , callout_start, 0, 66 "struct callout *"); 67 SDT_PROBE_DEFINE(callout_execute, kernel, , callout_end, callout-end); 68 SDT_PROBE_ARGTYPE(callout_execute, kernel, , callout_end, 0, 69 "struct callout *"); 70 71 static int avg_depth; 72 SYSCTL_INT(_debug, OID_AUTO, to_avg_depth, CTLFLAG_RD, &avg_depth, 0, 73 "Average number of items examined per softclock call. Units = 1/1000"); 74 static int avg_gcalls; 75 SYSCTL_INT(_debug, OID_AUTO, to_avg_gcalls, CTLFLAG_RD, &avg_gcalls, 0, 76 "Average number of Giant callouts made per softclock call. Units = 1/1000"); 77 static int avg_lockcalls; 78 SYSCTL_INT(_debug, OID_AUTO, to_avg_lockcalls, CTLFLAG_RD, &avg_lockcalls, 0, 79 "Average number of lock callouts made per softclock call. Units = 1/1000"); 80 static int avg_mpcalls; 81 SYSCTL_INT(_debug, OID_AUTO, to_avg_mpcalls, CTLFLAG_RD, &avg_mpcalls, 0, 82 "Average number of MP callouts made per softclock call. Units = 1/1000"); 83 /* 84 * TODO: 85 * allocate more timeout table slots when table overflows. 86 */ 87 int callwheelsize, callwheelmask; 88 89 /* 90 * The callout cpu migration entity represents informations necessary for 91 * describing the migrating callout to the new callout cpu. 92 * The cached informations are very important for deferring migration when 93 * the migrating callout is already running. 94 */ 95 struct cc_mig_ent { 96 #ifdef SMP 97 void (*ce_migration_func)(void *); 98 void *ce_migration_arg; 99 int ce_migration_cpu; 100 int ce_migration_ticks; 101 #endif 102 }; 103 104 /* 105 * There is one struct callout_cpu per cpu, holding all relevant 106 * state for the callout processing thread on the individual CPU. 107 * In particular: 108 * cc_ticks is incremented once per tick in callout_cpu(). 109 * It tracks the global 'ticks' but in a way that the individual 110 * threads should not worry about races in the order in which 111 * hardclock() and hardclock_cpu() run on the various CPUs. 112 * cc_softclock is advanced in callout_cpu() to point to the 113 * first entry in cc_callwheel that may need handling. In turn, 114 * a softclock() is scheduled so it can serve the various entries i 115 * such that cc_softclock <= i <= cc_ticks . 116 * XXX maybe cc_softclock and cc_ticks should be volatile ? 117 * 118 * cc_ticks is also used in callout_reset_cpu() to determine 119 * when the callout should be served. 120 */ 121 struct callout_cpu { 122 struct mtx_padalign cc_lock; 123 struct cc_mig_ent cc_migrating_entity; 124 struct callout *cc_callout; 125 struct callout_tailq *cc_callwheel; 126 struct callout_list cc_callfree; 127 struct callout *cc_next; 128 struct callout *cc_curr; 129 void *cc_cookie; 130 int cc_ticks; 131 int cc_softticks; 132 int cc_cancel; 133 int cc_waiting; 134 int cc_firsttick; 135 }; 136 137 #ifdef SMP 138 #define cc_migration_func cc_migrating_entity.ce_migration_func 139 #define cc_migration_arg cc_migrating_entity.ce_migration_arg 140 #define cc_migration_cpu cc_migrating_entity.ce_migration_cpu 141 #define cc_migration_ticks cc_migrating_entity.ce_migration_ticks 142 143 struct callout_cpu cc_cpu[MAXCPU]; 144 #define CPUBLOCK MAXCPU 145 #define CC_CPU(cpu) (&cc_cpu[(cpu)]) 146 #define CC_SELF() CC_CPU(PCPU_GET(cpuid)) 147 #else 148 struct callout_cpu cc_cpu; 149 #define CC_CPU(cpu) &cc_cpu 150 #define CC_SELF() &cc_cpu 151 #endif 152 #define CC_LOCK(cc) mtx_lock_spin(&(cc)->cc_lock) 153 #define CC_UNLOCK(cc) mtx_unlock_spin(&(cc)->cc_lock) 154 #define CC_LOCK_ASSERT(cc) mtx_assert(&(cc)->cc_lock, MA_OWNED) 155 156 static int timeout_cpu; 157 void (*callout_new_inserted)(int cpu, int ticks) = NULL; 158 159 static MALLOC_DEFINE(M_CALLOUT, "callout", "Callout datastructures"); 160 161 /** 162 * Locked by cc_lock: 163 * cc_curr - If a callout is in progress, it is curr_callout. 164 * If curr_callout is non-NULL, threads waiting in 165 * callout_drain() will be woken up as soon as the 166 * relevant callout completes. 167 * cc_cancel - Changing to 1 with both callout_lock and c_lock held 168 * guarantees that the current callout will not run. 169 * The softclock() function sets this to 0 before it 170 * drops callout_lock to acquire c_lock, and it calls 171 * the handler only if curr_cancelled is still 0 after 172 * c_lock is successfully acquired. 173 * cc_waiting - If a thread is waiting in callout_drain(), then 174 * callout_wait is nonzero. Set only when 175 * curr_callout is non-NULL. 176 */ 177 178 /* 179 * Resets the migration entity tied to a specific callout cpu. 180 */ 181 static void 182 cc_cme_cleanup(struct callout_cpu *cc) 183 { 184 185 #ifdef SMP 186 cc->cc_migration_cpu = CPUBLOCK; 187 cc->cc_migration_ticks = 0; 188 cc->cc_migration_func = NULL; 189 cc->cc_migration_arg = NULL; 190 #endif 191 } 192 193 /* 194 * Checks if migration is requested by a specific callout cpu. 195 */ 196 static int 197 cc_cme_migrating(struct callout_cpu *cc) 198 { 199 200 #ifdef SMP 201 return (cc->cc_migration_cpu != CPUBLOCK); 202 #else 203 return (0); 204 #endif 205 } 206 207 /* 208 * kern_timeout_callwheel_alloc() - kernel low level callwheel initialization 209 * 210 * This code is called very early in the kernel initialization sequence, 211 * and may be called more then once. 212 */ 213 caddr_t 214 kern_timeout_callwheel_alloc(caddr_t v) 215 { 216 struct callout_cpu *cc; 217 218 timeout_cpu = PCPU_GET(cpuid); 219 cc = CC_CPU(timeout_cpu); 220 /* 221 * Calculate callout wheel size, should be next power of two higher 222 * than 'ncallout'. 223 */ 224 callwheelsize = 1 << fls(ncallout); 225 callwheelmask = callwheelsize - 1; 226 227 cc->cc_callout = (struct callout *)v; 228 v = (caddr_t)(cc->cc_callout + ncallout); 229 cc->cc_callwheel = (struct callout_tailq *)v; 230 v = (caddr_t)(cc->cc_callwheel + callwheelsize); 231 return(v); 232 } 233 234 static void 235 callout_cpu_init(struct callout_cpu *cc) 236 { 237 struct callout *c; 238 int i; 239 240 mtx_init(&cc->cc_lock, "callout", NULL, MTX_SPIN | MTX_RECURSE); 241 SLIST_INIT(&cc->cc_callfree); 242 for (i = 0; i < callwheelsize; i++) { 243 TAILQ_INIT(&cc->cc_callwheel[i]); 244 } 245 cc_cme_cleanup(cc); 246 if (cc->cc_callout == NULL) 247 return; 248 for (i = 0; i < ncallout; i++) { 249 c = &cc->cc_callout[i]; 250 callout_init(c, 0); 251 c->c_flags = CALLOUT_LOCAL_ALLOC; 252 SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle); 253 } 254 } 255 256 #ifdef SMP 257 /* 258 * Switches the cpu tied to a specific callout. 259 * The function expects a locked incoming callout cpu and returns with 260 * locked outcoming callout cpu. 261 */ 262 static struct callout_cpu * 263 callout_cpu_switch(struct callout *c, struct callout_cpu *cc, int new_cpu) 264 { 265 struct callout_cpu *new_cc; 266 267 MPASS(c != NULL && cc != NULL); 268 CC_LOCK_ASSERT(cc); 269 270 /* 271 * Avoid interrupts and preemption firing after the callout cpu 272 * is blocked in order to avoid deadlocks as the new thread 273 * may be willing to acquire the callout cpu lock. 274 */ 275 c->c_cpu = CPUBLOCK; 276 spinlock_enter(); 277 CC_UNLOCK(cc); 278 new_cc = CC_CPU(new_cpu); 279 CC_LOCK(new_cc); 280 spinlock_exit(); 281 c->c_cpu = new_cpu; 282 return (new_cc); 283 } 284 #endif 285 286 /* 287 * kern_timeout_callwheel_init() - initialize previously reserved callwheel 288 * space. 289 * 290 * This code is called just once, after the space reserved for the 291 * callout wheel has been finalized. 292 */ 293 void 294 kern_timeout_callwheel_init(void) 295 { 296 callout_cpu_init(CC_CPU(timeout_cpu)); 297 } 298 299 /* 300 * Start standard softclock thread. 301 */ 302 static void 303 start_softclock(void *dummy) 304 { 305 struct callout_cpu *cc; 306 #ifdef SMP 307 int cpu; 308 #endif 309 310 cc = CC_CPU(timeout_cpu); 311 if (swi_add(&clk_intr_event, "clock", softclock, cc, SWI_CLOCK, 312 INTR_MPSAFE, &cc->cc_cookie)) 313 panic("died while creating standard software ithreads"); 314 #ifdef SMP 315 CPU_FOREACH(cpu) { 316 if (cpu == timeout_cpu) 317 continue; 318 cc = CC_CPU(cpu); 319 if (swi_add(NULL, "clock", softclock, cc, SWI_CLOCK, 320 INTR_MPSAFE, &cc->cc_cookie)) 321 panic("died while creating standard software ithreads"); 322 cc->cc_callout = NULL; /* Only cpu0 handles timeout(). */ 323 cc->cc_callwheel = malloc( 324 sizeof(struct callout_tailq) * callwheelsize, M_CALLOUT, 325 M_WAITOK); 326 callout_cpu_init(cc); 327 } 328 #endif 329 } 330 331 SYSINIT(start_softclock, SI_SUB_SOFTINTR, SI_ORDER_FIRST, start_softclock, NULL); 332 333 void 334 callout_tick(void) 335 { 336 struct callout_cpu *cc; 337 int need_softclock; 338 int bucket; 339 340 /* 341 * Process callouts at a very low cpu priority, so we don't keep the 342 * relatively high clock interrupt priority any longer than necessary. 343 */ 344 need_softclock = 0; 345 cc = CC_SELF(); 346 mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET); 347 cc->cc_firsttick = cc->cc_ticks = ticks; 348 for (; (cc->cc_softticks - cc->cc_ticks) <= 0; cc->cc_softticks++) { 349 bucket = cc->cc_softticks & callwheelmask; 350 if (!TAILQ_EMPTY(&cc->cc_callwheel[bucket])) { 351 need_softclock = 1; 352 break; 353 } 354 } 355 mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET); 356 /* 357 * swi_sched acquires the thread lock, so we don't want to call it 358 * with cc_lock held; incorrect locking order. 359 */ 360 if (need_softclock) 361 swi_sched(cc->cc_cookie, 0); 362 } 363 364 int 365 callout_tickstofirst(int limit) 366 { 367 struct callout_cpu *cc; 368 struct callout *c; 369 struct callout_tailq *sc; 370 int curticks; 371 int skip = 1; 372 373 cc = CC_SELF(); 374 mtx_lock_spin_flags(&cc->cc_lock, MTX_QUIET); 375 curticks = cc->cc_ticks; 376 while( skip < ncallout && skip < limit ) { 377 sc = &cc->cc_callwheel[ (curticks+skip) & callwheelmask ]; 378 /* search scanning ticks */ 379 TAILQ_FOREACH( c, sc, c_links.tqe ){ 380 if (c->c_time - curticks <= ncallout) 381 goto out; 382 } 383 skip++; 384 } 385 out: 386 cc->cc_firsttick = curticks + skip; 387 mtx_unlock_spin_flags(&cc->cc_lock, MTX_QUIET); 388 return (skip); 389 } 390 391 static struct callout_cpu * 392 callout_lock(struct callout *c) 393 { 394 struct callout_cpu *cc; 395 int cpu; 396 397 for (;;) { 398 cpu = c->c_cpu; 399 #ifdef SMP 400 if (cpu == CPUBLOCK) { 401 while (c->c_cpu == CPUBLOCK) 402 cpu_spinwait(); 403 continue; 404 } 405 #endif 406 cc = CC_CPU(cpu); 407 CC_LOCK(cc); 408 if (cpu == c->c_cpu) 409 break; 410 CC_UNLOCK(cc); 411 } 412 return (cc); 413 } 414 415 static void 416 callout_cc_add(struct callout *c, struct callout_cpu *cc, int to_ticks, 417 void (*func)(void *), void *arg, int cpu) 418 { 419 420 CC_LOCK_ASSERT(cc); 421 422 if (to_ticks <= 0) 423 to_ticks = 1; 424 c->c_arg = arg; 425 c->c_flags |= (CALLOUT_ACTIVE | CALLOUT_PENDING); 426 c->c_func = func; 427 c->c_time = ticks + to_ticks; 428 TAILQ_INSERT_TAIL(&cc->cc_callwheel[c->c_time & callwheelmask], 429 c, c_links.tqe); 430 if ((c->c_time - cc->cc_firsttick) < 0 && 431 callout_new_inserted != NULL) { 432 cc->cc_firsttick = c->c_time; 433 (*callout_new_inserted)(cpu, 434 to_ticks + (ticks - cc->cc_ticks)); 435 } 436 } 437 438 static void 439 callout_cc_del(struct callout *c, struct callout_cpu *cc) 440 { 441 442 if ((c->c_flags & CALLOUT_LOCAL_ALLOC) == 0) 443 return; 444 c->c_func = NULL; 445 SLIST_INSERT_HEAD(&cc->cc_callfree, c, c_links.sle); 446 } 447 448 static void 449 softclock_call_cc(struct callout *c, struct callout_cpu *cc, int *mpcalls, 450 int *lockcalls, int *gcalls) 451 { 452 void (*c_func)(void *); 453 void *c_arg; 454 struct lock_class *class; 455 struct lock_object *c_lock; 456 int c_flags, sharedlock; 457 #ifdef SMP 458 struct callout_cpu *new_cc; 459 void (*new_func)(void *); 460 void *new_arg; 461 int new_cpu, new_ticks; 462 #endif 463 #ifdef DIAGNOSTIC 464 struct bintime bt1, bt2; 465 struct timespec ts2; 466 static uint64_t maxdt = 36893488147419102LL; /* 2 msec */ 467 static timeout_t *lastfunc; 468 #endif 469 470 KASSERT((c->c_flags & (CALLOUT_PENDING | CALLOUT_ACTIVE)) == 471 (CALLOUT_PENDING | CALLOUT_ACTIVE), 472 ("softclock_call_cc: pend|act %p %x", c, c->c_flags)); 473 class = (c->c_lock != NULL) ? LOCK_CLASS(c->c_lock) : NULL; 474 sharedlock = (c->c_flags & CALLOUT_SHAREDLOCK) ? 0 : 1; 475 c_lock = c->c_lock; 476 c_func = c->c_func; 477 c_arg = c->c_arg; 478 c_flags = c->c_flags; 479 if (c->c_flags & CALLOUT_LOCAL_ALLOC) 480 c->c_flags = CALLOUT_LOCAL_ALLOC; 481 else 482 c->c_flags &= ~CALLOUT_PENDING; 483 cc->cc_curr = c; 484 cc->cc_cancel = 0; 485 CC_UNLOCK(cc); 486 if (c_lock != NULL) { 487 class->lc_lock(c_lock, sharedlock); 488 /* 489 * The callout may have been cancelled 490 * while we switched locks. 491 */ 492 if (cc->cc_cancel) { 493 class->lc_unlock(c_lock); 494 goto skip; 495 } 496 /* The callout cannot be stopped now. */ 497 cc->cc_cancel = 1; 498 499 if (c_lock == &Giant.lock_object) { 500 (*gcalls)++; 501 CTR3(KTR_CALLOUT, "callout %p func %p arg %p", 502 c, c_func, c_arg); 503 } else { 504 (*lockcalls)++; 505 CTR3(KTR_CALLOUT, "callout lock %p func %p arg %p", 506 c, c_func, c_arg); 507 } 508 } else { 509 (*mpcalls)++; 510 CTR3(KTR_CALLOUT, "callout mpsafe %p func %p arg %p", 511 c, c_func, c_arg); 512 } 513 #ifdef DIAGNOSTIC 514 binuptime(&bt1); 515 #endif 516 THREAD_NO_SLEEPING(); 517 SDT_PROBE(callout_execute, kernel, , callout_start, c, 0, 0, 0, 0); 518 c_func(c_arg); 519 SDT_PROBE(callout_execute, kernel, , callout_end, c, 0, 0, 0, 0); 520 THREAD_SLEEPING_OK(); 521 #ifdef DIAGNOSTIC 522 binuptime(&bt2); 523 bintime_sub(&bt2, &bt1); 524 if (bt2.frac > maxdt) { 525 if (lastfunc != c_func || bt2.frac > maxdt * 2) { 526 bintime2timespec(&bt2, &ts2); 527 printf( 528 "Expensive timeout(9) function: %p(%p) %jd.%09ld s\n", 529 c_func, c_arg, (intmax_t)ts2.tv_sec, ts2.tv_nsec); 530 } 531 maxdt = bt2.frac; 532 lastfunc = c_func; 533 } 534 #endif 535 CTR1(KTR_CALLOUT, "callout %p finished", c); 536 if ((c_flags & CALLOUT_RETURNUNLOCKED) == 0) 537 class->lc_unlock(c_lock); 538 skip: 539 CC_LOCK(cc); 540 KASSERT(cc->cc_curr == c, ("mishandled cc_curr")); 541 cc->cc_curr = NULL; 542 if (cc->cc_waiting) { 543 /* 544 * There is someone waiting for the 545 * callout to complete. 546 * If the callout was scheduled for 547 * migration just cancel it. 548 */ 549 if (cc_cme_migrating(cc)) { 550 cc_cme_cleanup(cc); 551 552 /* 553 * It should be assert here that the callout is not 554 * destroyed but that is not easy. 555 */ 556 c->c_flags &= ~CALLOUT_DFRMIGRATION; 557 } 558 cc->cc_waiting = 0; 559 CC_UNLOCK(cc); 560 wakeup(&cc->cc_waiting); 561 CC_LOCK(cc); 562 } else if (cc_cme_migrating(cc)) { 563 KASSERT((c_flags & CALLOUT_LOCAL_ALLOC) == 0, 564 ("Migrating legacy callout %p", c)); 565 #ifdef SMP 566 /* 567 * If the callout was scheduled for 568 * migration just perform it now. 569 */ 570 new_cpu = cc->cc_migration_cpu; 571 new_ticks = cc->cc_migration_ticks; 572 new_func = cc->cc_migration_func; 573 new_arg = cc->cc_migration_arg; 574 cc_cme_cleanup(cc); 575 576 /* 577 * It should be assert here that the callout is not destroyed 578 * but that is not easy. 579 * 580 * As first thing, handle deferred callout stops. 581 */ 582 if ((c->c_flags & CALLOUT_DFRMIGRATION) == 0) { 583 CTR3(KTR_CALLOUT, 584 "deferred cancelled %p func %p arg %p", 585 c, new_func, new_arg); 586 callout_cc_del(c, cc); 587 return; 588 } 589 c->c_flags &= ~CALLOUT_DFRMIGRATION; 590 591 new_cc = callout_cpu_switch(c, cc, new_cpu); 592 callout_cc_add(c, new_cc, new_ticks, new_func, new_arg, 593 new_cpu); 594 CC_UNLOCK(new_cc); 595 CC_LOCK(cc); 596 #else 597 panic("migration should not happen"); 598 #endif 599 } 600 /* 601 * If the current callout is locally allocated (from 602 * timeout(9)) then put it on the freelist. 603 * 604 * Note: we need to check the cached copy of c_flags because 605 * if it was not local, then it's not safe to deref the 606 * callout pointer. 607 */ 608 KASSERT((c_flags & CALLOUT_LOCAL_ALLOC) == 0 || 609 c->c_flags == CALLOUT_LOCAL_ALLOC, 610 ("corrupted callout")); 611 if (c_flags & CALLOUT_LOCAL_ALLOC) 612 callout_cc_del(c, cc); 613 } 614 615 /* 616 * The callout mechanism is based on the work of Adam M. Costello and 617 * George Varghese, published in a technical report entitled "Redesigning 618 * the BSD Callout and Timer Facilities" and modified slightly for inclusion 619 * in FreeBSD by Justin T. Gibbs. The original work on the data structures 620 * used in this implementation was published by G. Varghese and T. Lauck in 621 * the paper "Hashed and Hierarchical Timing Wheels: Data Structures for 622 * the Efficient Implementation of a Timer Facility" in the Proceedings of 623 * the 11th ACM Annual Symposium on Operating Systems Principles, 624 * Austin, Texas Nov 1987. 625 */ 626 627 /* 628 * Software (low priority) clock interrupt. 629 * Run periodic events from timeout queue. 630 */ 631 void 632 softclock(void *arg) 633 { 634 struct callout_cpu *cc; 635 struct callout *c; 636 struct callout_tailq *bucket; 637 int curticks; 638 int steps; /* #steps since we last allowed interrupts */ 639 int depth; 640 int mpcalls; 641 int lockcalls; 642 int gcalls; 643 644 #ifndef MAX_SOFTCLOCK_STEPS 645 #define MAX_SOFTCLOCK_STEPS 100 /* Maximum allowed value of steps. */ 646 #endif /* MAX_SOFTCLOCK_STEPS */ 647 648 mpcalls = 0; 649 lockcalls = 0; 650 gcalls = 0; 651 depth = 0; 652 steps = 0; 653 cc = (struct callout_cpu *)arg; 654 CC_LOCK(cc); 655 while (cc->cc_softticks - 1 != cc->cc_ticks) { 656 /* 657 * cc_softticks may be modified by hard clock, so cache 658 * it while we work on a given bucket. 659 */ 660 curticks = cc->cc_softticks; 661 cc->cc_softticks++; 662 bucket = &cc->cc_callwheel[curticks & callwheelmask]; 663 c = TAILQ_FIRST(bucket); 664 while (c != NULL) { 665 depth++; 666 if (c->c_time != curticks) { 667 c = TAILQ_NEXT(c, c_links.tqe); 668 ++steps; 669 if (steps >= MAX_SOFTCLOCK_STEPS) { 670 cc->cc_next = c; 671 /* Give interrupts a chance. */ 672 CC_UNLOCK(cc); 673 ; /* nothing */ 674 CC_LOCK(cc); 675 c = cc->cc_next; 676 steps = 0; 677 } 678 } else { 679 cc->cc_next = TAILQ_NEXT(c, c_links.tqe); 680 TAILQ_REMOVE(bucket, c, c_links.tqe); 681 softclock_call_cc(c, cc, &mpcalls, 682 &lockcalls, &gcalls); 683 steps = 0; 684 c = cc->cc_next; 685 } 686 } 687 } 688 avg_depth += (depth * 1000 - avg_depth) >> 8; 689 avg_mpcalls += (mpcalls * 1000 - avg_mpcalls) >> 8; 690 avg_lockcalls += (lockcalls * 1000 - avg_lockcalls) >> 8; 691 avg_gcalls += (gcalls * 1000 - avg_gcalls) >> 8; 692 cc->cc_next = NULL; 693 CC_UNLOCK(cc); 694 } 695 696 /* 697 * timeout -- 698 * Execute a function after a specified length of time. 699 * 700 * untimeout -- 701 * Cancel previous timeout function call. 702 * 703 * callout_handle_init -- 704 * Initialize a handle so that using it with untimeout is benign. 705 * 706 * See AT&T BCI Driver Reference Manual for specification. This 707 * implementation differs from that one in that although an 708 * identification value is returned from timeout, the original 709 * arguments to timeout as well as the identifier are used to 710 * identify entries for untimeout. 711 */ 712 struct callout_handle 713 timeout(ftn, arg, to_ticks) 714 timeout_t *ftn; 715 void *arg; 716 int to_ticks; 717 { 718 struct callout_cpu *cc; 719 struct callout *new; 720 struct callout_handle handle; 721 722 cc = CC_CPU(timeout_cpu); 723 CC_LOCK(cc); 724 /* Fill in the next free callout structure. */ 725 new = SLIST_FIRST(&cc->cc_callfree); 726 if (new == NULL) 727 /* XXX Attempt to malloc first */ 728 panic("timeout table full"); 729 SLIST_REMOVE_HEAD(&cc->cc_callfree, c_links.sle); 730 callout_reset(new, to_ticks, ftn, arg); 731 handle.callout = new; 732 CC_UNLOCK(cc); 733 734 return (handle); 735 } 736 737 void 738 untimeout(ftn, arg, handle) 739 timeout_t *ftn; 740 void *arg; 741 struct callout_handle handle; 742 { 743 struct callout_cpu *cc; 744 745 /* 746 * Check for a handle that was initialized 747 * by callout_handle_init, but never used 748 * for a real timeout. 749 */ 750 if (handle.callout == NULL) 751 return; 752 753 cc = callout_lock(handle.callout); 754 if (handle.callout->c_func == ftn && handle.callout->c_arg == arg) 755 callout_stop(handle.callout); 756 CC_UNLOCK(cc); 757 } 758 759 void 760 callout_handle_init(struct callout_handle *handle) 761 { 762 handle->callout = NULL; 763 } 764 765 /* 766 * New interface; clients allocate their own callout structures. 767 * 768 * callout_reset() - establish or change a timeout 769 * callout_stop() - disestablish a timeout 770 * callout_init() - initialize a callout structure so that it can 771 * safely be passed to callout_reset() and callout_stop() 772 * 773 * <sys/callout.h> defines three convenience macros: 774 * 775 * callout_active() - returns truth if callout has not been stopped, 776 * drained, or deactivated since the last time the callout was 777 * reset. 778 * callout_pending() - returns truth if callout is still waiting for timeout 779 * callout_deactivate() - marks the callout as having been serviced 780 */ 781 int 782 callout_reset_on(struct callout *c, int to_ticks, void (*ftn)(void *), 783 void *arg, int cpu) 784 { 785 struct callout_cpu *cc; 786 int cancelled = 0; 787 788 /* 789 * Don't allow migration of pre-allocated callouts lest they 790 * become unbalanced. 791 */ 792 if (c->c_flags & CALLOUT_LOCAL_ALLOC) 793 cpu = c->c_cpu; 794 cc = callout_lock(c); 795 if (cc->cc_curr == c) { 796 /* 797 * We're being asked to reschedule a callout which is 798 * currently in progress. If there is a lock then we 799 * can cancel the callout if it has not really started. 800 */ 801 if (c->c_lock != NULL && !cc->cc_cancel) 802 cancelled = cc->cc_cancel = 1; 803 if (cc->cc_waiting) { 804 /* 805 * Someone has called callout_drain to kill this 806 * callout. Don't reschedule. 807 */ 808 CTR4(KTR_CALLOUT, "%s %p func %p arg %p", 809 cancelled ? "cancelled" : "failed to cancel", 810 c, c->c_func, c->c_arg); 811 CC_UNLOCK(cc); 812 return (cancelled); 813 } 814 } 815 if (c->c_flags & CALLOUT_PENDING) { 816 if (cc->cc_next == c) { 817 cc->cc_next = TAILQ_NEXT(c, c_links.tqe); 818 } 819 TAILQ_REMOVE(&cc->cc_callwheel[c->c_time & callwheelmask], c, 820 c_links.tqe); 821 822 cancelled = 1; 823 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING); 824 } 825 826 #ifdef SMP 827 /* 828 * If the callout must migrate try to perform it immediately. 829 * If the callout is currently running, just defer the migration 830 * to a more appropriate moment. 831 */ 832 if (c->c_cpu != cpu) { 833 if (cc->cc_curr == c) { 834 cc->cc_migration_cpu = cpu; 835 cc->cc_migration_ticks = to_ticks; 836 cc->cc_migration_func = ftn; 837 cc->cc_migration_arg = arg; 838 c->c_flags |= CALLOUT_DFRMIGRATION; 839 CTR5(KTR_CALLOUT, 840 "migration of %p func %p arg %p in %d to %u deferred", 841 c, c->c_func, c->c_arg, to_ticks, cpu); 842 CC_UNLOCK(cc); 843 return (cancelled); 844 } 845 cc = callout_cpu_switch(c, cc, cpu); 846 } 847 #endif 848 849 callout_cc_add(c, cc, to_ticks, ftn, arg, cpu); 850 CTR5(KTR_CALLOUT, "%sscheduled %p func %p arg %p in %d", 851 cancelled ? "re" : "", c, c->c_func, c->c_arg, to_ticks); 852 CC_UNLOCK(cc); 853 854 return (cancelled); 855 } 856 857 /* 858 * Common idioms that can be optimized in the future. 859 */ 860 int 861 callout_schedule_on(struct callout *c, int to_ticks, int cpu) 862 { 863 return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, cpu); 864 } 865 866 int 867 callout_schedule(struct callout *c, int to_ticks) 868 { 869 return callout_reset_on(c, to_ticks, c->c_func, c->c_arg, c->c_cpu); 870 } 871 872 int 873 _callout_stop_safe(c, safe) 874 struct callout *c; 875 int safe; 876 { 877 struct callout_cpu *cc, *old_cc; 878 struct lock_class *class; 879 int use_lock, sq_locked; 880 881 /* 882 * Some old subsystems don't hold Giant while running a callout_stop(), 883 * so just discard this check for the moment. 884 */ 885 if (!safe && c->c_lock != NULL) { 886 if (c->c_lock == &Giant.lock_object) 887 use_lock = mtx_owned(&Giant); 888 else { 889 use_lock = 1; 890 class = LOCK_CLASS(c->c_lock); 891 class->lc_assert(c->c_lock, LA_XLOCKED); 892 } 893 } else 894 use_lock = 0; 895 896 sq_locked = 0; 897 old_cc = NULL; 898 again: 899 cc = callout_lock(c); 900 901 /* 902 * If the callout was migrating while the callout cpu lock was 903 * dropped, just drop the sleepqueue lock and check the states 904 * again. 905 */ 906 if (sq_locked != 0 && cc != old_cc) { 907 #ifdef SMP 908 CC_UNLOCK(cc); 909 sleepq_release(&old_cc->cc_waiting); 910 sq_locked = 0; 911 old_cc = NULL; 912 goto again; 913 #else 914 panic("migration should not happen"); 915 #endif 916 } 917 918 /* 919 * If the callout isn't pending, it's not on the queue, so 920 * don't attempt to remove it from the queue. We can try to 921 * stop it by other means however. 922 */ 923 if (!(c->c_flags & CALLOUT_PENDING)) { 924 c->c_flags &= ~CALLOUT_ACTIVE; 925 926 /* 927 * If it wasn't on the queue and it isn't the current 928 * callout, then we can't stop it, so just bail. 929 */ 930 if (cc->cc_curr != c) { 931 CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p", 932 c, c->c_func, c->c_arg); 933 CC_UNLOCK(cc); 934 if (sq_locked) 935 sleepq_release(&cc->cc_waiting); 936 return (0); 937 } 938 939 if (safe) { 940 /* 941 * The current callout is running (or just 942 * about to run) and blocking is allowed, so 943 * just wait for the current invocation to 944 * finish. 945 */ 946 while (cc->cc_curr == c) { 947 948 /* 949 * Use direct calls to sleepqueue interface 950 * instead of cv/msleep in order to avoid 951 * a LOR between cc_lock and sleepqueue 952 * chain spinlocks. This piece of code 953 * emulates a msleep_spin() call actually. 954 * 955 * If we already have the sleepqueue chain 956 * locked, then we can safely block. If we 957 * don't already have it locked, however, 958 * we have to drop the cc_lock to lock 959 * it. This opens several races, so we 960 * restart at the beginning once we have 961 * both locks. If nothing has changed, then 962 * we will end up back here with sq_locked 963 * set. 964 */ 965 if (!sq_locked) { 966 CC_UNLOCK(cc); 967 sleepq_lock(&cc->cc_waiting); 968 sq_locked = 1; 969 old_cc = cc; 970 goto again; 971 } 972 973 /* 974 * Migration could be cancelled here, but 975 * as long as it is still not sure when it 976 * will be packed up, just let softclock() 977 * take care of it. 978 */ 979 cc->cc_waiting = 1; 980 DROP_GIANT(); 981 CC_UNLOCK(cc); 982 sleepq_add(&cc->cc_waiting, 983 &cc->cc_lock.lock_object, "codrain", 984 SLEEPQ_SLEEP, 0); 985 sleepq_wait(&cc->cc_waiting, 0); 986 sq_locked = 0; 987 old_cc = NULL; 988 989 /* Reacquire locks previously released. */ 990 PICKUP_GIANT(); 991 CC_LOCK(cc); 992 } 993 } else if (use_lock && !cc->cc_cancel) { 994 /* 995 * The current callout is waiting for its 996 * lock which we hold. Cancel the callout 997 * and return. After our caller drops the 998 * lock, the callout will be skipped in 999 * softclock(). 1000 */ 1001 cc->cc_cancel = 1; 1002 CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p", 1003 c, c->c_func, c->c_arg); 1004 KASSERT(!cc_cme_migrating(cc), 1005 ("callout wrongly scheduled for migration")); 1006 CC_UNLOCK(cc); 1007 KASSERT(!sq_locked, ("sleepqueue chain locked")); 1008 return (1); 1009 } else if ((c->c_flags & CALLOUT_DFRMIGRATION) != 0) { 1010 c->c_flags &= ~CALLOUT_DFRMIGRATION; 1011 CTR3(KTR_CALLOUT, "postponing stop %p func %p arg %p", 1012 c, c->c_func, c->c_arg); 1013 CC_UNLOCK(cc); 1014 return (1); 1015 } 1016 CTR3(KTR_CALLOUT, "failed to stop %p func %p arg %p", 1017 c, c->c_func, c->c_arg); 1018 CC_UNLOCK(cc); 1019 KASSERT(!sq_locked, ("sleepqueue chain still locked")); 1020 return (0); 1021 } 1022 if (sq_locked) 1023 sleepq_release(&cc->cc_waiting); 1024 1025 c->c_flags &= ~(CALLOUT_ACTIVE | CALLOUT_PENDING); 1026 1027 CTR3(KTR_CALLOUT, "cancelled %p func %p arg %p", 1028 c, c->c_func, c->c_arg); 1029 if (cc->cc_next == c) 1030 cc->cc_next = TAILQ_NEXT(c, c_links.tqe); 1031 TAILQ_REMOVE(&cc->cc_callwheel[c->c_time & callwheelmask], c, 1032 c_links.tqe); 1033 callout_cc_del(c, cc); 1034 1035 CC_UNLOCK(cc); 1036 return (1); 1037 } 1038 1039 void 1040 callout_init(c, mpsafe) 1041 struct callout *c; 1042 int mpsafe; 1043 { 1044 bzero(c, sizeof *c); 1045 if (mpsafe) { 1046 c->c_lock = NULL; 1047 c->c_flags = CALLOUT_RETURNUNLOCKED; 1048 } else { 1049 c->c_lock = &Giant.lock_object; 1050 c->c_flags = 0; 1051 } 1052 c->c_cpu = timeout_cpu; 1053 } 1054 1055 void 1056 _callout_init_lock(c, lock, flags) 1057 struct callout *c; 1058 struct lock_object *lock; 1059 int flags; 1060 { 1061 bzero(c, sizeof *c); 1062 c->c_lock = lock; 1063 KASSERT((flags & ~(CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK)) == 0, 1064 ("callout_init_lock: bad flags %d", flags)); 1065 KASSERT(lock != NULL || (flags & CALLOUT_RETURNUNLOCKED) == 0, 1066 ("callout_init_lock: CALLOUT_RETURNUNLOCKED with no lock")); 1067 KASSERT(lock == NULL || !(LOCK_CLASS(lock)->lc_flags & 1068 (LC_SPINLOCK | LC_SLEEPABLE)), ("%s: invalid lock class", 1069 __func__)); 1070 c->c_flags = flags & (CALLOUT_RETURNUNLOCKED | CALLOUT_SHAREDLOCK); 1071 c->c_cpu = timeout_cpu; 1072 } 1073 1074 #ifdef APM_FIXUP_CALLTODO 1075 /* 1076 * Adjust the kernel calltodo timeout list. This routine is used after 1077 * an APM resume to recalculate the calltodo timer list values with the 1078 * number of hz's we have been sleeping. The next hardclock() will detect 1079 * that there are fired timers and run softclock() to execute them. 1080 * 1081 * Please note, I have not done an exhaustive analysis of what code this 1082 * might break. I am motivated to have my select()'s and alarm()'s that 1083 * have expired during suspend firing upon resume so that the applications 1084 * which set the timer can do the maintanence the timer was for as close 1085 * as possible to the originally intended time. Testing this code for a 1086 * week showed that resuming from a suspend resulted in 22 to 25 timers 1087 * firing, which seemed independant on whether the suspend was 2 hours or 1088 * 2 days. Your milage may vary. - Ken Key <key@cs.utk.edu> 1089 */ 1090 void 1091 adjust_timeout_calltodo(time_change) 1092 struct timeval *time_change; 1093 { 1094 register struct callout *p; 1095 unsigned long delta_ticks; 1096 1097 /* 1098 * How many ticks were we asleep? 1099 * (stolen from tvtohz()). 1100 */ 1101 1102 /* Don't do anything */ 1103 if (time_change->tv_sec < 0) 1104 return; 1105 else if (time_change->tv_sec <= LONG_MAX / 1000000) 1106 delta_ticks = (time_change->tv_sec * 1000000 + 1107 time_change->tv_usec + (tick - 1)) / tick + 1; 1108 else if (time_change->tv_sec <= LONG_MAX / hz) 1109 delta_ticks = time_change->tv_sec * hz + 1110 (time_change->tv_usec + (tick - 1)) / tick + 1; 1111 else 1112 delta_ticks = LONG_MAX; 1113 1114 if (delta_ticks > INT_MAX) 1115 delta_ticks = INT_MAX; 1116 1117 /* 1118 * Now rip through the timer calltodo list looking for timers 1119 * to expire. 1120 */ 1121 1122 /* don't collide with softclock() */ 1123 CC_LOCK(cc); 1124 for (p = calltodo.c_next; p != NULL; p = p->c_next) { 1125 p->c_time -= delta_ticks; 1126 1127 /* Break if the timer had more time on it than delta_ticks */ 1128 if (p->c_time > 0) 1129 break; 1130 1131 /* take back the ticks the timer didn't use (p->c_time <= 0) */ 1132 delta_ticks = -p->c_time; 1133 } 1134 CC_UNLOCK(cc); 1135 1136 return; 1137 } 1138 #endif /* APM_FIXUP_CALLTODO */ 1139