xref: /freebsd/sys/kern/kern_time.c (revision f9218d3d4fd34f082473b3a021c6d4d109fb47cf)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD$
35  */
36 
37 #include "opt_mac.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/sysproto.h>
44 #include <sys/resourcevar.h>
45 #include <sys/signalvar.h>
46 #include <sys/kernel.h>
47 #include <sys/mac.h>
48 #include <sys/sysent.h>
49 #include <sys/proc.h>
50 #include <sys/time.h>
51 #include <sys/timetc.h>
52 #include <sys/vnode.h>
53 
54 #include <vm/vm.h>
55 #include <vm/vm_extern.h>
56 
57 int tz_minuteswest;
58 int tz_dsttime;
59 
60 /*
61  * Time of day and interval timer support.
62  *
63  * These routines provide the kernel entry points to get and set
64  * the time-of-day and per-process interval timers.  Subroutines
65  * here provide support for adding and subtracting timeval structures
66  * and decrementing interval timers, optionally reloading the interval
67  * timers when they expire.
68  */
69 
70 static int	nanosleep1(struct thread *td, struct timespec *rqt,
71 		    struct timespec *rmt);
72 static int	settime(struct thread *, struct timeval *);
73 static void	timevalfix(struct timeval *);
74 static void	no_lease_updatetime(int);
75 
76 static void
77 no_lease_updatetime(deltat)
78 	int deltat;
79 {
80 }
81 
82 void (*lease_updatetime)(int)  = no_lease_updatetime;
83 
84 static int
85 settime(struct thread *td, struct timeval *tv)
86 {
87 	struct timeval delta, tv1, tv2;
88 	static struct timeval maxtime, laststep;
89 	struct timespec ts;
90 	int s;
91 
92 	s = splclock();
93 	microtime(&tv1);
94 	delta = *tv;
95 	timevalsub(&delta, &tv1);
96 
97 	/*
98 	 * If the system is secure, we do not allow the time to be
99 	 * set to a value earlier than 1 second less than the highest
100 	 * time we have yet seen. The worst a miscreant can do in
101 	 * this circumstance is "freeze" time. He couldn't go
102 	 * back to the past.
103 	 *
104 	 * We similarly do not allow the clock to be stepped more
105 	 * than one second, nor more than once per second. This allows
106 	 * a miscreant to make the clock march double-time, but no worse.
107 	 */
108 	if (securelevel_gt(td->td_ucred, 1) != 0) {
109 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
110 			/*
111 			 * Update maxtime to latest time we've seen.
112 			 */
113 			if (tv1.tv_sec > maxtime.tv_sec)
114 				maxtime = tv1;
115 			tv2 = *tv;
116 			timevalsub(&tv2, &maxtime);
117 			if (tv2.tv_sec < -1) {
118 				tv->tv_sec = maxtime.tv_sec - 1;
119 				printf("Time adjustment clamped to -1 second\n");
120 			}
121 		} else {
122 			if (tv1.tv_sec == laststep.tv_sec) {
123 				splx(s);
124 				return (EPERM);
125 			}
126 			if (delta.tv_sec > 1) {
127 				tv->tv_sec = tv1.tv_sec + 1;
128 				printf("Time adjustment clamped to +1 second\n");
129 			}
130 			laststep = *tv;
131 		}
132 	}
133 
134 	ts.tv_sec = tv->tv_sec;
135 	ts.tv_nsec = tv->tv_usec * 1000;
136 	mtx_lock(&Giant);
137 	tc_setclock(&ts);
138 	(void) splsoftclock();
139 	lease_updatetime(delta.tv_sec);
140 	splx(s);
141 	resettodr();
142 	mtx_unlock(&Giant);
143 	return (0);
144 }
145 
146 #ifndef _SYS_SYSPROTO_H_
147 struct clock_gettime_args {
148 	clockid_t clock_id;
149 	struct	timespec *tp;
150 };
151 #endif
152 
153 /*
154  * MPSAFE
155  */
156 /* ARGSUSED */
157 int
158 clock_gettime(struct thread *td, struct clock_gettime_args *uap)
159 {
160 	struct timespec ats;
161 
162 	if (uap->clock_id == CLOCK_REALTIME)
163 		nanotime(&ats);
164 	else if (uap->clock_id == CLOCK_MONOTONIC)
165 		nanouptime(&ats);
166 	else
167 		return (EINVAL);
168 	return (copyout(&ats, uap->tp, sizeof(ats)));
169 }
170 
171 #ifndef _SYS_SYSPROTO_H_
172 struct clock_settime_args {
173 	clockid_t clock_id;
174 	const struct	timespec *tp;
175 };
176 #endif
177 
178 /*
179  * MPSAFE
180  */
181 /* ARGSUSED */
182 int
183 clock_settime(struct thread *td, struct clock_settime_args *uap)
184 {
185 	struct timeval atv;
186 	struct timespec ats;
187 	int error;
188 
189 #ifdef MAC
190 	error = mac_check_system_settime(td->td_ucred);
191 	if (error)
192 		return (error);
193 #endif
194 	if ((error = suser(td)) != 0)
195 		return (error);
196 	if (uap->clock_id != CLOCK_REALTIME)
197 		return (EINVAL);
198 	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
199 		return (error);
200 	if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
201 		return (EINVAL);
202 	/* XXX Don't convert nsec->usec and back */
203 	TIMESPEC_TO_TIMEVAL(&atv, &ats);
204 	error = settime(td, &atv);
205 	return (error);
206 }
207 
208 #ifndef _SYS_SYSPROTO_H_
209 struct clock_getres_args {
210 	clockid_t clock_id;
211 	struct	timespec *tp;
212 };
213 #endif
214 
215 int
216 clock_getres(struct thread *td, struct clock_getres_args *uap)
217 {
218 	struct timespec ts;
219 	int error;
220 
221 	if (uap->clock_id != CLOCK_REALTIME)
222 		return (EINVAL);
223 	error = 0;
224 	if (uap->tp) {
225 		ts.tv_sec = 0;
226 		/*
227 		 * Round up the result of the division cheaply by adding 1.
228 		 * Rounding up is especially important if rounding down
229 		 * would give 0.  Perfect rounding is unimportant.
230 		 */
231 		ts.tv_nsec = 1000000000 / tc_getfrequency() + 1;
232 		error = copyout(&ts, uap->tp, sizeof(ts));
233 	}
234 	return (error);
235 }
236 
237 static int nanowait;
238 
239 static int
240 nanosleep1(struct thread *td, struct timespec *rqt, struct timespec *rmt)
241 {
242 	struct timespec ts, ts2, ts3;
243 	struct timeval tv;
244 	int error;
245 
246 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
247 		return (EINVAL);
248 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
249 		return (0);
250 	getnanouptime(&ts);
251 	timespecadd(&ts, rqt);
252 	TIMESPEC_TO_TIMEVAL(&tv, rqt);
253 	for (;;) {
254 		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
255 		    tvtohz(&tv));
256 		getnanouptime(&ts2);
257 		if (error != EWOULDBLOCK) {
258 			if (error == ERESTART)
259 				error = EINTR;
260 			if (rmt != NULL) {
261 				timespecsub(&ts, &ts2);
262 				if (ts.tv_sec < 0)
263 					timespecclear(&ts);
264 				*rmt = ts;
265 			}
266 			return (error);
267 		}
268 		if (timespeccmp(&ts2, &ts, >=))
269 			return (0);
270 		ts3 = ts;
271 		timespecsub(&ts3, &ts2);
272 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
273 	}
274 }
275 
276 #ifndef _SYS_SYSPROTO_H_
277 struct nanosleep_args {
278 	struct	timespec *rqtp;
279 	struct	timespec *rmtp;
280 };
281 #endif
282 
283 /*
284  * MPSAFE
285  */
286 /* ARGSUSED */
287 int
288 nanosleep(struct thread *td, struct nanosleep_args *uap)
289 {
290 	struct timespec rmt, rqt;
291 	int error;
292 
293 	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
294 	if (error)
295 		return (error);
296 
297 	if (uap->rmtp &&
298 	    !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
299 			return (EFAULT);
300 	error = nanosleep1(td, &rqt, &rmt);
301 	if (error && uap->rmtp) {
302 		int error2;
303 
304 		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
305 		if (error2)
306 			error = error2;
307 	}
308 	return (error);
309 }
310 
311 #ifndef _SYS_SYSPROTO_H_
312 struct gettimeofday_args {
313 	struct	timeval *tp;
314 	struct	timezone *tzp;
315 };
316 #endif
317 /*
318  * MPSAFE
319  */
320 /* ARGSUSED */
321 int
322 gettimeofday(struct thread *td, struct gettimeofday_args *uap)
323 {
324 	struct timeval atv;
325 	struct timezone rtz;
326 	int error = 0;
327 
328 	if (uap->tp) {
329 		microtime(&atv);
330 		error = copyout(&atv, uap->tp, sizeof (atv));
331 	}
332 	if (error == 0 && uap->tzp != NULL) {
333 		rtz.tz_minuteswest = tz_minuteswest;
334 		rtz.tz_dsttime = tz_dsttime;
335 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
336 	}
337 	return (error);
338 }
339 
340 #ifndef _SYS_SYSPROTO_H_
341 struct settimeofday_args {
342 	struct	timeval *tv;
343 	struct	timezone *tzp;
344 };
345 #endif
346 /*
347  * MPSAFE
348  */
349 /* ARGSUSED */
350 int
351 settimeofday(struct thread *td, struct settimeofday_args *uap)
352 {
353 	struct timeval atv;
354 	struct timezone atz;
355 	int error = 0;
356 
357 #ifdef MAC
358 	error = mac_check_system_settime(td->td_ucred);
359 	if (error)
360 		return (error);
361 #endif
362 	if ((error = suser(td)))
363 		return (error);
364 	/* Verify all parameters before changing time. */
365 	if (uap->tv) {
366 		if ((error = copyin(uap->tv, &atv, sizeof(atv))))
367 			return (error);
368 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
369 			return (EINVAL);
370 	}
371 	if (uap->tzp &&
372 	    (error = copyin(uap->tzp, &atz, sizeof(atz))))
373 		return (error);
374 
375 	if (uap->tv && (error = settime(td, &atv)))
376 		return (error);
377 	if (uap->tzp) {
378 		tz_minuteswest = atz.tz_minuteswest;
379 		tz_dsttime = atz.tz_dsttime;
380 	}
381 	return (error);
382 }
383 /*
384  * Get value of an interval timer.  The process virtual and
385  * profiling virtual time timers are kept in the p_stats area, since
386  * they can be swapped out.  These are kept internally in the
387  * way they are specified externally: in time until they expire.
388  *
389  * The real time interval timer is kept in the process table slot
390  * for the process, and its value (it_value) is kept as an
391  * absolute time rather than as a delta, so that it is easy to keep
392  * periodic real-time signals from drifting.
393  *
394  * Virtual time timers are processed in the hardclock() routine of
395  * kern_clock.c.  The real time timer is processed by a timeout
396  * routine, called from the softclock() routine.  Since a callout
397  * may be delayed in real time due to interrupt processing in the system,
398  * it is possible for the real time timeout routine (realitexpire, given below),
399  * to be delayed in real time past when it is supposed to occur.  It
400  * does not suffice, therefore, to reload the real timer .it_value from the
401  * real time timers .it_interval.  Rather, we compute the next time in
402  * absolute time the timer should go off.
403  */
404 #ifndef _SYS_SYSPROTO_H_
405 struct getitimer_args {
406 	u_int	which;
407 	struct	itimerval *itv;
408 };
409 #endif
410 /*
411  * MPSAFE
412  */
413 int
414 getitimer(struct thread *td, struct getitimer_args *uap)
415 {
416 	struct proc *p = td->td_proc;
417 	struct timeval ctv;
418 	struct itimerval aitv;
419 
420 	if (uap->which > ITIMER_PROF)
421 		return (EINVAL);
422 
423 	if (uap->which == ITIMER_REAL) {
424 		/*
425 		 * Convert from absolute to relative time in .it_value
426 		 * part of real time timer.  If time for real time timer
427 		 * has passed return 0, else return difference between
428 		 * current time and time for the timer to go off.
429 		 */
430 		PROC_LOCK(p);
431 		aitv = p->p_realtimer;
432 		PROC_UNLOCK(p);
433 		if (timevalisset(&aitv.it_value)) {
434 			getmicrouptime(&ctv);
435 			if (timevalcmp(&aitv.it_value, &ctv, <))
436 				timevalclear(&aitv.it_value);
437 			else
438 				timevalsub(&aitv.it_value, &ctv);
439 		}
440 	} else {
441 		mtx_lock_spin(&sched_lock);
442 		aitv = p->p_stats->p_timer[uap->which];
443 		mtx_unlock_spin(&sched_lock);
444 	}
445 	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
446 }
447 
448 #ifndef _SYS_SYSPROTO_H_
449 struct setitimer_args {
450 	u_int	which;
451 	struct	itimerval *itv, *oitv;
452 };
453 #endif
454 /*
455  * MPSAFE
456  */
457 int
458 setitimer(struct thread *td, struct setitimer_args *uap)
459 {
460 	struct proc *p = td->td_proc;
461 	struct itimerval aitv, oitv;
462 	struct timeval ctv;
463 	int error;
464 
465 	if (uap->itv == NULL) {
466 		uap->itv = uap->oitv;
467 		return (getitimer(td, (struct getitimer_args *)uap));
468 	}
469 
470 	if (uap->which > ITIMER_PROF)
471 		return (EINVAL);
472 	if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
473 		return (error);
474 	if (itimerfix(&aitv.it_value))
475 		return (EINVAL);
476 	if (!timevalisset(&aitv.it_value))
477 		timevalclear(&aitv.it_interval);
478 	else if (itimerfix(&aitv.it_interval))
479 		return (EINVAL);
480 
481 	if (uap->which == ITIMER_REAL) {
482 		PROC_LOCK(p);
483 		if (timevalisset(&p->p_realtimer.it_value))
484 			callout_stop(&p->p_itcallout);
485 		if (timevalisset(&aitv.it_value))
486 			callout_reset(&p->p_itcallout, tvtohz(&aitv.it_value),
487 			    realitexpire, p);
488 		getmicrouptime(&ctv);
489 		timevaladd(&aitv.it_value, &ctv);
490 		oitv = p->p_realtimer;
491 		p->p_realtimer = aitv;
492 		PROC_UNLOCK(p);
493 		if (timevalisset(&oitv.it_value)) {
494 			if (timevalcmp(&oitv.it_value, &ctv, <))
495 				timevalclear(&oitv.it_value);
496 			else
497 				timevalsub(&oitv.it_value, &ctv);
498 		}
499 	} else {
500 		mtx_lock_spin(&sched_lock);
501 		oitv = p->p_stats->p_timer[uap->which];
502 		p->p_stats->p_timer[uap->which] = aitv;
503 		mtx_unlock_spin(&sched_lock);
504 	}
505 	if (uap->oitv == NULL)
506 		return (0);
507 	return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
508 }
509 
510 /*
511  * Real interval timer expired:
512  * send process whose timer expired an alarm signal.
513  * If time is not set up to reload, then just return.
514  * Else compute next time timer should go off which is > current time.
515  * This is where delay in processing this timeout causes multiple
516  * SIGALRM calls to be compressed into one.
517  * tvtohz() always adds 1 to allow for the time until the next clock
518  * interrupt being strictly less than 1 clock tick, but we don't want
519  * that here since we want to appear to be in sync with the clock
520  * interrupt even when we're delayed.
521  */
522 void
523 realitexpire(void *arg)
524 {
525 	struct proc *p;
526 	struct timeval ctv, ntv;
527 
528 	p = (struct proc *)arg;
529 	PROC_LOCK(p);
530 	psignal(p, SIGALRM);
531 	if (!timevalisset(&p->p_realtimer.it_interval)) {
532 		timevalclear(&p->p_realtimer.it_value);
533 		PROC_UNLOCK(p);
534 		return;
535 	}
536 	for (;;) {
537 		timevaladd(&p->p_realtimer.it_value,
538 		    &p->p_realtimer.it_interval);
539 		getmicrouptime(&ctv);
540 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
541 			ntv = p->p_realtimer.it_value;
542 			timevalsub(&ntv, &ctv);
543 			callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
544 			    realitexpire, p);
545 			PROC_UNLOCK(p);
546 			return;
547 		}
548 	}
549 	/*NOTREACHED*/
550 }
551 
552 /*
553  * Check that a proposed value to load into the .it_value or
554  * .it_interval part of an interval timer is acceptable, and
555  * fix it to have at least minimal value (i.e. if it is less
556  * than the resolution of the clock, round it up.)
557  */
558 int
559 itimerfix(struct timeval *tv)
560 {
561 
562 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
563 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
564 		return (EINVAL);
565 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
566 		tv->tv_usec = tick;
567 	return (0);
568 }
569 
570 /*
571  * Decrement an interval timer by a specified number
572  * of microseconds, which must be less than a second,
573  * i.e. < 1000000.  If the timer expires, then reload
574  * it.  In this case, carry over (usec - old value) to
575  * reduce the value reloaded into the timer so that
576  * the timer does not drift.  This routine assumes
577  * that it is called in a context where the timers
578  * on which it is operating cannot change in value.
579  */
580 int
581 itimerdecr(struct itimerval *itp, int usec)
582 {
583 
584 	if (itp->it_value.tv_usec < usec) {
585 		if (itp->it_value.tv_sec == 0) {
586 			/* expired, and already in next interval */
587 			usec -= itp->it_value.tv_usec;
588 			goto expire;
589 		}
590 		itp->it_value.tv_usec += 1000000;
591 		itp->it_value.tv_sec--;
592 	}
593 	itp->it_value.tv_usec -= usec;
594 	usec = 0;
595 	if (timevalisset(&itp->it_value))
596 		return (1);
597 	/* expired, exactly at end of interval */
598 expire:
599 	if (timevalisset(&itp->it_interval)) {
600 		itp->it_value = itp->it_interval;
601 		itp->it_value.tv_usec -= usec;
602 		if (itp->it_value.tv_usec < 0) {
603 			itp->it_value.tv_usec += 1000000;
604 			itp->it_value.tv_sec--;
605 		}
606 	} else
607 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
608 	return (0);
609 }
610 
611 /*
612  * Add and subtract routines for timevals.
613  * N.B.: subtract routine doesn't deal with
614  * results which are before the beginning,
615  * it just gets very confused in this case.
616  * Caveat emptor.
617  */
618 void
619 timevaladd(struct timeval *t1, struct timeval *t2)
620 {
621 
622 	t1->tv_sec += t2->tv_sec;
623 	t1->tv_usec += t2->tv_usec;
624 	timevalfix(t1);
625 }
626 
627 void
628 timevalsub(struct timeval *t1, struct timeval *t2)
629 {
630 
631 	t1->tv_sec -= t2->tv_sec;
632 	t1->tv_usec -= t2->tv_usec;
633 	timevalfix(t1);
634 }
635 
636 static void
637 timevalfix(struct timeval *t1)
638 {
639 
640 	if (t1->tv_usec < 0) {
641 		t1->tv_sec--;
642 		t1->tv_usec += 1000000;
643 	}
644 	if (t1->tv_usec >= 1000000) {
645 		t1->tv_sec++;
646 		t1->tv_usec -= 1000000;
647 	}
648 }
649 
650 /*
651  * ratecheck(): simple time-based rate-limit checking.
652  */
653 int
654 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
655 {
656 	struct timeval tv, delta;
657 	int rv = 0;
658 
659 	getmicrouptime(&tv);		/* NB: 10ms precision */
660 	delta = tv;
661 	timevalsub(&delta, lasttime);
662 
663 	/*
664 	 * check for 0,0 is so that the message will be seen at least once,
665 	 * even if interval is huge.
666 	 */
667 	if (timevalcmp(&delta, mininterval, >=) ||
668 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
669 		*lasttime = tv;
670 		rv = 1;
671 	}
672 
673 	return (rv);
674 }
675 
676 /*
677  * ppsratecheck(): packets (or events) per second limitation.
678  *
679  * Return 0 if the limit is to be enforced (e.g. the caller
680  * should drop a packet because of the rate limitation).
681  *
682  * maxpps of 0 always causes zero to be returned.  maxpps of -1
683  * always causes 1 to be returned; this effectively defeats rate
684  * limiting.
685  *
686  * Note that we maintain the struct timeval for compatibility
687  * with other bsd systems.  We reuse the storage and just monitor
688  * clock ticks for minimal overhead.
689  */
690 int
691 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
692 {
693 	int now;
694 
695 	/*
696 	 * Reset the last time and counter if this is the first call
697 	 * or more than a second has passed since the last update of
698 	 * lasttime.
699 	 */
700 	now = ticks;
701 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
702 		lasttime->tv_sec = now;
703 		*curpps = 1;
704 		return (maxpps != 0);
705 	} else {
706 		(*curpps)++;		/* NB: ignore potential overflow */
707 		return (maxpps < 0 || *curpps < maxpps);
708 	}
709 }
710