xref: /freebsd/sys/kern/kern_time.c (revision f4dc9bf43457515e5c88d1400d4f5ff70a82d9c7)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_ktrace.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/limits.h>
40 #include <sys/clock.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/sysproto.h>
44 #include <sys/eventhandler.h>
45 #include <sys/resourcevar.h>
46 #include <sys/signalvar.h>
47 #include <sys/kernel.h>
48 #include <sys/sleepqueue.h>
49 #include <sys/syscallsubr.h>
50 #include <sys/sysctl.h>
51 #include <sys/sysent.h>
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/posix4.h>
55 #include <sys/time.h>
56 #include <sys/timers.h>
57 #include <sys/timetc.h>
58 #include <sys/vnode.h>
59 #ifdef KTRACE
60 #include <sys/ktrace.h>
61 #endif
62 
63 #include <vm/vm.h>
64 #include <vm/vm_extern.h>
65 
66 #define MAX_CLOCKS 	(CLOCK_MONOTONIC+1)
67 #define CPUCLOCK_BIT		0x80000000
68 #define CPUCLOCK_PROCESS_BIT	0x40000000
69 #define CPUCLOCK_ID_MASK	(~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT))
70 #define MAKE_THREAD_CPUCLOCK(tid)	(CPUCLOCK_BIT|(tid))
71 #define MAKE_PROCESS_CPUCLOCK(pid)	\
72 	(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid))
73 
74 static struct kclock	posix_clocks[MAX_CLOCKS];
75 static uma_zone_t	itimer_zone = NULL;
76 
77 /*
78  * Time of day and interval timer support.
79  *
80  * These routines provide the kernel entry points to get and set
81  * the time-of-day and per-process interval timers.  Subroutines
82  * here provide support for adding and subtracting timeval structures
83  * and decrementing interval timers, optionally reloading the interval
84  * timers when they expire.
85  */
86 
87 static int	settime(struct thread *, struct timeval *);
88 static void	timevalfix(struct timeval *);
89 
90 static void	itimer_start(void);
91 static int	itimer_init(void *, int, int);
92 static void	itimer_fini(void *, int);
93 static void	itimer_enter(struct itimer *);
94 static void	itimer_leave(struct itimer *);
95 static struct itimer *itimer_find(struct proc *, int);
96 static void	itimers_alloc(struct proc *);
97 static void	itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp);
98 static void	itimers_event_hook_exit(void *arg, struct proc *p);
99 static int	realtimer_create(struct itimer *);
100 static int	realtimer_gettime(struct itimer *, struct itimerspec *);
101 static int	realtimer_settime(struct itimer *, int,
102 			struct itimerspec *, struct itimerspec *);
103 static int	realtimer_delete(struct itimer *);
104 static void	realtimer_clocktime(clockid_t, struct timespec *);
105 static void	realtimer_expire(void *);
106 
107 int		register_posix_clock(int, struct kclock *);
108 void		itimer_fire(struct itimer *it);
109 int		itimespecfix(struct timespec *ts);
110 
111 #define CLOCK_CALL(clock, call, arglist)		\
112 	((*posix_clocks[clock].call) arglist)
113 
114 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
115 
116 
117 static int
118 settime(struct thread *td, struct timeval *tv)
119 {
120 	struct timeval delta, tv1, tv2;
121 	static struct timeval maxtime, laststep;
122 	struct timespec ts;
123 	int s;
124 
125 	s = splclock();
126 	microtime(&tv1);
127 	delta = *tv;
128 	timevalsub(&delta, &tv1);
129 
130 	/*
131 	 * If the system is secure, we do not allow the time to be
132 	 * set to a value earlier than 1 second less than the highest
133 	 * time we have yet seen. The worst a miscreant can do in
134 	 * this circumstance is "freeze" time. He couldn't go
135 	 * back to the past.
136 	 *
137 	 * We similarly do not allow the clock to be stepped more
138 	 * than one second, nor more than once per second. This allows
139 	 * a miscreant to make the clock march double-time, but no worse.
140 	 */
141 	if (securelevel_gt(td->td_ucred, 1) != 0) {
142 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
143 			/*
144 			 * Update maxtime to latest time we've seen.
145 			 */
146 			if (tv1.tv_sec > maxtime.tv_sec)
147 				maxtime = tv1;
148 			tv2 = *tv;
149 			timevalsub(&tv2, &maxtime);
150 			if (tv2.tv_sec < -1) {
151 				tv->tv_sec = maxtime.tv_sec - 1;
152 				printf("Time adjustment clamped to -1 second\n");
153 			}
154 		} else {
155 			if (tv1.tv_sec == laststep.tv_sec) {
156 				splx(s);
157 				return (EPERM);
158 			}
159 			if (delta.tv_sec > 1) {
160 				tv->tv_sec = tv1.tv_sec + 1;
161 				printf("Time adjustment clamped to +1 second\n");
162 			}
163 			laststep = *tv;
164 		}
165 	}
166 
167 	ts.tv_sec = tv->tv_sec;
168 	ts.tv_nsec = tv->tv_usec * 1000;
169 	mtx_lock(&Giant);
170 	tc_setclock(&ts);
171 	resettodr();
172 	mtx_unlock(&Giant);
173 	return (0);
174 }
175 
176 #ifndef _SYS_SYSPROTO_H_
177 struct clock_getcpuclockid2_args {
178 	id_t id;
179 	int which,
180 	clockid_t *clock_id;
181 };
182 #endif
183 /* ARGSUSED */
184 int
185 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap)
186 {
187 	clockid_t clk_id;
188 	int error;
189 
190 	error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id);
191 	if (error == 0)
192 		error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
193 	return (error);
194 }
195 
196 int
197 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which,
198     clockid_t *clk_id)
199 {
200 	struct proc *p;
201 	pid_t pid;
202 	lwpid_t tid;
203 	int error;
204 
205 	switch (which) {
206 	case CPUCLOCK_WHICH_PID:
207 		if (id != 0) {
208 			error = pget(id, PGET_CANSEE | PGET_NOTID, &p);
209 			if (error != 0)
210 				return (error);
211 			PROC_UNLOCK(p);
212 			pid = id;
213 		} else {
214 			pid = td->td_proc->p_pid;
215 		}
216 		*clk_id = MAKE_PROCESS_CPUCLOCK(pid);
217 		return (0);
218 	case CPUCLOCK_WHICH_TID:
219 		tid = id == 0 ? td->td_tid : id;
220 		*clk_id = MAKE_THREAD_CPUCLOCK(tid);
221 		return (0);
222 	default:
223 		return (EINVAL);
224 	}
225 }
226 
227 #ifndef _SYS_SYSPROTO_H_
228 struct clock_gettime_args {
229 	clockid_t clock_id;
230 	struct	timespec *tp;
231 };
232 #endif
233 /* ARGSUSED */
234 int
235 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
236 {
237 	struct timespec ats;
238 	int error;
239 
240 	error = kern_clock_gettime(td, uap->clock_id, &ats);
241 	if (error == 0)
242 		error = copyout(&ats, uap->tp, sizeof(ats));
243 
244 	return (error);
245 }
246 
247 static inline void
248 cputick2timespec(uint64_t runtime, struct timespec *ats)
249 {
250 	runtime = cputick2usec(runtime);
251 	ats->tv_sec = runtime / 1000000;
252 	ats->tv_nsec = runtime % 1000000 * 1000;
253 }
254 
255 static void
256 get_thread_cputime(struct thread *targettd, struct timespec *ats)
257 {
258 	uint64_t runtime, curtime, switchtime;
259 
260 	if (targettd == NULL) { /* current thread */
261 		critical_enter();
262 		switchtime = PCPU_GET(switchtime);
263 		curtime = cpu_ticks();
264 		runtime = curthread->td_runtime;
265 		critical_exit();
266 		runtime += curtime - switchtime;
267 	} else {
268 		thread_lock(targettd);
269 		runtime = targettd->td_runtime;
270 		thread_unlock(targettd);
271 	}
272 	cputick2timespec(runtime, ats);
273 }
274 
275 static void
276 get_process_cputime(struct proc *targetp, struct timespec *ats)
277 {
278 	uint64_t runtime;
279 	struct rusage ru;
280 
281 	PROC_STATLOCK(targetp);
282 	rufetch(targetp, &ru);
283 	runtime = targetp->p_rux.rux_runtime;
284 	PROC_STATUNLOCK(targetp);
285 	cputick2timespec(runtime, ats);
286 }
287 
288 static int
289 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats)
290 {
291 	struct proc *p, *p2;
292 	struct thread *td2;
293 	lwpid_t tid;
294 	pid_t pid;
295 	int error;
296 
297 	p = td->td_proc;
298 	if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) {
299 		tid = clock_id & CPUCLOCK_ID_MASK;
300 		td2 = tdfind(tid, p->p_pid);
301 		if (td2 == NULL)
302 			return (EINVAL);
303 		get_thread_cputime(td2, ats);
304 		PROC_UNLOCK(td2->td_proc);
305 	} else {
306 		pid = clock_id & CPUCLOCK_ID_MASK;
307 		error = pget(pid, PGET_CANSEE, &p2);
308 		if (error != 0)
309 			return (EINVAL);
310 		get_process_cputime(p2, ats);
311 		PROC_UNLOCK(p2);
312 	}
313 	return (0);
314 }
315 
316 int
317 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
318 {
319 	struct timeval sys, user;
320 	struct proc *p;
321 
322 	p = td->td_proc;
323 	switch (clock_id) {
324 	case CLOCK_REALTIME:		/* Default to precise. */
325 	case CLOCK_REALTIME_PRECISE:
326 		nanotime(ats);
327 		break;
328 	case CLOCK_REALTIME_FAST:
329 		getnanotime(ats);
330 		break;
331 	case CLOCK_VIRTUAL:
332 		PROC_LOCK(p);
333 		PROC_STATLOCK(p);
334 		calcru(p, &user, &sys);
335 		PROC_STATUNLOCK(p);
336 		PROC_UNLOCK(p);
337 		TIMEVAL_TO_TIMESPEC(&user, ats);
338 		break;
339 	case CLOCK_PROF:
340 		PROC_LOCK(p);
341 		PROC_STATLOCK(p);
342 		calcru(p, &user, &sys);
343 		PROC_STATUNLOCK(p);
344 		PROC_UNLOCK(p);
345 		timevaladd(&user, &sys);
346 		TIMEVAL_TO_TIMESPEC(&user, ats);
347 		break;
348 	case CLOCK_MONOTONIC:		/* Default to precise. */
349 	case CLOCK_MONOTONIC_PRECISE:
350 	case CLOCK_UPTIME:
351 	case CLOCK_UPTIME_PRECISE:
352 		nanouptime(ats);
353 		break;
354 	case CLOCK_UPTIME_FAST:
355 	case CLOCK_MONOTONIC_FAST:
356 		getnanouptime(ats);
357 		break;
358 	case CLOCK_SECOND:
359 		ats->tv_sec = time_second;
360 		ats->tv_nsec = 0;
361 		break;
362 	case CLOCK_THREAD_CPUTIME_ID:
363 		get_thread_cputime(NULL, ats);
364 		break;
365 	case CLOCK_PROCESS_CPUTIME_ID:
366 		PROC_LOCK(p);
367 		get_process_cputime(p, ats);
368 		PROC_UNLOCK(p);
369 		break;
370 	default:
371 		if ((int)clock_id >= 0)
372 			return (EINVAL);
373 		return (get_cputime(td, clock_id, ats));
374 	}
375 	return (0);
376 }
377 
378 #ifndef _SYS_SYSPROTO_H_
379 struct clock_settime_args {
380 	clockid_t clock_id;
381 	const struct	timespec *tp;
382 };
383 #endif
384 /* ARGSUSED */
385 int
386 sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
387 {
388 	struct timespec ats;
389 	int error;
390 
391 	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
392 		return (error);
393 	return (kern_clock_settime(td, uap->clock_id, &ats));
394 }
395 
396 int
397 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
398 {
399 	struct timeval atv;
400 	int error;
401 
402 	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
403 		return (error);
404 	if (clock_id != CLOCK_REALTIME)
405 		return (EINVAL);
406 	if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000 ||
407 	    ats->tv_sec < 0)
408 		return (EINVAL);
409 	/* XXX Don't convert nsec->usec and back */
410 	TIMESPEC_TO_TIMEVAL(&atv, ats);
411 	error = settime(td, &atv);
412 	return (error);
413 }
414 
415 #ifndef _SYS_SYSPROTO_H_
416 struct clock_getres_args {
417 	clockid_t clock_id;
418 	struct	timespec *tp;
419 };
420 #endif
421 int
422 sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
423 {
424 	struct timespec ts;
425 	int error;
426 
427 	if (uap->tp == NULL)
428 		return (0);
429 
430 	error = kern_clock_getres(td, uap->clock_id, &ts);
431 	if (error == 0)
432 		error = copyout(&ts, uap->tp, sizeof(ts));
433 	return (error);
434 }
435 
436 int
437 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
438 {
439 
440 	ts->tv_sec = 0;
441 	switch (clock_id) {
442 	case CLOCK_REALTIME:
443 	case CLOCK_REALTIME_FAST:
444 	case CLOCK_REALTIME_PRECISE:
445 	case CLOCK_MONOTONIC:
446 	case CLOCK_MONOTONIC_FAST:
447 	case CLOCK_MONOTONIC_PRECISE:
448 	case CLOCK_UPTIME:
449 	case CLOCK_UPTIME_FAST:
450 	case CLOCK_UPTIME_PRECISE:
451 		/*
452 		 * Round up the result of the division cheaply by adding 1.
453 		 * Rounding up is especially important if rounding down
454 		 * would give 0.  Perfect rounding is unimportant.
455 		 */
456 		ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
457 		break;
458 	case CLOCK_VIRTUAL:
459 	case CLOCK_PROF:
460 		/* Accurately round up here because we can do so cheaply. */
461 		ts->tv_nsec = howmany(1000000000, hz);
462 		break;
463 	case CLOCK_SECOND:
464 		ts->tv_sec = 1;
465 		ts->tv_nsec = 0;
466 		break;
467 	case CLOCK_THREAD_CPUTIME_ID:
468 	case CLOCK_PROCESS_CPUTIME_ID:
469 	cputime:
470 		/* sync with cputick2usec */
471 		ts->tv_nsec = 1000000 / cpu_tickrate();
472 		if (ts->tv_nsec == 0)
473 			ts->tv_nsec = 1000;
474 		break;
475 	default:
476 		if ((int)clock_id < 0)
477 			goto cputime;
478 		return (EINVAL);
479 	}
480 	return (0);
481 }
482 
483 static uint8_t nanowait[MAXCPU];
484 
485 int
486 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
487 {
488 	struct timespec ts;
489 	sbintime_t sbt, sbtt, prec, tmp;
490 	time_t over;
491 	int error;
492 
493 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
494 		return (EINVAL);
495 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
496 		return (0);
497 	ts = *rqt;
498 	if (ts.tv_sec > INT32_MAX / 2) {
499 		over = ts.tv_sec - INT32_MAX / 2;
500 		ts.tv_sec -= over;
501 	} else
502 		over = 0;
503 	tmp = tstosbt(ts);
504 	prec = tmp;
505 	prec >>= tc_precexp;
506 	if (TIMESEL(&sbt, tmp))
507 		sbt += tc_tick_sbt;
508 	sbt += tmp;
509 	error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp",
510 	    sbt, prec, C_ABSOLUTE);
511 	if (error != EWOULDBLOCK) {
512 		if (error == ERESTART)
513 			error = EINTR;
514 		TIMESEL(&sbtt, tmp);
515 		if (rmt != NULL) {
516 			ts = sbttots(sbt - sbtt);
517 			ts.tv_sec += over;
518 			if (ts.tv_sec < 0)
519 				timespecclear(&ts);
520 			*rmt = ts;
521 		}
522 		if (sbtt >= sbt)
523 			return (0);
524 		return (error);
525 	}
526 	return (0);
527 }
528 
529 #ifndef _SYS_SYSPROTO_H_
530 struct nanosleep_args {
531 	struct	timespec *rqtp;
532 	struct	timespec *rmtp;
533 };
534 #endif
535 /* ARGSUSED */
536 int
537 sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
538 {
539 	struct timespec rmt, rqt;
540 	int error;
541 
542 	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
543 	if (error)
544 		return (error);
545 
546 	if (uap->rmtp &&
547 	    !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
548 			return (EFAULT);
549 	error = kern_nanosleep(td, &rqt, &rmt);
550 	if (error && uap->rmtp) {
551 		int error2;
552 
553 		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
554 		if (error2)
555 			error = error2;
556 	}
557 	return (error);
558 }
559 
560 #ifndef _SYS_SYSPROTO_H_
561 struct gettimeofday_args {
562 	struct	timeval *tp;
563 	struct	timezone *tzp;
564 };
565 #endif
566 /* ARGSUSED */
567 int
568 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
569 {
570 	struct timeval atv;
571 	struct timezone rtz;
572 	int error = 0;
573 
574 	if (uap->tp) {
575 		microtime(&atv);
576 		error = copyout(&atv, uap->tp, sizeof (atv));
577 	}
578 	if (error == 0 && uap->tzp != NULL) {
579 		rtz.tz_minuteswest = tz_minuteswest;
580 		rtz.tz_dsttime = tz_dsttime;
581 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
582 	}
583 	return (error);
584 }
585 
586 #ifndef _SYS_SYSPROTO_H_
587 struct settimeofday_args {
588 	struct	timeval *tv;
589 	struct	timezone *tzp;
590 };
591 #endif
592 /* ARGSUSED */
593 int
594 sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
595 {
596 	struct timeval atv, *tvp;
597 	struct timezone atz, *tzp;
598 	int error;
599 
600 	if (uap->tv) {
601 		error = copyin(uap->tv, &atv, sizeof(atv));
602 		if (error)
603 			return (error);
604 		tvp = &atv;
605 	} else
606 		tvp = NULL;
607 	if (uap->tzp) {
608 		error = copyin(uap->tzp, &atz, sizeof(atz));
609 		if (error)
610 			return (error);
611 		tzp = &atz;
612 	} else
613 		tzp = NULL;
614 	return (kern_settimeofday(td, tvp, tzp));
615 }
616 
617 int
618 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
619 {
620 	int error;
621 
622 	error = priv_check(td, PRIV_SETTIMEOFDAY);
623 	if (error)
624 		return (error);
625 	/* Verify all parameters before changing time. */
626 	if (tv) {
627 		if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 ||
628 		    tv->tv_sec < 0)
629 			return (EINVAL);
630 		error = settime(td, tv);
631 	}
632 	if (tzp && error == 0) {
633 		tz_minuteswest = tzp->tz_minuteswest;
634 		tz_dsttime = tzp->tz_dsttime;
635 	}
636 	return (error);
637 }
638 
639 /*
640  * Get value of an interval timer.  The process virtual and profiling virtual
641  * time timers are kept in the p_stats area, since they can be swapped out.
642  * These are kept internally in the way they are specified externally: in
643  * time until they expire.
644  *
645  * The real time interval timer is kept in the process table slot for the
646  * process, and its value (it_value) is kept as an absolute time rather than
647  * as a delta, so that it is easy to keep periodic real-time signals from
648  * drifting.
649  *
650  * Virtual time timers are processed in the hardclock() routine of
651  * kern_clock.c.  The real time timer is processed by a timeout routine,
652  * called from the softclock() routine.  Since a callout may be delayed in
653  * real time due to interrupt processing in the system, it is possible for
654  * the real time timeout routine (realitexpire, given below), to be delayed
655  * in real time past when it is supposed to occur.  It does not suffice,
656  * therefore, to reload the real timer .it_value from the real time timers
657  * .it_interval.  Rather, we compute the next time in absolute time the timer
658  * should go off.
659  */
660 #ifndef _SYS_SYSPROTO_H_
661 struct getitimer_args {
662 	u_int	which;
663 	struct	itimerval *itv;
664 };
665 #endif
666 int
667 sys_getitimer(struct thread *td, struct getitimer_args *uap)
668 {
669 	struct itimerval aitv;
670 	int error;
671 
672 	error = kern_getitimer(td, uap->which, &aitv);
673 	if (error != 0)
674 		return (error);
675 	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
676 }
677 
678 int
679 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
680 {
681 	struct proc *p = td->td_proc;
682 	struct timeval ctv;
683 
684 	if (which > ITIMER_PROF)
685 		return (EINVAL);
686 
687 	if (which == ITIMER_REAL) {
688 		/*
689 		 * Convert from absolute to relative time in .it_value
690 		 * part of real time timer.  If time for real time timer
691 		 * has passed return 0, else return difference between
692 		 * current time and time for the timer to go off.
693 		 */
694 		PROC_LOCK(p);
695 		*aitv = p->p_realtimer;
696 		PROC_UNLOCK(p);
697 		if (timevalisset(&aitv->it_value)) {
698 			microuptime(&ctv);
699 			if (timevalcmp(&aitv->it_value, &ctv, <))
700 				timevalclear(&aitv->it_value);
701 			else
702 				timevalsub(&aitv->it_value, &ctv);
703 		}
704 	} else {
705 		PROC_ITIMLOCK(p);
706 		*aitv = p->p_stats->p_timer[which];
707 		PROC_ITIMUNLOCK(p);
708 	}
709 #ifdef KTRACE
710 	if (KTRPOINT(td, KTR_STRUCT))
711 		ktritimerval(aitv);
712 #endif
713 	return (0);
714 }
715 
716 #ifndef _SYS_SYSPROTO_H_
717 struct setitimer_args {
718 	u_int	which;
719 	struct	itimerval *itv, *oitv;
720 };
721 #endif
722 int
723 sys_setitimer(struct thread *td, struct setitimer_args *uap)
724 {
725 	struct itimerval aitv, oitv;
726 	int error;
727 
728 	if (uap->itv == NULL) {
729 		uap->itv = uap->oitv;
730 		return (sys_getitimer(td, (struct getitimer_args *)uap));
731 	}
732 
733 	if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
734 		return (error);
735 	error = kern_setitimer(td, uap->which, &aitv, &oitv);
736 	if (error != 0 || uap->oitv == NULL)
737 		return (error);
738 	return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
739 }
740 
741 int
742 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
743     struct itimerval *oitv)
744 {
745 	struct proc *p = td->td_proc;
746 	struct timeval ctv;
747 	sbintime_t sbt, pr;
748 
749 	if (aitv == NULL)
750 		return (kern_getitimer(td, which, oitv));
751 
752 	if (which > ITIMER_PROF)
753 		return (EINVAL);
754 #ifdef KTRACE
755 	if (KTRPOINT(td, KTR_STRUCT))
756 		ktritimerval(aitv);
757 #endif
758 	if (itimerfix(&aitv->it_value) ||
759 	    aitv->it_value.tv_sec > INT32_MAX / 2)
760 		return (EINVAL);
761 	if (!timevalisset(&aitv->it_value))
762 		timevalclear(&aitv->it_interval);
763 	else if (itimerfix(&aitv->it_interval) ||
764 	    aitv->it_interval.tv_sec > INT32_MAX / 2)
765 		return (EINVAL);
766 
767 	if (which == ITIMER_REAL) {
768 		PROC_LOCK(p);
769 		if (timevalisset(&p->p_realtimer.it_value))
770 			callout_stop(&p->p_itcallout);
771 		microuptime(&ctv);
772 		if (timevalisset(&aitv->it_value)) {
773 			pr = tvtosbt(aitv->it_value) >> tc_precexp;
774 			timevaladd(&aitv->it_value, &ctv);
775 			sbt = tvtosbt(aitv->it_value);
776 			callout_reset_sbt(&p->p_itcallout, sbt, pr,
777 			    realitexpire, p, C_ABSOLUTE);
778 		}
779 		*oitv = p->p_realtimer;
780 		p->p_realtimer = *aitv;
781 		PROC_UNLOCK(p);
782 		if (timevalisset(&oitv->it_value)) {
783 			if (timevalcmp(&oitv->it_value, &ctv, <))
784 				timevalclear(&oitv->it_value);
785 			else
786 				timevalsub(&oitv->it_value, &ctv);
787 		}
788 	} else {
789 		if (aitv->it_interval.tv_sec == 0 &&
790 		    aitv->it_interval.tv_usec != 0 &&
791 		    aitv->it_interval.tv_usec < tick)
792 			aitv->it_interval.tv_usec = tick;
793 		if (aitv->it_value.tv_sec == 0 &&
794 		    aitv->it_value.tv_usec != 0 &&
795 		    aitv->it_value.tv_usec < tick)
796 			aitv->it_value.tv_usec = tick;
797 		PROC_ITIMLOCK(p);
798 		*oitv = p->p_stats->p_timer[which];
799 		p->p_stats->p_timer[which] = *aitv;
800 		PROC_ITIMUNLOCK(p);
801 	}
802 #ifdef KTRACE
803 	if (KTRPOINT(td, KTR_STRUCT))
804 		ktritimerval(oitv);
805 #endif
806 	return (0);
807 }
808 
809 /*
810  * Real interval timer expired:
811  * send process whose timer expired an alarm signal.
812  * If time is not set up to reload, then just return.
813  * Else compute next time timer should go off which is > current time.
814  * This is where delay in processing this timeout causes multiple
815  * SIGALRM calls to be compressed into one.
816  * tvtohz() always adds 1 to allow for the time until the next clock
817  * interrupt being strictly less than 1 clock tick, but we don't want
818  * that here since we want to appear to be in sync with the clock
819  * interrupt even when we're delayed.
820  */
821 void
822 realitexpire(void *arg)
823 {
824 	struct proc *p;
825 	struct timeval ctv;
826 	sbintime_t isbt;
827 
828 	p = (struct proc *)arg;
829 	kern_psignal(p, SIGALRM);
830 	if (!timevalisset(&p->p_realtimer.it_interval)) {
831 		timevalclear(&p->p_realtimer.it_value);
832 		if (p->p_flag & P_WEXIT)
833 			wakeup(&p->p_itcallout);
834 		return;
835 	}
836 	isbt = tvtosbt(p->p_realtimer.it_interval);
837 	if (isbt >= sbt_timethreshold)
838 		getmicrouptime(&ctv);
839 	else
840 		microuptime(&ctv);
841 	do {
842 		timevaladd(&p->p_realtimer.it_value,
843 		    &p->p_realtimer.it_interval);
844 	} while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=));
845 	callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value),
846 	    isbt >> tc_precexp, realitexpire, p, C_ABSOLUTE);
847 }
848 
849 /*
850  * Check that a proposed value to load into the .it_value or
851  * .it_interval part of an interval timer is acceptable, and
852  * fix it to have at least minimal value (i.e. if it is less
853  * than the resolution of the clock, round it up.)
854  */
855 int
856 itimerfix(struct timeval *tv)
857 {
858 
859 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
860 		return (EINVAL);
861 	if (tv->tv_sec == 0 && tv->tv_usec != 0 &&
862 	    tv->tv_usec < (u_int)tick / 16)
863 		tv->tv_usec = (u_int)tick / 16;
864 	return (0);
865 }
866 
867 /*
868  * Decrement an interval timer by a specified number
869  * of microseconds, which must be less than a second,
870  * i.e. < 1000000.  If the timer expires, then reload
871  * it.  In this case, carry over (usec - old value) to
872  * reduce the value reloaded into the timer so that
873  * the timer does not drift.  This routine assumes
874  * that it is called in a context where the timers
875  * on which it is operating cannot change in value.
876  */
877 int
878 itimerdecr(struct itimerval *itp, int usec)
879 {
880 
881 	if (itp->it_value.tv_usec < usec) {
882 		if (itp->it_value.tv_sec == 0) {
883 			/* expired, and already in next interval */
884 			usec -= itp->it_value.tv_usec;
885 			goto expire;
886 		}
887 		itp->it_value.tv_usec += 1000000;
888 		itp->it_value.tv_sec--;
889 	}
890 	itp->it_value.tv_usec -= usec;
891 	usec = 0;
892 	if (timevalisset(&itp->it_value))
893 		return (1);
894 	/* expired, exactly at end of interval */
895 expire:
896 	if (timevalisset(&itp->it_interval)) {
897 		itp->it_value = itp->it_interval;
898 		itp->it_value.tv_usec -= usec;
899 		if (itp->it_value.tv_usec < 0) {
900 			itp->it_value.tv_usec += 1000000;
901 			itp->it_value.tv_sec--;
902 		}
903 	} else
904 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
905 	return (0);
906 }
907 
908 /*
909  * Add and subtract routines for timevals.
910  * N.B.: subtract routine doesn't deal with
911  * results which are before the beginning,
912  * it just gets very confused in this case.
913  * Caveat emptor.
914  */
915 void
916 timevaladd(struct timeval *t1, const struct timeval *t2)
917 {
918 
919 	t1->tv_sec += t2->tv_sec;
920 	t1->tv_usec += t2->tv_usec;
921 	timevalfix(t1);
922 }
923 
924 void
925 timevalsub(struct timeval *t1, const struct timeval *t2)
926 {
927 
928 	t1->tv_sec -= t2->tv_sec;
929 	t1->tv_usec -= t2->tv_usec;
930 	timevalfix(t1);
931 }
932 
933 static void
934 timevalfix(struct timeval *t1)
935 {
936 
937 	if (t1->tv_usec < 0) {
938 		t1->tv_sec--;
939 		t1->tv_usec += 1000000;
940 	}
941 	if (t1->tv_usec >= 1000000) {
942 		t1->tv_sec++;
943 		t1->tv_usec -= 1000000;
944 	}
945 }
946 
947 /*
948  * ratecheck(): simple time-based rate-limit checking.
949  */
950 int
951 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
952 {
953 	struct timeval tv, delta;
954 	int rv = 0;
955 
956 	getmicrouptime(&tv);		/* NB: 10ms precision */
957 	delta = tv;
958 	timevalsub(&delta, lasttime);
959 
960 	/*
961 	 * check for 0,0 is so that the message will be seen at least once,
962 	 * even if interval is huge.
963 	 */
964 	if (timevalcmp(&delta, mininterval, >=) ||
965 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
966 		*lasttime = tv;
967 		rv = 1;
968 	}
969 
970 	return (rv);
971 }
972 
973 /*
974  * ppsratecheck(): packets (or events) per second limitation.
975  *
976  * Return 0 if the limit is to be enforced (e.g. the caller
977  * should drop a packet because of the rate limitation).
978  *
979  * maxpps of 0 always causes zero to be returned.  maxpps of -1
980  * always causes 1 to be returned; this effectively defeats rate
981  * limiting.
982  *
983  * Note that we maintain the struct timeval for compatibility
984  * with other bsd systems.  We reuse the storage and just monitor
985  * clock ticks for minimal overhead.
986  */
987 int
988 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
989 {
990 	int now;
991 
992 	/*
993 	 * Reset the last time and counter if this is the first call
994 	 * or more than a second has passed since the last update of
995 	 * lasttime.
996 	 */
997 	now = ticks;
998 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
999 		lasttime->tv_sec = now;
1000 		*curpps = 1;
1001 		return (maxpps != 0);
1002 	} else {
1003 		(*curpps)++;		/* NB: ignore potential overflow */
1004 		return (maxpps < 0 || *curpps <= maxpps);
1005 	}
1006 }
1007 
1008 static void
1009 itimer_start(void)
1010 {
1011 	struct kclock rt_clock = {
1012 		.timer_create  = realtimer_create,
1013 		.timer_delete  = realtimer_delete,
1014 		.timer_settime = realtimer_settime,
1015 		.timer_gettime = realtimer_gettime,
1016 		.event_hook    = NULL
1017 	};
1018 
1019 	itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
1020 		NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
1021 	register_posix_clock(CLOCK_REALTIME,  &rt_clock);
1022 	register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
1023 	p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
1024 	p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
1025 	p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
1026 	EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit,
1027 		(void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY);
1028 	EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec,
1029 		(void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY);
1030 }
1031 
1032 int
1033 register_posix_clock(int clockid, struct kclock *clk)
1034 {
1035 	if ((unsigned)clockid >= MAX_CLOCKS) {
1036 		printf("%s: invalid clockid\n", __func__);
1037 		return (0);
1038 	}
1039 	posix_clocks[clockid] = *clk;
1040 	return (1);
1041 }
1042 
1043 static int
1044 itimer_init(void *mem, int size, int flags)
1045 {
1046 	struct itimer *it;
1047 
1048 	it = (struct itimer *)mem;
1049 	mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
1050 	return (0);
1051 }
1052 
1053 static void
1054 itimer_fini(void *mem, int size)
1055 {
1056 	struct itimer *it;
1057 
1058 	it = (struct itimer *)mem;
1059 	mtx_destroy(&it->it_mtx);
1060 }
1061 
1062 static void
1063 itimer_enter(struct itimer *it)
1064 {
1065 
1066 	mtx_assert(&it->it_mtx, MA_OWNED);
1067 	it->it_usecount++;
1068 }
1069 
1070 static void
1071 itimer_leave(struct itimer *it)
1072 {
1073 
1074 	mtx_assert(&it->it_mtx, MA_OWNED);
1075 	KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
1076 
1077 	if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
1078 		wakeup(it);
1079 }
1080 
1081 #ifndef _SYS_SYSPROTO_H_
1082 struct ktimer_create_args {
1083 	clockid_t clock_id;
1084 	struct sigevent * evp;
1085 	int * timerid;
1086 };
1087 #endif
1088 int
1089 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
1090 {
1091 	struct sigevent *evp, ev;
1092 	int id;
1093 	int error;
1094 
1095 	if (uap->evp == NULL) {
1096 		evp = NULL;
1097 	} else {
1098 		error = copyin(uap->evp, &ev, sizeof(ev));
1099 		if (error != 0)
1100 			return (error);
1101 		evp = &ev;
1102 	}
1103 	error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
1104 	if (error == 0) {
1105 		error = copyout(&id, uap->timerid, sizeof(int));
1106 		if (error != 0)
1107 			kern_ktimer_delete(td, id);
1108 	}
1109 	return (error);
1110 }
1111 
1112 int
1113 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp,
1114     int *timerid, int preset_id)
1115 {
1116 	struct proc *p = td->td_proc;
1117 	struct itimer *it;
1118 	int id;
1119 	int error;
1120 
1121 	if (clock_id < 0 || clock_id >= MAX_CLOCKS)
1122 		return (EINVAL);
1123 
1124 	if (posix_clocks[clock_id].timer_create == NULL)
1125 		return (EINVAL);
1126 
1127 	if (evp != NULL) {
1128 		if (evp->sigev_notify != SIGEV_NONE &&
1129 		    evp->sigev_notify != SIGEV_SIGNAL &&
1130 		    evp->sigev_notify != SIGEV_THREAD_ID)
1131 			return (EINVAL);
1132 		if ((evp->sigev_notify == SIGEV_SIGNAL ||
1133 		     evp->sigev_notify == SIGEV_THREAD_ID) &&
1134 			!_SIG_VALID(evp->sigev_signo))
1135 			return (EINVAL);
1136 	}
1137 
1138 	if (p->p_itimers == NULL)
1139 		itimers_alloc(p);
1140 
1141 	it = uma_zalloc(itimer_zone, M_WAITOK);
1142 	it->it_flags = 0;
1143 	it->it_usecount = 0;
1144 	it->it_active = 0;
1145 	timespecclear(&it->it_time.it_value);
1146 	timespecclear(&it->it_time.it_interval);
1147 	it->it_overrun = 0;
1148 	it->it_overrun_last = 0;
1149 	it->it_clockid = clock_id;
1150 	it->it_timerid = -1;
1151 	it->it_proc = p;
1152 	ksiginfo_init(&it->it_ksi);
1153 	it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
1154 	error = CLOCK_CALL(clock_id, timer_create, (it));
1155 	if (error != 0)
1156 		goto out;
1157 
1158 	PROC_LOCK(p);
1159 	if (preset_id != -1) {
1160 		KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
1161 		id = preset_id;
1162 		if (p->p_itimers->its_timers[id] != NULL) {
1163 			PROC_UNLOCK(p);
1164 			error = 0;
1165 			goto out;
1166 		}
1167 	} else {
1168 		/*
1169 		 * Find a free timer slot, skipping those reserved
1170 		 * for setitimer().
1171 		 */
1172 		for (id = 3; id < TIMER_MAX; id++)
1173 			if (p->p_itimers->its_timers[id] == NULL)
1174 				break;
1175 		if (id == TIMER_MAX) {
1176 			PROC_UNLOCK(p);
1177 			error = EAGAIN;
1178 			goto out;
1179 		}
1180 	}
1181 	it->it_timerid = id;
1182 	p->p_itimers->its_timers[id] = it;
1183 	if (evp != NULL)
1184 		it->it_sigev = *evp;
1185 	else {
1186 		it->it_sigev.sigev_notify = SIGEV_SIGNAL;
1187 		switch (clock_id) {
1188 		default:
1189 		case CLOCK_REALTIME:
1190 			it->it_sigev.sigev_signo = SIGALRM;
1191 			break;
1192 		case CLOCK_VIRTUAL:
1193  			it->it_sigev.sigev_signo = SIGVTALRM;
1194 			break;
1195 		case CLOCK_PROF:
1196 			it->it_sigev.sigev_signo = SIGPROF;
1197 			break;
1198 		}
1199 		it->it_sigev.sigev_value.sival_int = id;
1200 	}
1201 
1202 	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1203 	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1204 		it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
1205 		it->it_ksi.ksi_code = SI_TIMER;
1206 		it->it_ksi.ksi_value = it->it_sigev.sigev_value;
1207 		it->it_ksi.ksi_timerid = id;
1208 	}
1209 	PROC_UNLOCK(p);
1210 	*timerid = id;
1211 	return (0);
1212 
1213 out:
1214 	ITIMER_LOCK(it);
1215 	CLOCK_CALL(it->it_clockid, timer_delete, (it));
1216 	ITIMER_UNLOCK(it);
1217 	uma_zfree(itimer_zone, it);
1218 	return (error);
1219 }
1220 
1221 #ifndef _SYS_SYSPROTO_H_
1222 struct ktimer_delete_args {
1223 	int timerid;
1224 };
1225 #endif
1226 int
1227 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
1228 {
1229 
1230 	return (kern_ktimer_delete(td, uap->timerid));
1231 }
1232 
1233 static struct itimer *
1234 itimer_find(struct proc *p, int timerid)
1235 {
1236 	struct itimer *it;
1237 
1238 	PROC_LOCK_ASSERT(p, MA_OWNED);
1239 	if ((p->p_itimers == NULL) ||
1240 	    (timerid < 0) || (timerid >= TIMER_MAX) ||
1241 	    (it = p->p_itimers->its_timers[timerid]) == NULL) {
1242 		return (NULL);
1243 	}
1244 	ITIMER_LOCK(it);
1245 	if ((it->it_flags & ITF_DELETING) != 0) {
1246 		ITIMER_UNLOCK(it);
1247 		it = NULL;
1248 	}
1249 	return (it);
1250 }
1251 
1252 int
1253 kern_ktimer_delete(struct thread *td, int timerid)
1254 {
1255 	struct proc *p = td->td_proc;
1256 	struct itimer *it;
1257 
1258 	PROC_LOCK(p);
1259 	it = itimer_find(p, timerid);
1260 	if (it == NULL) {
1261 		PROC_UNLOCK(p);
1262 		return (EINVAL);
1263 	}
1264 	PROC_UNLOCK(p);
1265 
1266 	it->it_flags |= ITF_DELETING;
1267 	while (it->it_usecount > 0) {
1268 		it->it_flags |= ITF_WANTED;
1269 		msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
1270 	}
1271 	it->it_flags &= ~ITF_WANTED;
1272 	CLOCK_CALL(it->it_clockid, timer_delete, (it));
1273 	ITIMER_UNLOCK(it);
1274 
1275 	PROC_LOCK(p);
1276 	if (KSI_ONQ(&it->it_ksi))
1277 		sigqueue_take(&it->it_ksi);
1278 	p->p_itimers->its_timers[timerid] = NULL;
1279 	PROC_UNLOCK(p);
1280 	uma_zfree(itimer_zone, it);
1281 	return (0);
1282 }
1283 
1284 #ifndef _SYS_SYSPROTO_H_
1285 struct ktimer_settime_args {
1286 	int timerid;
1287 	int flags;
1288 	const struct itimerspec * value;
1289 	struct itimerspec * ovalue;
1290 };
1291 #endif
1292 int
1293 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
1294 {
1295 	struct itimerspec val, oval, *ovalp;
1296 	int error;
1297 
1298 	error = copyin(uap->value, &val, sizeof(val));
1299 	if (error != 0)
1300 		return (error);
1301 	ovalp = uap->ovalue != NULL ? &oval : NULL;
1302 	error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
1303 	if (error == 0 && uap->ovalue != NULL)
1304 		error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
1305 	return (error);
1306 }
1307 
1308 int
1309 kern_ktimer_settime(struct thread *td, int timer_id, int flags,
1310     struct itimerspec *val, struct itimerspec *oval)
1311 {
1312 	struct proc *p;
1313 	struct itimer *it;
1314 	int error;
1315 
1316 	p = td->td_proc;
1317 	PROC_LOCK(p);
1318 	if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
1319 		PROC_UNLOCK(p);
1320 		error = EINVAL;
1321 	} else {
1322 		PROC_UNLOCK(p);
1323 		itimer_enter(it);
1324 		error = CLOCK_CALL(it->it_clockid, timer_settime, (it,
1325 		    flags, val, oval));
1326 		itimer_leave(it);
1327 		ITIMER_UNLOCK(it);
1328 	}
1329 	return (error);
1330 }
1331 
1332 #ifndef _SYS_SYSPROTO_H_
1333 struct ktimer_gettime_args {
1334 	int timerid;
1335 	struct itimerspec * value;
1336 };
1337 #endif
1338 int
1339 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
1340 {
1341 	struct itimerspec val;
1342 	int error;
1343 
1344 	error = kern_ktimer_gettime(td, uap->timerid, &val);
1345 	if (error == 0)
1346 		error = copyout(&val, uap->value, sizeof(val));
1347 	return (error);
1348 }
1349 
1350 int
1351 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val)
1352 {
1353 	struct proc *p;
1354 	struct itimer *it;
1355 	int error;
1356 
1357 	p = td->td_proc;
1358 	PROC_LOCK(p);
1359 	if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
1360 		PROC_UNLOCK(p);
1361 		error = EINVAL;
1362 	} else {
1363 		PROC_UNLOCK(p);
1364 		itimer_enter(it);
1365 		error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val));
1366 		itimer_leave(it);
1367 		ITIMER_UNLOCK(it);
1368 	}
1369 	return (error);
1370 }
1371 
1372 #ifndef _SYS_SYSPROTO_H_
1373 struct timer_getoverrun_args {
1374 	int timerid;
1375 };
1376 #endif
1377 int
1378 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
1379 {
1380 
1381 	return (kern_ktimer_getoverrun(td, uap->timerid));
1382 }
1383 
1384 int
1385 kern_ktimer_getoverrun(struct thread *td, int timer_id)
1386 {
1387 	struct proc *p = td->td_proc;
1388 	struct itimer *it;
1389 	int error ;
1390 
1391 	PROC_LOCK(p);
1392 	if (timer_id < 3 ||
1393 	    (it = itimer_find(p, timer_id)) == NULL) {
1394 		PROC_UNLOCK(p);
1395 		error = EINVAL;
1396 	} else {
1397 		td->td_retval[0] = it->it_overrun_last;
1398 		ITIMER_UNLOCK(it);
1399 		PROC_UNLOCK(p);
1400 		error = 0;
1401 	}
1402 	return (error);
1403 }
1404 
1405 static int
1406 realtimer_create(struct itimer *it)
1407 {
1408 	callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
1409 	return (0);
1410 }
1411 
1412 static int
1413 realtimer_delete(struct itimer *it)
1414 {
1415 	mtx_assert(&it->it_mtx, MA_OWNED);
1416 
1417 	/*
1418 	 * clear timer's value and interval to tell realtimer_expire
1419 	 * to not rearm the timer.
1420 	 */
1421 	timespecclear(&it->it_time.it_value);
1422 	timespecclear(&it->it_time.it_interval);
1423 	ITIMER_UNLOCK(it);
1424 	callout_drain(&it->it_callout);
1425 	ITIMER_LOCK(it);
1426 	return (0);
1427 }
1428 
1429 static int
1430 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
1431 {
1432 	struct timespec cts;
1433 
1434 	mtx_assert(&it->it_mtx, MA_OWNED);
1435 
1436 	realtimer_clocktime(it->it_clockid, &cts);
1437 	*ovalue = it->it_time;
1438 	if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
1439 		timespecsub(&ovalue->it_value, &cts);
1440 		if (ovalue->it_value.tv_sec < 0 ||
1441 		    (ovalue->it_value.tv_sec == 0 &&
1442 		     ovalue->it_value.tv_nsec == 0)) {
1443 			ovalue->it_value.tv_sec  = 0;
1444 			ovalue->it_value.tv_nsec = 1;
1445 		}
1446 	}
1447 	return (0);
1448 }
1449 
1450 static int
1451 realtimer_settime(struct itimer *it, int flags,
1452 	struct itimerspec *value, struct itimerspec *ovalue)
1453 {
1454 	struct timespec cts, ts;
1455 	struct timeval tv;
1456 	struct itimerspec val;
1457 
1458 	mtx_assert(&it->it_mtx, MA_OWNED);
1459 
1460 	val = *value;
1461 	if (itimespecfix(&val.it_value))
1462 		return (EINVAL);
1463 
1464 	if (timespecisset(&val.it_value)) {
1465 		if (itimespecfix(&val.it_interval))
1466 			return (EINVAL);
1467 	} else {
1468 		timespecclear(&val.it_interval);
1469 	}
1470 
1471 	if (ovalue != NULL)
1472 		realtimer_gettime(it, ovalue);
1473 
1474 	it->it_time = val;
1475 	if (timespecisset(&val.it_value)) {
1476 		realtimer_clocktime(it->it_clockid, &cts);
1477 		ts = val.it_value;
1478 		if ((flags & TIMER_ABSTIME) == 0) {
1479 			/* Convert to absolute time. */
1480 			timespecadd(&it->it_time.it_value, &cts);
1481 		} else {
1482 			timespecsub(&ts, &cts);
1483 			/*
1484 			 * We don't care if ts is negative, tztohz will
1485 			 * fix it.
1486 			 */
1487 		}
1488 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1489 		callout_reset(&it->it_callout, tvtohz(&tv),
1490 			realtimer_expire, it);
1491 	} else {
1492 		callout_stop(&it->it_callout);
1493 	}
1494 
1495 	return (0);
1496 }
1497 
1498 static void
1499 realtimer_clocktime(clockid_t id, struct timespec *ts)
1500 {
1501 	if (id == CLOCK_REALTIME)
1502 		getnanotime(ts);
1503 	else	/* CLOCK_MONOTONIC */
1504 		getnanouptime(ts);
1505 }
1506 
1507 int
1508 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
1509 {
1510 	struct itimer *it;
1511 
1512 	PROC_LOCK_ASSERT(p, MA_OWNED);
1513 	it = itimer_find(p, timerid);
1514 	if (it != NULL) {
1515 		ksi->ksi_overrun = it->it_overrun;
1516 		it->it_overrun_last = it->it_overrun;
1517 		it->it_overrun = 0;
1518 		ITIMER_UNLOCK(it);
1519 		return (0);
1520 	}
1521 	return (EINVAL);
1522 }
1523 
1524 int
1525 itimespecfix(struct timespec *ts)
1526 {
1527 
1528 	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1529 		return (EINVAL);
1530 	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1531 		ts->tv_nsec = tick * 1000;
1532 	return (0);
1533 }
1534 
1535 /* Timeout callback for realtime timer */
1536 static void
1537 realtimer_expire(void *arg)
1538 {
1539 	struct timespec cts, ts;
1540 	struct timeval tv;
1541 	struct itimer *it;
1542 
1543 	it = (struct itimer *)arg;
1544 
1545 	realtimer_clocktime(it->it_clockid, &cts);
1546 	/* Only fire if time is reached. */
1547 	if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1548 		if (timespecisset(&it->it_time.it_interval)) {
1549 			timespecadd(&it->it_time.it_value,
1550 				    &it->it_time.it_interval);
1551 			while (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1552 				if (it->it_overrun < INT_MAX)
1553 					it->it_overrun++;
1554 				else
1555 					it->it_ksi.ksi_errno = ERANGE;
1556 				timespecadd(&it->it_time.it_value,
1557 					    &it->it_time.it_interval);
1558 			}
1559 		} else {
1560 			/* single shot timer ? */
1561 			timespecclear(&it->it_time.it_value);
1562 		}
1563 		if (timespecisset(&it->it_time.it_value)) {
1564 			ts = it->it_time.it_value;
1565 			timespecsub(&ts, &cts);
1566 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1567 			callout_reset(&it->it_callout, tvtohz(&tv),
1568 				 realtimer_expire, it);
1569 		}
1570 		itimer_enter(it);
1571 		ITIMER_UNLOCK(it);
1572 		itimer_fire(it);
1573 		ITIMER_LOCK(it);
1574 		itimer_leave(it);
1575 	} else if (timespecisset(&it->it_time.it_value)) {
1576 		ts = it->it_time.it_value;
1577 		timespecsub(&ts, &cts);
1578 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1579 		callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
1580  			it);
1581 	}
1582 }
1583 
1584 void
1585 itimer_fire(struct itimer *it)
1586 {
1587 	struct proc *p = it->it_proc;
1588 	struct thread *td;
1589 
1590 	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1591 	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1592 		if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
1593 			ITIMER_LOCK(it);
1594 			timespecclear(&it->it_time.it_value);
1595 			timespecclear(&it->it_time.it_interval);
1596 			callout_stop(&it->it_callout);
1597 			ITIMER_UNLOCK(it);
1598 			return;
1599 		}
1600 		if (!KSI_ONQ(&it->it_ksi)) {
1601 			it->it_ksi.ksi_errno = 0;
1602 			ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
1603 			tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
1604 		} else {
1605 			if (it->it_overrun < INT_MAX)
1606 				it->it_overrun++;
1607 			else
1608 				it->it_ksi.ksi_errno = ERANGE;
1609 		}
1610 		PROC_UNLOCK(p);
1611 	}
1612 }
1613 
1614 static void
1615 itimers_alloc(struct proc *p)
1616 {
1617 	struct itimers *its;
1618 	int i;
1619 
1620 	its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
1621 	LIST_INIT(&its->its_virtual);
1622 	LIST_INIT(&its->its_prof);
1623 	TAILQ_INIT(&its->its_worklist);
1624 	for (i = 0; i < TIMER_MAX; i++)
1625 		its->its_timers[i] = NULL;
1626 	PROC_LOCK(p);
1627 	if (p->p_itimers == NULL) {
1628 		p->p_itimers = its;
1629 		PROC_UNLOCK(p);
1630 	}
1631 	else {
1632 		PROC_UNLOCK(p);
1633 		free(its, M_SUBPROC);
1634 	}
1635 }
1636 
1637 static void
1638 itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
1639 {
1640 	itimers_event_hook_exit(arg, p);
1641 }
1642 
1643 /* Clean up timers when some process events are being triggered. */
1644 static void
1645 itimers_event_hook_exit(void *arg, struct proc *p)
1646 {
1647 	struct itimers *its;
1648 	struct itimer *it;
1649 	int event = (int)(intptr_t)arg;
1650 	int i;
1651 
1652 	if (p->p_itimers != NULL) {
1653 		its = p->p_itimers;
1654 		for (i = 0; i < MAX_CLOCKS; ++i) {
1655 			if (posix_clocks[i].event_hook != NULL)
1656 				CLOCK_CALL(i, event_hook, (p, i, event));
1657 		}
1658 		/*
1659 		 * According to susv3, XSI interval timers should be inherited
1660 		 * by new image.
1661 		 */
1662 		if (event == ITIMER_EV_EXEC)
1663 			i = 3;
1664 		else if (event == ITIMER_EV_EXIT)
1665 			i = 0;
1666 		else
1667 			panic("unhandled event");
1668 		for (; i < TIMER_MAX; ++i) {
1669 			if ((it = its->its_timers[i]) != NULL)
1670 				kern_ktimer_delete(curthread, i);
1671 		}
1672 		if (its->its_timers[0] == NULL &&
1673 		    its->its_timers[1] == NULL &&
1674 		    its->its_timers[2] == NULL) {
1675 			free(its, M_SUBPROC);
1676 			p->p_itimers = NULL;
1677 		}
1678 	}
1679 }
1680