1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_mac.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/limits.h> 40 #include <sys/clock.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/sysproto.h> 44 #include <sys/eventhandler.h> 45 #include <sys/resourcevar.h> 46 #include <sys/signalvar.h> 47 #include <sys/kernel.h> 48 #include <sys/syscallsubr.h> 49 #include <sys/sysctl.h> 50 #include <sys/sysent.h> 51 #include <sys/priv.h> 52 #include <sys/proc.h> 53 #include <sys/posix4.h> 54 #include <sys/time.h> 55 #include <sys/timers.h> 56 #include <sys/timetc.h> 57 #include <sys/vnode.h> 58 59 #include <security/mac/mac_framework.h> 60 61 #include <vm/vm.h> 62 #include <vm/vm_extern.h> 63 64 #define MAX_CLOCKS (CLOCK_MONOTONIC+1) 65 66 static struct kclock posix_clocks[MAX_CLOCKS]; 67 static uma_zone_t itimer_zone = NULL; 68 69 /* 70 * Time of day and interval timer support. 71 * 72 * These routines provide the kernel entry points to get and set 73 * the time-of-day and per-process interval timers. Subroutines 74 * here provide support for adding and subtracting timeval structures 75 * and decrementing interval timers, optionally reloading the interval 76 * timers when they expire. 77 */ 78 79 static int settime(struct thread *, struct timeval *); 80 static void timevalfix(struct timeval *); 81 static void no_lease_updatetime(int); 82 83 static void itimer_start(void); 84 static int itimer_init(void *, int, int); 85 static void itimer_fini(void *, int); 86 static void itimer_enter(struct itimer *); 87 static void itimer_leave(struct itimer *); 88 static struct itimer *itimer_find(struct proc *, int); 89 static void itimers_alloc(struct proc *); 90 static void itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp); 91 static void itimers_event_hook_exit(void *arg, struct proc *p); 92 static int realtimer_create(struct itimer *); 93 static int realtimer_gettime(struct itimer *, struct itimerspec *); 94 static int realtimer_settime(struct itimer *, int, 95 struct itimerspec *, struct itimerspec *); 96 static int realtimer_delete(struct itimer *); 97 static void realtimer_clocktime(clockid_t, struct timespec *); 98 static void realtimer_expire(void *); 99 static int kern_timer_create(struct thread *, clockid_t, 100 struct sigevent *, int *, int); 101 static int kern_timer_delete(struct thread *, int); 102 103 int register_posix_clock(int, struct kclock *); 104 void itimer_fire(struct itimer *it); 105 int itimespecfix(struct timespec *ts); 106 107 #define CLOCK_CALL(clock, call, arglist) \ 108 ((*posix_clocks[clock].call) arglist) 109 110 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL); 111 112 113 static void 114 no_lease_updatetime(deltat) 115 int deltat; 116 { 117 } 118 119 void (*lease_updatetime)(int) = no_lease_updatetime; 120 121 static int 122 settime(struct thread *td, struct timeval *tv) 123 { 124 struct timeval delta, tv1, tv2; 125 static struct timeval maxtime, laststep; 126 struct timespec ts; 127 int s; 128 129 s = splclock(); 130 microtime(&tv1); 131 delta = *tv; 132 timevalsub(&delta, &tv1); 133 134 /* 135 * If the system is secure, we do not allow the time to be 136 * set to a value earlier than 1 second less than the highest 137 * time we have yet seen. The worst a miscreant can do in 138 * this circumstance is "freeze" time. He couldn't go 139 * back to the past. 140 * 141 * We similarly do not allow the clock to be stepped more 142 * than one second, nor more than once per second. This allows 143 * a miscreant to make the clock march double-time, but no worse. 144 */ 145 if (securelevel_gt(td->td_ucred, 1) != 0) { 146 if (delta.tv_sec < 0 || delta.tv_usec < 0) { 147 /* 148 * Update maxtime to latest time we've seen. 149 */ 150 if (tv1.tv_sec > maxtime.tv_sec) 151 maxtime = tv1; 152 tv2 = *tv; 153 timevalsub(&tv2, &maxtime); 154 if (tv2.tv_sec < -1) { 155 tv->tv_sec = maxtime.tv_sec - 1; 156 printf("Time adjustment clamped to -1 second\n"); 157 } 158 } else { 159 if (tv1.tv_sec == laststep.tv_sec) { 160 splx(s); 161 return (EPERM); 162 } 163 if (delta.tv_sec > 1) { 164 tv->tv_sec = tv1.tv_sec + 1; 165 printf("Time adjustment clamped to +1 second\n"); 166 } 167 laststep = *tv; 168 } 169 } 170 171 ts.tv_sec = tv->tv_sec; 172 ts.tv_nsec = tv->tv_usec * 1000; 173 mtx_lock(&Giant); 174 tc_setclock(&ts); 175 (void) splsoftclock(); 176 lease_updatetime(delta.tv_sec); 177 splx(s); 178 resettodr(); 179 mtx_unlock(&Giant); 180 return (0); 181 } 182 183 #ifndef _SYS_SYSPROTO_H_ 184 struct clock_gettime_args { 185 clockid_t clock_id; 186 struct timespec *tp; 187 }; 188 #endif 189 190 /* 191 * MPSAFE 192 */ 193 /* ARGSUSED */ 194 int 195 clock_gettime(struct thread *td, struct clock_gettime_args *uap) 196 { 197 struct timespec ats; 198 int error; 199 200 error = kern_clock_gettime(td, uap->clock_id, &ats); 201 if (error == 0) 202 error = copyout(&ats, uap->tp, sizeof(ats)); 203 204 return (error); 205 } 206 207 int 208 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats) 209 { 210 struct timeval sys, user; 211 struct proc *p; 212 213 p = td->td_proc; 214 switch (clock_id) { 215 case CLOCK_REALTIME: /* Default to precise. */ 216 case CLOCK_REALTIME_PRECISE: 217 nanotime(ats); 218 break; 219 case CLOCK_REALTIME_FAST: 220 getnanotime(ats); 221 break; 222 case CLOCK_VIRTUAL: 223 PROC_LOCK(p); 224 calcru(p, &user, &sys); 225 PROC_UNLOCK(p); 226 TIMEVAL_TO_TIMESPEC(&user, ats); 227 break; 228 case CLOCK_PROF: 229 PROC_LOCK(p); 230 calcru(p, &user, &sys); 231 PROC_UNLOCK(p); 232 timevaladd(&user, &sys); 233 TIMEVAL_TO_TIMESPEC(&user, ats); 234 break; 235 case CLOCK_MONOTONIC: /* Default to precise. */ 236 case CLOCK_MONOTONIC_PRECISE: 237 case CLOCK_UPTIME: 238 case CLOCK_UPTIME_PRECISE: 239 nanouptime(ats); 240 break; 241 case CLOCK_UPTIME_FAST: 242 case CLOCK_MONOTONIC_FAST: 243 getnanouptime(ats); 244 break; 245 case CLOCK_SECOND: 246 ats->tv_sec = time_second; 247 ats->tv_nsec = 0; 248 break; 249 default: 250 return (EINVAL); 251 } 252 return (0); 253 } 254 255 #ifndef _SYS_SYSPROTO_H_ 256 struct clock_settime_args { 257 clockid_t clock_id; 258 const struct timespec *tp; 259 }; 260 #endif 261 262 /* 263 * MPSAFE 264 */ 265 /* ARGSUSED */ 266 int 267 clock_settime(struct thread *td, struct clock_settime_args *uap) 268 { 269 struct timespec ats; 270 int error; 271 272 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0) 273 return (error); 274 return (kern_clock_settime(td, uap->clock_id, &ats)); 275 } 276 277 int 278 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats) 279 { 280 struct timeval atv; 281 int error; 282 283 #ifdef MAC 284 error = mac_check_system_settime(td->td_ucred); 285 if (error) 286 return (error); 287 #endif 288 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 289 return (error); 290 if (clock_id != CLOCK_REALTIME) 291 return (EINVAL); 292 if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000) 293 return (EINVAL); 294 /* XXX Don't convert nsec->usec and back */ 295 TIMESPEC_TO_TIMEVAL(&atv, ats); 296 error = settime(td, &atv); 297 return (error); 298 } 299 300 #ifndef _SYS_SYSPROTO_H_ 301 struct clock_getres_args { 302 clockid_t clock_id; 303 struct timespec *tp; 304 }; 305 #endif 306 307 int 308 clock_getres(struct thread *td, struct clock_getres_args *uap) 309 { 310 struct timespec ts; 311 int error; 312 313 if (uap->tp == NULL) 314 return (0); 315 316 error = kern_clock_getres(td, uap->clock_id, &ts); 317 if (error == 0) 318 error = copyout(&ts, uap->tp, sizeof(ts)); 319 return (error); 320 } 321 322 int 323 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts) 324 { 325 326 ts->tv_sec = 0; 327 switch (clock_id) { 328 case CLOCK_REALTIME: 329 case CLOCK_REALTIME_FAST: 330 case CLOCK_REALTIME_PRECISE: 331 case CLOCK_MONOTONIC: 332 case CLOCK_MONOTONIC_FAST: 333 case CLOCK_MONOTONIC_PRECISE: 334 case CLOCK_UPTIME: 335 case CLOCK_UPTIME_FAST: 336 case CLOCK_UPTIME_PRECISE: 337 /* 338 * Round up the result of the division cheaply by adding 1. 339 * Rounding up is especially important if rounding down 340 * would give 0. Perfect rounding is unimportant. 341 */ 342 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1; 343 break; 344 case CLOCK_VIRTUAL: 345 case CLOCK_PROF: 346 /* Accurately round up here because we can do so cheaply. */ 347 ts->tv_nsec = (1000000000 + hz - 1) / hz; 348 break; 349 case CLOCK_SECOND: 350 ts->tv_sec = 1; 351 ts->tv_nsec = 0; 352 break; 353 default: 354 return (EINVAL); 355 } 356 return (0); 357 } 358 359 static int nanowait; 360 361 int 362 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt) 363 { 364 struct timespec ts, ts2, ts3; 365 struct timeval tv; 366 int error; 367 368 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000) 369 return (EINVAL); 370 if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0)) 371 return (0); 372 getnanouptime(&ts); 373 timespecadd(&ts, rqt); 374 TIMESPEC_TO_TIMEVAL(&tv, rqt); 375 for (;;) { 376 error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp", 377 tvtohz(&tv)); 378 getnanouptime(&ts2); 379 if (error != EWOULDBLOCK) { 380 if (error == ERESTART) 381 error = EINTR; 382 if (rmt != NULL) { 383 timespecsub(&ts, &ts2); 384 if (ts.tv_sec < 0) 385 timespecclear(&ts); 386 *rmt = ts; 387 } 388 return (error); 389 } 390 if (timespeccmp(&ts2, &ts, >=)) 391 return (0); 392 ts3 = ts; 393 timespecsub(&ts3, &ts2); 394 TIMESPEC_TO_TIMEVAL(&tv, &ts3); 395 } 396 } 397 398 #ifndef _SYS_SYSPROTO_H_ 399 struct nanosleep_args { 400 struct timespec *rqtp; 401 struct timespec *rmtp; 402 }; 403 #endif 404 405 /* 406 * MPSAFE 407 */ 408 /* ARGSUSED */ 409 int 410 nanosleep(struct thread *td, struct nanosleep_args *uap) 411 { 412 struct timespec rmt, rqt; 413 int error; 414 415 error = copyin(uap->rqtp, &rqt, sizeof(rqt)); 416 if (error) 417 return (error); 418 419 if (uap->rmtp && 420 !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE)) 421 return (EFAULT); 422 error = kern_nanosleep(td, &rqt, &rmt); 423 if (error && uap->rmtp) { 424 int error2; 425 426 error2 = copyout(&rmt, uap->rmtp, sizeof(rmt)); 427 if (error2) 428 error = error2; 429 } 430 return (error); 431 } 432 433 #ifndef _SYS_SYSPROTO_H_ 434 struct gettimeofday_args { 435 struct timeval *tp; 436 struct timezone *tzp; 437 }; 438 #endif 439 /* 440 * MPSAFE 441 */ 442 /* ARGSUSED */ 443 int 444 gettimeofday(struct thread *td, struct gettimeofday_args *uap) 445 { 446 struct timeval atv; 447 struct timezone rtz; 448 int error = 0; 449 450 if (uap->tp) { 451 microtime(&atv); 452 error = copyout(&atv, uap->tp, sizeof (atv)); 453 } 454 if (error == 0 && uap->tzp != NULL) { 455 rtz.tz_minuteswest = tz_minuteswest; 456 rtz.tz_dsttime = tz_dsttime; 457 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 458 } 459 return (error); 460 } 461 462 #ifndef _SYS_SYSPROTO_H_ 463 struct settimeofday_args { 464 struct timeval *tv; 465 struct timezone *tzp; 466 }; 467 #endif 468 /* 469 * MPSAFE 470 */ 471 /* ARGSUSED */ 472 int 473 settimeofday(struct thread *td, struct settimeofday_args *uap) 474 { 475 struct timeval atv, *tvp; 476 struct timezone atz, *tzp; 477 int error; 478 479 if (uap->tv) { 480 error = copyin(uap->tv, &atv, sizeof(atv)); 481 if (error) 482 return (error); 483 tvp = &atv; 484 } else 485 tvp = NULL; 486 if (uap->tzp) { 487 error = copyin(uap->tzp, &atz, sizeof(atz)); 488 if (error) 489 return (error); 490 tzp = &atz; 491 } else 492 tzp = NULL; 493 return (kern_settimeofday(td, tvp, tzp)); 494 } 495 496 int 497 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp) 498 { 499 int error; 500 501 #ifdef MAC 502 error = mac_check_system_settime(td->td_ucred); 503 if (error) 504 return (error); 505 #endif 506 error = priv_check(td, PRIV_SETTIMEOFDAY); 507 if (error) 508 return (error); 509 /* Verify all parameters before changing time. */ 510 if (tv) { 511 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000) 512 return (EINVAL); 513 error = settime(td, tv); 514 } 515 if (tzp && error == 0) { 516 tz_minuteswest = tzp->tz_minuteswest; 517 tz_dsttime = tzp->tz_dsttime; 518 } 519 return (error); 520 } 521 522 /* 523 * Get value of an interval timer. The process virtual and 524 * profiling virtual time timers are kept in the p_stats area, since 525 * they can be swapped out. These are kept internally in the 526 * way they are specified externally: in time until they expire. 527 * 528 * The real time interval timer is kept in the process table slot 529 * for the process, and its value (it_value) is kept as an 530 * absolute time rather than as a delta, so that it is easy to keep 531 * periodic real-time signals from drifting. 532 * 533 * Virtual time timers are processed in the hardclock() routine of 534 * kern_clock.c. The real time timer is processed by a timeout 535 * routine, called from the softclock() routine. Since a callout 536 * may be delayed in real time due to interrupt processing in the system, 537 * it is possible for the real time timeout routine (realitexpire, given below), 538 * to be delayed in real time past when it is supposed to occur. It 539 * does not suffice, therefore, to reload the real timer .it_value from the 540 * real time timers .it_interval. Rather, we compute the next time in 541 * absolute time the timer should go off. 542 */ 543 #ifndef _SYS_SYSPROTO_H_ 544 struct getitimer_args { 545 u_int which; 546 struct itimerval *itv; 547 }; 548 #endif 549 /* 550 * MPSAFE 551 */ 552 int 553 getitimer(struct thread *td, struct getitimer_args *uap) 554 { 555 struct itimerval aitv; 556 int error; 557 558 error = kern_getitimer(td, uap->which, &aitv); 559 if (error != 0) 560 return (error); 561 return (copyout(&aitv, uap->itv, sizeof (struct itimerval))); 562 } 563 564 int 565 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv) 566 { 567 struct proc *p = td->td_proc; 568 struct timeval ctv; 569 570 if (which > ITIMER_PROF) 571 return (EINVAL); 572 573 if (which == ITIMER_REAL) { 574 /* 575 * Convert from absolute to relative time in .it_value 576 * part of real time timer. If time for real time timer 577 * has passed return 0, else return difference between 578 * current time and time for the timer to go off. 579 */ 580 PROC_LOCK(p); 581 *aitv = p->p_realtimer; 582 PROC_UNLOCK(p); 583 if (timevalisset(&aitv->it_value)) { 584 getmicrouptime(&ctv); 585 if (timevalcmp(&aitv->it_value, &ctv, <)) 586 timevalclear(&aitv->it_value); 587 else 588 timevalsub(&aitv->it_value, &ctv); 589 } 590 } else { 591 mtx_lock_spin(&sched_lock); 592 *aitv = p->p_stats->p_timer[which]; 593 mtx_unlock_spin(&sched_lock); 594 } 595 return (0); 596 } 597 598 #ifndef _SYS_SYSPROTO_H_ 599 struct setitimer_args { 600 u_int which; 601 struct itimerval *itv, *oitv; 602 }; 603 #endif 604 605 /* 606 * MPSAFE 607 */ 608 int 609 setitimer(struct thread *td, struct setitimer_args *uap) 610 { 611 struct itimerval aitv, oitv; 612 int error; 613 614 if (uap->itv == NULL) { 615 uap->itv = uap->oitv; 616 return (getitimer(td, (struct getitimer_args *)uap)); 617 } 618 619 if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval)))) 620 return (error); 621 error = kern_setitimer(td, uap->which, &aitv, &oitv); 622 if (error != 0 || uap->oitv == NULL) 623 return (error); 624 return (copyout(&oitv, uap->oitv, sizeof(struct itimerval))); 625 } 626 627 int 628 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv, 629 struct itimerval *oitv) 630 { 631 struct proc *p = td->td_proc; 632 struct timeval ctv; 633 634 if (aitv == NULL) 635 return (kern_getitimer(td, which, oitv)); 636 637 if (which > ITIMER_PROF) 638 return (EINVAL); 639 if (itimerfix(&aitv->it_value)) 640 return (EINVAL); 641 if (!timevalisset(&aitv->it_value)) 642 timevalclear(&aitv->it_interval); 643 else if (itimerfix(&aitv->it_interval)) 644 return (EINVAL); 645 646 if (which == ITIMER_REAL) { 647 PROC_LOCK(p); 648 if (timevalisset(&p->p_realtimer.it_value)) 649 callout_stop(&p->p_itcallout); 650 getmicrouptime(&ctv); 651 if (timevalisset(&aitv->it_value)) { 652 callout_reset(&p->p_itcallout, tvtohz(&aitv->it_value), 653 realitexpire, p); 654 timevaladd(&aitv->it_value, &ctv); 655 } 656 *oitv = p->p_realtimer; 657 p->p_realtimer = *aitv; 658 PROC_UNLOCK(p); 659 if (timevalisset(&oitv->it_value)) { 660 if (timevalcmp(&oitv->it_value, &ctv, <)) 661 timevalclear(&oitv->it_value); 662 else 663 timevalsub(&oitv->it_value, &ctv); 664 } 665 } else { 666 mtx_lock_spin(&sched_lock); 667 *oitv = p->p_stats->p_timer[which]; 668 p->p_stats->p_timer[which] = *aitv; 669 mtx_unlock_spin(&sched_lock); 670 } 671 return (0); 672 } 673 674 /* 675 * Real interval timer expired: 676 * send process whose timer expired an alarm signal. 677 * If time is not set up to reload, then just return. 678 * Else compute next time timer should go off which is > current time. 679 * This is where delay in processing this timeout causes multiple 680 * SIGALRM calls to be compressed into one. 681 * tvtohz() always adds 1 to allow for the time until the next clock 682 * interrupt being strictly less than 1 clock tick, but we don't want 683 * that here since we want to appear to be in sync with the clock 684 * interrupt even when we're delayed. 685 */ 686 void 687 realitexpire(void *arg) 688 { 689 struct proc *p; 690 struct timeval ctv, ntv; 691 692 p = (struct proc *)arg; 693 PROC_LOCK(p); 694 psignal(p, SIGALRM); 695 if (!timevalisset(&p->p_realtimer.it_interval)) { 696 timevalclear(&p->p_realtimer.it_value); 697 if (p->p_flag & P_WEXIT) 698 wakeup(&p->p_itcallout); 699 PROC_UNLOCK(p); 700 return; 701 } 702 for (;;) { 703 timevaladd(&p->p_realtimer.it_value, 704 &p->p_realtimer.it_interval); 705 getmicrouptime(&ctv); 706 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) { 707 ntv = p->p_realtimer.it_value; 708 timevalsub(&ntv, &ctv); 709 callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1, 710 realitexpire, p); 711 PROC_UNLOCK(p); 712 return; 713 } 714 } 715 /*NOTREACHED*/ 716 } 717 718 /* 719 * Check that a proposed value to load into the .it_value or 720 * .it_interval part of an interval timer is acceptable, and 721 * fix it to have at least minimal value (i.e. if it is less 722 * than the resolution of the clock, round it up.) 723 */ 724 int 725 itimerfix(struct timeval *tv) 726 { 727 728 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000) 729 return (EINVAL); 730 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick) 731 tv->tv_usec = tick; 732 return (0); 733 } 734 735 /* 736 * Decrement an interval timer by a specified number 737 * of microseconds, which must be less than a second, 738 * i.e. < 1000000. If the timer expires, then reload 739 * it. In this case, carry over (usec - old value) to 740 * reduce the value reloaded into the timer so that 741 * the timer does not drift. This routine assumes 742 * that it is called in a context where the timers 743 * on which it is operating cannot change in value. 744 */ 745 int 746 itimerdecr(struct itimerval *itp, int usec) 747 { 748 749 if (itp->it_value.tv_usec < usec) { 750 if (itp->it_value.tv_sec == 0) { 751 /* expired, and already in next interval */ 752 usec -= itp->it_value.tv_usec; 753 goto expire; 754 } 755 itp->it_value.tv_usec += 1000000; 756 itp->it_value.tv_sec--; 757 } 758 itp->it_value.tv_usec -= usec; 759 usec = 0; 760 if (timevalisset(&itp->it_value)) 761 return (1); 762 /* expired, exactly at end of interval */ 763 expire: 764 if (timevalisset(&itp->it_interval)) { 765 itp->it_value = itp->it_interval; 766 itp->it_value.tv_usec -= usec; 767 if (itp->it_value.tv_usec < 0) { 768 itp->it_value.tv_usec += 1000000; 769 itp->it_value.tv_sec--; 770 } 771 } else 772 itp->it_value.tv_usec = 0; /* sec is already 0 */ 773 return (0); 774 } 775 776 /* 777 * Add and subtract routines for timevals. 778 * N.B.: subtract routine doesn't deal with 779 * results which are before the beginning, 780 * it just gets very confused in this case. 781 * Caveat emptor. 782 */ 783 void 784 timevaladd(struct timeval *t1, const struct timeval *t2) 785 { 786 787 t1->tv_sec += t2->tv_sec; 788 t1->tv_usec += t2->tv_usec; 789 timevalfix(t1); 790 } 791 792 void 793 timevalsub(struct timeval *t1, const struct timeval *t2) 794 { 795 796 t1->tv_sec -= t2->tv_sec; 797 t1->tv_usec -= t2->tv_usec; 798 timevalfix(t1); 799 } 800 801 static void 802 timevalfix(struct timeval *t1) 803 { 804 805 if (t1->tv_usec < 0) { 806 t1->tv_sec--; 807 t1->tv_usec += 1000000; 808 } 809 if (t1->tv_usec >= 1000000) { 810 t1->tv_sec++; 811 t1->tv_usec -= 1000000; 812 } 813 } 814 815 /* 816 * ratecheck(): simple time-based rate-limit checking. 817 */ 818 int 819 ratecheck(struct timeval *lasttime, const struct timeval *mininterval) 820 { 821 struct timeval tv, delta; 822 int rv = 0; 823 824 getmicrouptime(&tv); /* NB: 10ms precision */ 825 delta = tv; 826 timevalsub(&delta, lasttime); 827 828 /* 829 * check for 0,0 is so that the message will be seen at least once, 830 * even if interval is huge. 831 */ 832 if (timevalcmp(&delta, mininterval, >=) || 833 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { 834 *lasttime = tv; 835 rv = 1; 836 } 837 838 return (rv); 839 } 840 841 /* 842 * ppsratecheck(): packets (or events) per second limitation. 843 * 844 * Return 0 if the limit is to be enforced (e.g. the caller 845 * should drop a packet because of the rate limitation). 846 * 847 * maxpps of 0 always causes zero to be returned. maxpps of -1 848 * always causes 1 to be returned; this effectively defeats rate 849 * limiting. 850 * 851 * Note that we maintain the struct timeval for compatibility 852 * with other bsd systems. We reuse the storage and just monitor 853 * clock ticks for minimal overhead. 854 */ 855 int 856 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) 857 { 858 int now; 859 860 /* 861 * Reset the last time and counter if this is the first call 862 * or more than a second has passed since the last update of 863 * lasttime. 864 */ 865 now = ticks; 866 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) { 867 lasttime->tv_sec = now; 868 *curpps = 1; 869 return (maxpps != 0); 870 } else { 871 (*curpps)++; /* NB: ignore potential overflow */ 872 return (maxpps < 0 || *curpps < maxpps); 873 } 874 } 875 876 static void 877 itimer_start(void) 878 { 879 struct kclock rt_clock = { 880 .timer_create = realtimer_create, 881 .timer_delete = realtimer_delete, 882 .timer_settime = realtimer_settime, 883 .timer_gettime = realtimer_gettime, 884 .event_hook = NULL 885 }; 886 887 itimer_zone = uma_zcreate("itimer", sizeof(struct itimer), 888 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0); 889 register_posix_clock(CLOCK_REALTIME, &rt_clock); 890 register_posix_clock(CLOCK_MONOTONIC, &rt_clock); 891 p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L); 892 p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX); 893 p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX); 894 EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit, 895 (void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY); 896 EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec, 897 (void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY); 898 } 899 900 int 901 register_posix_clock(int clockid, struct kclock *clk) 902 { 903 if ((unsigned)clockid >= MAX_CLOCKS) { 904 printf("%s: invalid clockid\n", __func__); 905 return (0); 906 } 907 posix_clocks[clockid] = *clk; 908 return (1); 909 } 910 911 static int 912 itimer_init(void *mem, int size, int flags) 913 { 914 struct itimer *it; 915 916 it = (struct itimer *)mem; 917 mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF); 918 return (0); 919 } 920 921 static void 922 itimer_fini(void *mem, int size) 923 { 924 struct itimer *it; 925 926 it = (struct itimer *)mem; 927 mtx_destroy(&it->it_mtx); 928 } 929 930 static void 931 itimer_enter(struct itimer *it) 932 { 933 934 mtx_assert(&it->it_mtx, MA_OWNED); 935 it->it_usecount++; 936 } 937 938 static void 939 itimer_leave(struct itimer *it) 940 { 941 942 mtx_assert(&it->it_mtx, MA_OWNED); 943 KASSERT(it->it_usecount > 0, ("invalid it_usecount")); 944 945 if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0) 946 wakeup(it); 947 } 948 949 #ifndef _SYS_SYSPROTO_H_ 950 struct ktimer_create_args { 951 clockid_t clock_id; 952 struct sigevent * evp; 953 int * timerid; 954 }; 955 #endif 956 957 int 958 ktimer_create(struct thread *td, struct ktimer_create_args *uap) 959 { 960 struct sigevent *evp1, ev; 961 int id; 962 int error; 963 964 if (uap->evp != NULL) { 965 error = copyin(uap->evp, &ev, sizeof(ev)); 966 if (error != 0) 967 return (error); 968 evp1 = &ev; 969 } else 970 evp1 = NULL; 971 972 error = kern_timer_create(td, uap->clock_id, evp1, &id, -1); 973 974 if (error == 0) { 975 error = copyout(&id, uap->timerid, sizeof(int)); 976 if (error != 0) 977 kern_timer_delete(td, id); 978 } 979 return (error); 980 } 981 982 static int 983 kern_timer_create(struct thread *td, clockid_t clock_id, 984 struct sigevent *evp, int *timerid, int preset_id) 985 { 986 struct proc *p = td->td_proc; 987 struct itimer *it; 988 int id; 989 int error; 990 991 if (clock_id < 0 || clock_id >= MAX_CLOCKS) 992 return (EINVAL); 993 994 if (posix_clocks[clock_id].timer_create == NULL) 995 return (EINVAL); 996 997 if (evp != NULL) { 998 if (evp->sigev_notify != SIGEV_NONE && 999 evp->sigev_notify != SIGEV_SIGNAL && 1000 evp->sigev_notify != SIGEV_THREAD_ID) 1001 return (EINVAL); 1002 if ((evp->sigev_notify == SIGEV_SIGNAL || 1003 evp->sigev_notify == SIGEV_THREAD_ID) && 1004 !_SIG_VALID(evp->sigev_signo)) 1005 return (EINVAL); 1006 } 1007 1008 if (p->p_itimers == NULL) 1009 itimers_alloc(p); 1010 1011 it = uma_zalloc(itimer_zone, M_WAITOK); 1012 it->it_flags = 0; 1013 it->it_usecount = 0; 1014 it->it_active = 0; 1015 timespecclear(&it->it_time.it_value); 1016 timespecclear(&it->it_time.it_interval); 1017 it->it_overrun = 0; 1018 it->it_overrun_last = 0; 1019 it->it_clockid = clock_id; 1020 it->it_timerid = -1; 1021 it->it_proc = p; 1022 ksiginfo_init(&it->it_ksi); 1023 it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT; 1024 error = CLOCK_CALL(clock_id, timer_create, (it)); 1025 if (error != 0) 1026 goto out; 1027 1028 PROC_LOCK(p); 1029 if (preset_id != -1) { 1030 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id")); 1031 id = preset_id; 1032 if (p->p_itimers->its_timers[id] != NULL) { 1033 PROC_UNLOCK(p); 1034 error = 0; 1035 goto out; 1036 } 1037 } else { 1038 /* 1039 * Find a free timer slot, skipping those reserved 1040 * for setitimer(). 1041 */ 1042 for (id = 3; id < TIMER_MAX; id++) 1043 if (p->p_itimers->its_timers[id] == NULL) 1044 break; 1045 if (id == TIMER_MAX) { 1046 PROC_UNLOCK(p); 1047 error = EAGAIN; 1048 goto out; 1049 } 1050 } 1051 it->it_timerid = id; 1052 p->p_itimers->its_timers[id] = it; 1053 if (evp != NULL) 1054 it->it_sigev = *evp; 1055 else { 1056 it->it_sigev.sigev_notify = SIGEV_SIGNAL; 1057 switch (clock_id) { 1058 default: 1059 case CLOCK_REALTIME: 1060 it->it_sigev.sigev_signo = SIGALRM; 1061 break; 1062 case CLOCK_VIRTUAL: 1063 it->it_sigev.sigev_signo = SIGVTALRM; 1064 break; 1065 case CLOCK_PROF: 1066 it->it_sigev.sigev_signo = SIGPROF; 1067 break; 1068 } 1069 it->it_sigev.sigev_value.sival_int = id; 1070 } 1071 1072 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1073 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1074 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo; 1075 it->it_ksi.ksi_code = SI_TIMER; 1076 it->it_ksi.ksi_value = it->it_sigev.sigev_value; 1077 it->it_ksi.ksi_timerid = id; 1078 } 1079 PROC_UNLOCK(p); 1080 *timerid = id; 1081 return (0); 1082 1083 out: 1084 ITIMER_LOCK(it); 1085 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1086 ITIMER_UNLOCK(it); 1087 uma_zfree(itimer_zone, it); 1088 return (error); 1089 } 1090 1091 #ifndef _SYS_SYSPROTO_H_ 1092 struct ktimer_delete_args { 1093 int timerid; 1094 }; 1095 #endif 1096 1097 int 1098 ktimer_delete(struct thread *td, struct ktimer_delete_args *uap) 1099 { 1100 return (kern_timer_delete(td, uap->timerid)); 1101 } 1102 1103 static struct itimer * 1104 itimer_find(struct proc *p, int timerid) 1105 { 1106 struct itimer *it; 1107 1108 PROC_LOCK_ASSERT(p, MA_OWNED); 1109 if ((p->p_itimers == NULL) || (timerid >= TIMER_MAX) || 1110 (it = p->p_itimers->its_timers[timerid]) == NULL) { 1111 return (NULL); 1112 } 1113 ITIMER_LOCK(it); 1114 if ((it->it_flags & ITF_DELETING) != 0) { 1115 ITIMER_UNLOCK(it); 1116 it = NULL; 1117 } 1118 return (it); 1119 } 1120 1121 static int 1122 kern_timer_delete(struct thread *td, int timerid) 1123 { 1124 struct proc *p = td->td_proc; 1125 struct itimer *it; 1126 1127 PROC_LOCK(p); 1128 it = itimer_find(p, timerid); 1129 if (it == NULL) { 1130 PROC_UNLOCK(p); 1131 return (EINVAL); 1132 } 1133 PROC_UNLOCK(p); 1134 1135 it->it_flags |= ITF_DELETING; 1136 while (it->it_usecount > 0) { 1137 it->it_flags |= ITF_WANTED; 1138 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0); 1139 } 1140 it->it_flags &= ~ITF_WANTED; 1141 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1142 ITIMER_UNLOCK(it); 1143 1144 PROC_LOCK(p); 1145 if (KSI_ONQ(&it->it_ksi)) 1146 sigqueue_take(&it->it_ksi); 1147 p->p_itimers->its_timers[timerid] = NULL; 1148 PROC_UNLOCK(p); 1149 uma_zfree(itimer_zone, it); 1150 return (0); 1151 } 1152 1153 #ifndef _SYS_SYSPROTO_H_ 1154 struct ktimer_settime_args { 1155 int timerid; 1156 int flags; 1157 const struct itimerspec * value; 1158 struct itimerspec * ovalue; 1159 }; 1160 #endif 1161 1162 int 1163 ktimer_settime(struct thread *td, struct ktimer_settime_args *uap) 1164 { 1165 struct proc *p = td->td_proc; 1166 struct itimer *it; 1167 struct itimerspec val, oval, *ovalp; 1168 int error; 1169 1170 error = copyin(uap->value, &val, sizeof(val)); 1171 if (error != 0) 1172 return (error); 1173 1174 if (uap->ovalue != NULL) 1175 ovalp = &oval; 1176 else 1177 ovalp = NULL; 1178 1179 PROC_LOCK(p); 1180 if (uap->timerid < 3 || 1181 (it = itimer_find(p, uap->timerid)) == NULL) { 1182 PROC_UNLOCK(p); 1183 error = EINVAL; 1184 } else { 1185 PROC_UNLOCK(p); 1186 itimer_enter(it); 1187 error = CLOCK_CALL(it->it_clockid, timer_settime, 1188 (it, uap->flags, &val, ovalp)); 1189 itimer_leave(it); 1190 ITIMER_UNLOCK(it); 1191 } 1192 if (error == 0 && uap->ovalue != NULL) 1193 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp)); 1194 return (error); 1195 } 1196 1197 #ifndef _SYS_SYSPROTO_H_ 1198 struct ktimer_gettime_args { 1199 int timerid; 1200 struct itimerspec * value; 1201 }; 1202 #endif 1203 1204 int 1205 ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap) 1206 { 1207 struct proc *p = td->td_proc; 1208 struct itimer *it; 1209 struct itimerspec val; 1210 int error; 1211 1212 PROC_LOCK(p); 1213 if (uap->timerid < 3 || 1214 (it = itimer_find(p, uap->timerid)) == NULL) { 1215 PROC_UNLOCK(p); 1216 error = EINVAL; 1217 } else { 1218 PROC_UNLOCK(p); 1219 itimer_enter(it); 1220 error = CLOCK_CALL(it->it_clockid, timer_gettime, 1221 (it, &val)); 1222 itimer_leave(it); 1223 ITIMER_UNLOCK(it); 1224 } 1225 if (error == 0) 1226 error = copyout(&val, uap->value, sizeof(val)); 1227 return (error); 1228 } 1229 1230 #ifndef _SYS_SYSPROTO_H_ 1231 struct timer_getoverrun_args { 1232 int timerid; 1233 }; 1234 #endif 1235 1236 int 1237 ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap) 1238 { 1239 struct proc *p = td->td_proc; 1240 struct itimer *it; 1241 int error ; 1242 1243 PROC_LOCK(p); 1244 if (uap->timerid < 3 || 1245 (it = itimer_find(p, uap->timerid)) == NULL) { 1246 PROC_UNLOCK(p); 1247 error = EINVAL; 1248 } else { 1249 td->td_retval[0] = it->it_overrun_last; 1250 ITIMER_UNLOCK(it); 1251 PROC_UNLOCK(p); 1252 error = 0; 1253 } 1254 return (error); 1255 } 1256 1257 static int 1258 realtimer_create(struct itimer *it) 1259 { 1260 callout_init_mtx(&it->it_callout, &it->it_mtx, 0); 1261 return (0); 1262 } 1263 1264 static int 1265 realtimer_delete(struct itimer *it) 1266 { 1267 mtx_assert(&it->it_mtx, MA_OWNED); 1268 1269 ITIMER_UNLOCK(it); 1270 callout_drain(&it->it_callout); 1271 ITIMER_LOCK(it); 1272 return (0); 1273 } 1274 1275 static int 1276 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue) 1277 { 1278 struct timespec cts; 1279 1280 mtx_assert(&it->it_mtx, MA_OWNED); 1281 1282 realtimer_clocktime(it->it_clockid, &cts); 1283 *ovalue = it->it_time; 1284 if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) { 1285 timespecsub(&ovalue->it_value, &cts); 1286 if (ovalue->it_value.tv_sec < 0 || 1287 (ovalue->it_value.tv_sec == 0 && 1288 ovalue->it_value.tv_nsec == 0)) { 1289 ovalue->it_value.tv_sec = 0; 1290 ovalue->it_value.tv_nsec = 1; 1291 } 1292 } 1293 return (0); 1294 } 1295 1296 static int 1297 realtimer_settime(struct itimer *it, int flags, 1298 struct itimerspec *value, struct itimerspec *ovalue) 1299 { 1300 struct timespec cts, ts; 1301 struct timeval tv; 1302 struct itimerspec val; 1303 1304 mtx_assert(&it->it_mtx, MA_OWNED); 1305 1306 val = *value; 1307 if (itimespecfix(&val.it_value)) 1308 return (EINVAL); 1309 1310 if (timespecisset(&val.it_value)) { 1311 if (itimespecfix(&val.it_interval)) 1312 return (EINVAL); 1313 } else { 1314 timespecclear(&val.it_interval); 1315 } 1316 1317 if (ovalue != NULL) 1318 realtimer_gettime(it, ovalue); 1319 1320 it->it_time = val; 1321 if (timespecisset(&val.it_value)) { 1322 realtimer_clocktime(it->it_clockid, &cts); 1323 ts = val.it_value; 1324 if ((flags & TIMER_ABSTIME) == 0) { 1325 /* Convert to absolute time. */ 1326 timespecadd(&it->it_time.it_value, &cts); 1327 } else { 1328 timespecsub(&ts, &cts); 1329 /* 1330 * We don't care if ts is negative, tztohz will 1331 * fix it. 1332 */ 1333 } 1334 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1335 callout_reset(&it->it_callout, tvtohz(&tv), 1336 realtimer_expire, it); 1337 } else { 1338 callout_stop(&it->it_callout); 1339 } 1340 1341 return (0); 1342 } 1343 1344 static void 1345 realtimer_clocktime(clockid_t id, struct timespec *ts) 1346 { 1347 if (id == CLOCK_REALTIME) 1348 getnanotime(ts); 1349 else /* CLOCK_MONOTONIC */ 1350 getnanouptime(ts); 1351 } 1352 1353 int 1354 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi) 1355 { 1356 struct itimer *it; 1357 1358 PROC_LOCK_ASSERT(p, MA_OWNED); 1359 it = itimer_find(p, timerid); 1360 if (it != NULL) { 1361 ksi->ksi_overrun = it->it_overrun; 1362 it->it_overrun_last = it->it_overrun; 1363 it->it_overrun = 0; 1364 ITIMER_UNLOCK(it); 1365 return (0); 1366 } 1367 return (EINVAL); 1368 } 1369 1370 int 1371 itimespecfix(struct timespec *ts) 1372 { 1373 1374 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1375 return (EINVAL); 1376 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000) 1377 ts->tv_nsec = tick * 1000; 1378 return (0); 1379 } 1380 1381 /* Timeout callback for realtime timer */ 1382 static void 1383 realtimer_expire(void *arg) 1384 { 1385 struct timespec cts, ts; 1386 struct timeval tv; 1387 struct itimer *it; 1388 struct proc *p; 1389 1390 it = (struct itimer *)arg; 1391 p = it->it_proc; 1392 1393 realtimer_clocktime(it->it_clockid, &cts); 1394 /* Only fire if time is reached. */ 1395 if (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1396 if (timespecisset(&it->it_time.it_interval)) { 1397 timespecadd(&it->it_time.it_value, 1398 &it->it_time.it_interval); 1399 while (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1400 if (it->it_overrun < INT_MAX) 1401 it->it_overrun++; 1402 else 1403 it->it_ksi.ksi_errno = ERANGE; 1404 timespecadd(&it->it_time.it_value, 1405 &it->it_time.it_interval); 1406 } 1407 } else { 1408 /* single shot timer ? */ 1409 timespecclear(&it->it_time.it_value); 1410 } 1411 if (timespecisset(&it->it_time.it_value)) { 1412 ts = it->it_time.it_value; 1413 timespecsub(&ts, &cts); 1414 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1415 callout_reset(&it->it_callout, tvtohz(&tv), 1416 realtimer_expire, it); 1417 } 1418 ITIMER_UNLOCK(it); 1419 itimer_fire(it); 1420 ITIMER_LOCK(it); 1421 } else if (timespecisset(&it->it_time.it_value)) { 1422 ts = it->it_time.it_value; 1423 timespecsub(&ts, &cts); 1424 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1425 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire, 1426 it); 1427 } 1428 } 1429 1430 void 1431 itimer_fire(struct itimer *it) 1432 { 1433 struct proc *p = it->it_proc; 1434 int ret; 1435 1436 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1437 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1438 PROC_LOCK(p); 1439 if (!KSI_ONQ(&it->it_ksi)) { 1440 it->it_ksi.ksi_errno = 0; 1441 ret = psignal_event(p, &it->it_sigev, &it->it_ksi); 1442 if (__predict_false(ret != 0)) { 1443 it->it_overrun++; 1444 /* 1445 * Broken userland code, thread went 1446 * away, disarm the timer. 1447 */ 1448 if (ret == ESRCH) { 1449 ITIMER_LOCK(it); 1450 timespecclear(&it->it_time.it_value); 1451 timespecclear(&it->it_time.it_interval); 1452 callout_stop(&it->it_callout); 1453 ITIMER_UNLOCK(it); 1454 } 1455 } 1456 } else { 1457 if (it->it_overrun < INT_MAX) 1458 it->it_overrun++; 1459 else 1460 it->it_ksi.ksi_errno = ERANGE; 1461 } 1462 PROC_UNLOCK(p); 1463 } 1464 } 1465 1466 static void 1467 itimers_alloc(struct proc *p) 1468 { 1469 struct itimers *its; 1470 int i; 1471 1472 its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO); 1473 LIST_INIT(&its->its_virtual); 1474 LIST_INIT(&its->its_prof); 1475 TAILQ_INIT(&its->its_worklist); 1476 for (i = 0; i < TIMER_MAX; i++) 1477 its->its_timers[i] = NULL; 1478 PROC_LOCK(p); 1479 if (p->p_itimers == NULL) { 1480 p->p_itimers = its; 1481 PROC_UNLOCK(p); 1482 } 1483 else { 1484 PROC_UNLOCK(p); 1485 free(its, M_SUBPROC); 1486 } 1487 } 1488 1489 static void 1490 itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused) 1491 { 1492 itimers_event_hook_exit(arg, p); 1493 } 1494 1495 /* Clean up timers when some process events are being triggered. */ 1496 static void 1497 itimers_event_hook_exit(void *arg, struct proc *p) 1498 { 1499 struct itimers *its; 1500 struct itimer *it; 1501 int event = (int)(intptr_t)arg; 1502 int i; 1503 1504 if (p->p_itimers != NULL) { 1505 its = p->p_itimers; 1506 for (i = 0; i < MAX_CLOCKS; ++i) { 1507 if (posix_clocks[i].event_hook != NULL) 1508 CLOCK_CALL(i, event_hook, (p, i, event)); 1509 } 1510 /* 1511 * According to susv3, XSI interval timers should be inherited 1512 * by new image. 1513 */ 1514 if (event == ITIMER_EV_EXEC) 1515 i = 3; 1516 else if (event == ITIMER_EV_EXIT) 1517 i = 0; 1518 else 1519 panic("unhandled event"); 1520 for (; i < TIMER_MAX; ++i) { 1521 if ((it = its->its_timers[i]) != NULL) 1522 kern_timer_delete(curthread, i); 1523 } 1524 if (its->its_timers[0] == NULL && 1525 its->its_timers[1] == NULL && 1526 its->its_timers[2] == NULL) { 1527 free(its, M_SUBPROC); 1528 p->p_itimers = NULL; 1529 } 1530 } 1531 } 1532