1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_ktrace.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/limits.h> 40 #include <sys/clock.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/sysproto.h> 44 #include <sys/eventhandler.h> 45 #include <sys/resourcevar.h> 46 #include <sys/signalvar.h> 47 #include <sys/kernel.h> 48 #include <sys/sleepqueue.h> 49 #include <sys/syscallsubr.h> 50 #include <sys/sysctl.h> 51 #include <sys/sysent.h> 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/posix4.h> 55 #include <sys/time.h> 56 #include <sys/timers.h> 57 #include <sys/timetc.h> 58 #include <sys/vnode.h> 59 #ifdef KTRACE 60 #include <sys/ktrace.h> 61 #endif 62 63 #include <vm/vm.h> 64 #include <vm/vm_extern.h> 65 66 #define MAX_CLOCKS (CLOCK_MONOTONIC+1) 67 #define CPUCLOCK_BIT 0x80000000 68 #define CPUCLOCK_PROCESS_BIT 0x40000000 69 #define CPUCLOCK_ID_MASK (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT)) 70 #define MAKE_THREAD_CPUCLOCK(tid) (CPUCLOCK_BIT|(tid)) 71 #define MAKE_PROCESS_CPUCLOCK(pid) \ 72 (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid)) 73 74 static struct kclock posix_clocks[MAX_CLOCKS]; 75 static uma_zone_t itimer_zone = NULL; 76 77 /* 78 * Time of day and interval timer support. 79 * 80 * These routines provide the kernel entry points to get and set 81 * the time-of-day and per-process interval timers. Subroutines 82 * here provide support for adding and subtracting timeval structures 83 * and decrementing interval timers, optionally reloading the interval 84 * timers when they expire. 85 */ 86 87 static int settime(struct thread *, struct timeval *); 88 static void timevalfix(struct timeval *); 89 90 static void itimer_start(void); 91 static int itimer_init(void *, int, int); 92 static void itimer_fini(void *, int); 93 static void itimer_enter(struct itimer *); 94 static void itimer_leave(struct itimer *); 95 static struct itimer *itimer_find(struct proc *, int); 96 static void itimers_alloc(struct proc *); 97 static void itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp); 98 static void itimers_event_hook_exit(void *arg, struct proc *p); 99 static int realtimer_create(struct itimer *); 100 static int realtimer_gettime(struct itimer *, struct itimerspec *); 101 static int realtimer_settime(struct itimer *, int, 102 struct itimerspec *, struct itimerspec *); 103 static int realtimer_delete(struct itimer *); 104 static void realtimer_clocktime(clockid_t, struct timespec *); 105 static void realtimer_expire(void *); 106 107 int register_posix_clock(int, struct kclock *); 108 void itimer_fire(struct itimer *it); 109 int itimespecfix(struct timespec *ts); 110 111 #define CLOCK_CALL(clock, call, arglist) \ 112 ((*posix_clocks[clock].call) arglist) 113 114 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL); 115 116 117 static int 118 settime(struct thread *td, struct timeval *tv) 119 { 120 struct timeval delta, tv1, tv2; 121 static struct timeval maxtime, laststep; 122 struct timespec ts; 123 int s; 124 125 s = splclock(); 126 microtime(&tv1); 127 delta = *tv; 128 timevalsub(&delta, &tv1); 129 130 /* 131 * If the system is secure, we do not allow the time to be 132 * set to a value earlier than 1 second less than the highest 133 * time we have yet seen. The worst a miscreant can do in 134 * this circumstance is "freeze" time. He couldn't go 135 * back to the past. 136 * 137 * We similarly do not allow the clock to be stepped more 138 * than one second, nor more than once per second. This allows 139 * a miscreant to make the clock march double-time, but no worse. 140 */ 141 if (securelevel_gt(td->td_ucred, 1) != 0) { 142 if (delta.tv_sec < 0 || delta.tv_usec < 0) { 143 /* 144 * Update maxtime to latest time we've seen. 145 */ 146 if (tv1.tv_sec > maxtime.tv_sec) 147 maxtime = tv1; 148 tv2 = *tv; 149 timevalsub(&tv2, &maxtime); 150 if (tv2.tv_sec < -1) { 151 tv->tv_sec = maxtime.tv_sec - 1; 152 printf("Time adjustment clamped to -1 second\n"); 153 } 154 } else { 155 if (tv1.tv_sec == laststep.tv_sec) { 156 splx(s); 157 return (EPERM); 158 } 159 if (delta.tv_sec > 1) { 160 tv->tv_sec = tv1.tv_sec + 1; 161 printf("Time adjustment clamped to +1 second\n"); 162 } 163 laststep = *tv; 164 } 165 } 166 167 ts.tv_sec = tv->tv_sec; 168 ts.tv_nsec = tv->tv_usec * 1000; 169 mtx_lock(&Giant); 170 tc_setclock(&ts); 171 resettodr(); 172 mtx_unlock(&Giant); 173 return (0); 174 } 175 176 #ifndef _SYS_SYSPROTO_H_ 177 struct clock_getcpuclockid2_args { 178 id_t id; 179 int which, 180 clockid_t *clock_id; 181 }; 182 #endif 183 /* ARGSUSED */ 184 int 185 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap) 186 { 187 clockid_t clk_id; 188 int error; 189 190 error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id); 191 if (error == 0) 192 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 193 return (error); 194 } 195 196 int 197 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which, 198 clockid_t *clk_id) 199 { 200 struct proc *p; 201 pid_t pid; 202 lwpid_t tid; 203 int error; 204 205 switch (which) { 206 case CPUCLOCK_WHICH_PID: 207 if (id != 0) { 208 error = pget(id, PGET_CANSEE | PGET_NOTID, &p); 209 if (error != 0) 210 return (error); 211 PROC_UNLOCK(p); 212 pid = id; 213 } else { 214 pid = td->td_proc->p_pid; 215 } 216 *clk_id = MAKE_PROCESS_CPUCLOCK(pid); 217 return (0); 218 case CPUCLOCK_WHICH_TID: 219 tid = id == 0 ? td->td_tid : id; 220 *clk_id = MAKE_THREAD_CPUCLOCK(tid); 221 return (0); 222 default: 223 return (EINVAL); 224 } 225 } 226 227 #ifndef _SYS_SYSPROTO_H_ 228 struct clock_gettime_args { 229 clockid_t clock_id; 230 struct timespec *tp; 231 }; 232 #endif 233 /* ARGSUSED */ 234 int 235 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap) 236 { 237 struct timespec ats; 238 int error; 239 240 error = kern_clock_gettime(td, uap->clock_id, &ats); 241 if (error == 0) 242 error = copyout(&ats, uap->tp, sizeof(ats)); 243 244 return (error); 245 } 246 247 static inline void 248 cputick2timespec(uint64_t runtime, struct timespec *ats) 249 { 250 runtime = cputick2usec(runtime); 251 ats->tv_sec = runtime / 1000000; 252 ats->tv_nsec = runtime % 1000000 * 1000; 253 } 254 255 static void 256 get_thread_cputime(struct thread *targettd, struct timespec *ats) 257 { 258 uint64_t runtime, curtime, switchtime; 259 260 if (targettd == NULL) { /* current thread */ 261 critical_enter(); 262 switchtime = PCPU_GET(switchtime); 263 curtime = cpu_ticks(); 264 runtime = curthread->td_runtime; 265 critical_exit(); 266 runtime += curtime - switchtime; 267 } else { 268 thread_lock(targettd); 269 runtime = targettd->td_runtime; 270 thread_unlock(targettd); 271 } 272 cputick2timespec(runtime, ats); 273 } 274 275 static void 276 get_process_cputime(struct proc *targetp, struct timespec *ats) 277 { 278 uint64_t runtime; 279 struct rusage ru; 280 281 PROC_STATLOCK(targetp); 282 rufetch(targetp, &ru); 283 runtime = targetp->p_rux.rux_runtime; 284 PROC_STATUNLOCK(targetp); 285 cputick2timespec(runtime, ats); 286 } 287 288 static int 289 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats) 290 { 291 struct proc *p, *p2; 292 struct thread *td2; 293 lwpid_t tid; 294 pid_t pid; 295 int error; 296 297 p = td->td_proc; 298 if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) { 299 tid = clock_id & CPUCLOCK_ID_MASK; 300 td2 = tdfind(tid, p->p_pid); 301 if (td2 == NULL) 302 return (EINVAL); 303 get_thread_cputime(td2, ats); 304 PROC_UNLOCK(td2->td_proc); 305 } else { 306 pid = clock_id & CPUCLOCK_ID_MASK; 307 error = pget(pid, PGET_CANSEE, &p2); 308 if (error != 0) 309 return (EINVAL); 310 get_process_cputime(p2, ats); 311 PROC_UNLOCK(p2); 312 } 313 return (0); 314 } 315 316 int 317 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats) 318 { 319 struct timeval sys, user; 320 struct proc *p; 321 322 p = td->td_proc; 323 switch (clock_id) { 324 case CLOCK_REALTIME: /* Default to precise. */ 325 case CLOCK_REALTIME_PRECISE: 326 nanotime(ats); 327 break; 328 case CLOCK_REALTIME_FAST: 329 getnanotime(ats); 330 break; 331 case CLOCK_VIRTUAL: 332 PROC_LOCK(p); 333 PROC_STATLOCK(p); 334 calcru(p, &user, &sys); 335 PROC_STATUNLOCK(p); 336 PROC_UNLOCK(p); 337 TIMEVAL_TO_TIMESPEC(&user, ats); 338 break; 339 case CLOCK_PROF: 340 PROC_LOCK(p); 341 PROC_STATLOCK(p); 342 calcru(p, &user, &sys); 343 PROC_STATUNLOCK(p); 344 PROC_UNLOCK(p); 345 timevaladd(&user, &sys); 346 TIMEVAL_TO_TIMESPEC(&user, ats); 347 break; 348 case CLOCK_MONOTONIC: /* Default to precise. */ 349 case CLOCK_MONOTONIC_PRECISE: 350 case CLOCK_UPTIME: 351 case CLOCK_UPTIME_PRECISE: 352 nanouptime(ats); 353 break; 354 case CLOCK_UPTIME_FAST: 355 case CLOCK_MONOTONIC_FAST: 356 getnanouptime(ats); 357 break; 358 case CLOCK_SECOND: 359 ats->tv_sec = time_second; 360 ats->tv_nsec = 0; 361 break; 362 case CLOCK_THREAD_CPUTIME_ID: 363 get_thread_cputime(NULL, ats); 364 break; 365 case CLOCK_PROCESS_CPUTIME_ID: 366 PROC_LOCK(p); 367 get_process_cputime(p, ats); 368 PROC_UNLOCK(p); 369 break; 370 default: 371 if ((int)clock_id >= 0) 372 return (EINVAL); 373 return (get_cputime(td, clock_id, ats)); 374 } 375 return (0); 376 } 377 378 #ifndef _SYS_SYSPROTO_H_ 379 struct clock_settime_args { 380 clockid_t clock_id; 381 const struct timespec *tp; 382 }; 383 #endif 384 /* ARGSUSED */ 385 int 386 sys_clock_settime(struct thread *td, struct clock_settime_args *uap) 387 { 388 struct timespec ats; 389 int error; 390 391 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0) 392 return (error); 393 return (kern_clock_settime(td, uap->clock_id, &ats)); 394 } 395 396 int 397 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats) 398 { 399 struct timeval atv; 400 int error; 401 402 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 403 return (error); 404 if (clock_id != CLOCK_REALTIME) 405 return (EINVAL); 406 if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000 || 407 ats->tv_sec < 0) 408 return (EINVAL); 409 /* XXX Don't convert nsec->usec and back */ 410 TIMESPEC_TO_TIMEVAL(&atv, ats); 411 error = settime(td, &atv); 412 return (error); 413 } 414 415 #ifndef _SYS_SYSPROTO_H_ 416 struct clock_getres_args { 417 clockid_t clock_id; 418 struct timespec *tp; 419 }; 420 #endif 421 int 422 sys_clock_getres(struct thread *td, struct clock_getres_args *uap) 423 { 424 struct timespec ts; 425 int error; 426 427 if (uap->tp == NULL) 428 return (0); 429 430 error = kern_clock_getres(td, uap->clock_id, &ts); 431 if (error == 0) 432 error = copyout(&ts, uap->tp, sizeof(ts)); 433 return (error); 434 } 435 436 int 437 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts) 438 { 439 440 ts->tv_sec = 0; 441 switch (clock_id) { 442 case CLOCK_REALTIME: 443 case CLOCK_REALTIME_FAST: 444 case CLOCK_REALTIME_PRECISE: 445 case CLOCK_MONOTONIC: 446 case CLOCK_MONOTONIC_FAST: 447 case CLOCK_MONOTONIC_PRECISE: 448 case CLOCK_UPTIME: 449 case CLOCK_UPTIME_FAST: 450 case CLOCK_UPTIME_PRECISE: 451 /* 452 * Round up the result of the division cheaply by adding 1. 453 * Rounding up is especially important if rounding down 454 * would give 0. Perfect rounding is unimportant. 455 */ 456 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1; 457 break; 458 case CLOCK_VIRTUAL: 459 case CLOCK_PROF: 460 /* Accurately round up here because we can do so cheaply. */ 461 ts->tv_nsec = howmany(1000000000, hz); 462 break; 463 case CLOCK_SECOND: 464 ts->tv_sec = 1; 465 ts->tv_nsec = 0; 466 break; 467 case CLOCK_THREAD_CPUTIME_ID: 468 case CLOCK_PROCESS_CPUTIME_ID: 469 cputime: 470 /* sync with cputick2usec */ 471 ts->tv_nsec = 1000000 / cpu_tickrate(); 472 if (ts->tv_nsec == 0) 473 ts->tv_nsec = 1000; 474 break; 475 default: 476 if ((int)clock_id < 0) 477 goto cputime; 478 return (EINVAL); 479 } 480 return (0); 481 } 482 483 static uint8_t nanowait[MAXCPU]; 484 485 int 486 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt) 487 { 488 struct timespec ts; 489 sbintime_t sbt, sbtt, prec, tmp; 490 time_t over; 491 int error; 492 493 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000) 494 return (EINVAL); 495 if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0)) 496 return (0); 497 ts = *rqt; 498 if (ts.tv_sec > INT32_MAX / 2) { 499 over = ts.tv_sec - INT32_MAX / 2; 500 ts.tv_sec -= over; 501 } else 502 over = 0; 503 tmp = tstosbt(ts); 504 prec = tmp; 505 prec >>= tc_precexp; 506 if (TIMESEL(&sbt, tmp)) 507 sbt += tc_tick_sbt; 508 sbt += tmp; 509 error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp", 510 sbt, prec, C_ABSOLUTE); 511 if (error != EWOULDBLOCK) { 512 if (error == ERESTART) 513 error = EINTR; 514 TIMESEL(&sbtt, tmp); 515 if (rmt != NULL) { 516 ts = sbttots(sbt - sbtt); 517 ts.tv_sec += over; 518 if (ts.tv_sec < 0) 519 timespecclear(&ts); 520 *rmt = ts; 521 } 522 if (sbtt >= sbt) 523 return (0); 524 return (error); 525 } 526 return (0); 527 } 528 529 #ifndef _SYS_SYSPROTO_H_ 530 struct nanosleep_args { 531 struct timespec *rqtp; 532 struct timespec *rmtp; 533 }; 534 #endif 535 /* ARGSUSED */ 536 int 537 sys_nanosleep(struct thread *td, struct nanosleep_args *uap) 538 { 539 struct timespec rmt, rqt; 540 int error; 541 542 error = copyin(uap->rqtp, &rqt, sizeof(rqt)); 543 if (error) 544 return (error); 545 546 if (uap->rmtp && 547 !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE)) 548 return (EFAULT); 549 error = kern_nanosleep(td, &rqt, &rmt); 550 if (error && uap->rmtp) { 551 int error2; 552 553 error2 = copyout(&rmt, uap->rmtp, sizeof(rmt)); 554 if (error2) 555 error = error2; 556 } 557 return (error); 558 } 559 560 #ifndef _SYS_SYSPROTO_H_ 561 struct gettimeofday_args { 562 struct timeval *tp; 563 struct timezone *tzp; 564 }; 565 #endif 566 /* ARGSUSED */ 567 int 568 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap) 569 { 570 struct timeval atv; 571 struct timezone rtz; 572 int error = 0; 573 574 if (uap->tp) { 575 microtime(&atv); 576 error = copyout(&atv, uap->tp, sizeof (atv)); 577 } 578 if (error == 0 && uap->tzp != NULL) { 579 rtz.tz_minuteswest = tz_minuteswest; 580 rtz.tz_dsttime = tz_dsttime; 581 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 582 } 583 return (error); 584 } 585 586 #ifndef _SYS_SYSPROTO_H_ 587 struct settimeofday_args { 588 struct timeval *tv; 589 struct timezone *tzp; 590 }; 591 #endif 592 /* ARGSUSED */ 593 int 594 sys_settimeofday(struct thread *td, struct settimeofday_args *uap) 595 { 596 struct timeval atv, *tvp; 597 struct timezone atz, *tzp; 598 int error; 599 600 if (uap->tv) { 601 error = copyin(uap->tv, &atv, sizeof(atv)); 602 if (error) 603 return (error); 604 tvp = &atv; 605 } else 606 tvp = NULL; 607 if (uap->tzp) { 608 error = copyin(uap->tzp, &atz, sizeof(atz)); 609 if (error) 610 return (error); 611 tzp = &atz; 612 } else 613 tzp = NULL; 614 return (kern_settimeofday(td, tvp, tzp)); 615 } 616 617 int 618 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp) 619 { 620 int error; 621 622 error = priv_check(td, PRIV_SETTIMEOFDAY); 623 if (error) 624 return (error); 625 /* Verify all parameters before changing time. */ 626 if (tv) { 627 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 || 628 tv->tv_sec < 0) 629 return (EINVAL); 630 error = settime(td, tv); 631 } 632 if (tzp && error == 0) { 633 tz_minuteswest = tzp->tz_minuteswest; 634 tz_dsttime = tzp->tz_dsttime; 635 } 636 return (error); 637 } 638 639 /* 640 * Get value of an interval timer. The process virtual and profiling virtual 641 * time timers are kept in the p_stats area, since they can be swapped out. 642 * These are kept internally in the way they are specified externally: in 643 * time until they expire. 644 * 645 * The real time interval timer is kept in the process table slot for the 646 * process, and its value (it_value) is kept as an absolute time rather than 647 * as a delta, so that it is easy to keep periodic real-time signals from 648 * drifting. 649 * 650 * Virtual time timers are processed in the hardclock() routine of 651 * kern_clock.c. The real time timer is processed by a timeout routine, 652 * called from the softclock() routine. Since a callout may be delayed in 653 * real time due to interrupt processing in the system, it is possible for 654 * the real time timeout routine (realitexpire, given below), to be delayed 655 * in real time past when it is supposed to occur. It does not suffice, 656 * therefore, to reload the real timer .it_value from the real time timers 657 * .it_interval. Rather, we compute the next time in absolute time the timer 658 * should go off. 659 */ 660 #ifndef _SYS_SYSPROTO_H_ 661 struct getitimer_args { 662 u_int which; 663 struct itimerval *itv; 664 }; 665 #endif 666 int 667 sys_getitimer(struct thread *td, struct getitimer_args *uap) 668 { 669 struct itimerval aitv; 670 int error; 671 672 error = kern_getitimer(td, uap->which, &aitv); 673 if (error != 0) 674 return (error); 675 return (copyout(&aitv, uap->itv, sizeof (struct itimerval))); 676 } 677 678 int 679 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv) 680 { 681 struct proc *p = td->td_proc; 682 struct timeval ctv; 683 684 if (which > ITIMER_PROF) 685 return (EINVAL); 686 687 if (which == ITIMER_REAL) { 688 /* 689 * Convert from absolute to relative time in .it_value 690 * part of real time timer. If time for real time timer 691 * has passed return 0, else return difference between 692 * current time and time for the timer to go off. 693 */ 694 PROC_LOCK(p); 695 *aitv = p->p_realtimer; 696 PROC_UNLOCK(p); 697 if (timevalisset(&aitv->it_value)) { 698 microuptime(&ctv); 699 if (timevalcmp(&aitv->it_value, &ctv, <)) 700 timevalclear(&aitv->it_value); 701 else 702 timevalsub(&aitv->it_value, &ctv); 703 } 704 } else { 705 PROC_ITIMLOCK(p); 706 *aitv = p->p_stats->p_timer[which]; 707 PROC_ITIMUNLOCK(p); 708 } 709 #ifdef KTRACE 710 if (KTRPOINT(td, KTR_STRUCT)) 711 ktritimerval(aitv); 712 #endif 713 return (0); 714 } 715 716 #ifndef _SYS_SYSPROTO_H_ 717 struct setitimer_args { 718 u_int which; 719 struct itimerval *itv, *oitv; 720 }; 721 #endif 722 int 723 sys_setitimer(struct thread *td, struct setitimer_args *uap) 724 { 725 struct itimerval aitv, oitv; 726 int error; 727 728 if (uap->itv == NULL) { 729 uap->itv = uap->oitv; 730 return (sys_getitimer(td, (struct getitimer_args *)uap)); 731 } 732 733 if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval)))) 734 return (error); 735 error = kern_setitimer(td, uap->which, &aitv, &oitv); 736 if (error != 0 || uap->oitv == NULL) 737 return (error); 738 return (copyout(&oitv, uap->oitv, sizeof(struct itimerval))); 739 } 740 741 int 742 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv, 743 struct itimerval *oitv) 744 { 745 struct proc *p = td->td_proc; 746 struct timeval ctv; 747 sbintime_t sbt, pr; 748 749 if (aitv == NULL) 750 return (kern_getitimer(td, which, oitv)); 751 752 if (which > ITIMER_PROF) 753 return (EINVAL); 754 #ifdef KTRACE 755 if (KTRPOINT(td, KTR_STRUCT)) 756 ktritimerval(aitv); 757 #endif 758 if (itimerfix(&aitv->it_value) || 759 aitv->it_value.tv_sec > INT32_MAX / 2) 760 return (EINVAL); 761 if (!timevalisset(&aitv->it_value)) 762 timevalclear(&aitv->it_interval); 763 else if (itimerfix(&aitv->it_interval) || 764 aitv->it_interval.tv_sec > INT32_MAX / 2) 765 return (EINVAL); 766 767 if (which == ITIMER_REAL) { 768 PROC_LOCK(p); 769 if (timevalisset(&p->p_realtimer.it_value)) 770 callout_stop(&p->p_itcallout); 771 microuptime(&ctv); 772 if (timevalisset(&aitv->it_value)) { 773 pr = tvtosbt(aitv->it_value) >> tc_precexp; 774 timevaladd(&aitv->it_value, &ctv); 775 sbt = tvtosbt(aitv->it_value); 776 callout_reset_sbt(&p->p_itcallout, sbt, pr, 777 realitexpire, p, C_ABSOLUTE); 778 } 779 *oitv = p->p_realtimer; 780 p->p_realtimer = *aitv; 781 PROC_UNLOCK(p); 782 if (timevalisset(&oitv->it_value)) { 783 if (timevalcmp(&oitv->it_value, &ctv, <)) 784 timevalclear(&oitv->it_value); 785 else 786 timevalsub(&oitv->it_value, &ctv); 787 } 788 } else { 789 if (aitv->it_interval.tv_sec == 0 && 790 aitv->it_interval.tv_usec != 0 && 791 aitv->it_interval.tv_usec < tick) 792 aitv->it_interval.tv_usec = tick; 793 if (aitv->it_value.tv_sec == 0 && 794 aitv->it_value.tv_usec != 0 && 795 aitv->it_value.tv_usec < tick) 796 aitv->it_value.tv_usec = tick; 797 PROC_ITIMLOCK(p); 798 *oitv = p->p_stats->p_timer[which]; 799 p->p_stats->p_timer[which] = *aitv; 800 PROC_ITIMUNLOCK(p); 801 } 802 #ifdef KTRACE 803 if (KTRPOINT(td, KTR_STRUCT)) 804 ktritimerval(oitv); 805 #endif 806 return (0); 807 } 808 809 /* 810 * Real interval timer expired: 811 * send process whose timer expired an alarm signal. 812 * If time is not set up to reload, then just return. 813 * Else compute next time timer should go off which is > current time. 814 * This is where delay in processing this timeout causes multiple 815 * SIGALRM calls to be compressed into one. 816 * tvtohz() always adds 1 to allow for the time until the next clock 817 * interrupt being strictly less than 1 clock tick, but we don't want 818 * that here since we want to appear to be in sync with the clock 819 * interrupt even when we're delayed. 820 */ 821 void 822 realitexpire(void *arg) 823 { 824 struct proc *p; 825 struct timeval ctv; 826 sbintime_t isbt; 827 828 p = (struct proc *)arg; 829 kern_psignal(p, SIGALRM); 830 if (!timevalisset(&p->p_realtimer.it_interval)) { 831 timevalclear(&p->p_realtimer.it_value); 832 if (p->p_flag & P_WEXIT) 833 wakeup(&p->p_itcallout); 834 return; 835 } 836 isbt = tvtosbt(p->p_realtimer.it_interval); 837 if (isbt >= sbt_timethreshold) 838 getmicrouptime(&ctv); 839 else 840 microuptime(&ctv); 841 do { 842 timevaladd(&p->p_realtimer.it_value, 843 &p->p_realtimer.it_interval); 844 } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=)); 845 callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value), 846 isbt >> tc_precexp, realitexpire, p, C_ABSOLUTE); 847 } 848 849 /* 850 * Check that a proposed value to load into the .it_value or 851 * .it_interval part of an interval timer is acceptable, and 852 * fix it to have at least minimal value (i.e. if it is less 853 * than the resolution of the clock, round it up.) 854 */ 855 int 856 itimerfix(struct timeval *tv) 857 { 858 859 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000) 860 return (EINVAL); 861 if (tv->tv_sec == 0 && tv->tv_usec != 0 && 862 tv->tv_usec < (u_int)tick / 16) 863 tv->tv_usec = (u_int)tick / 16; 864 return (0); 865 } 866 867 /* 868 * Decrement an interval timer by a specified number 869 * of microseconds, which must be less than a second, 870 * i.e. < 1000000. If the timer expires, then reload 871 * it. In this case, carry over (usec - old value) to 872 * reduce the value reloaded into the timer so that 873 * the timer does not drift. This routine assumes 874 * that it is called in a context where the timers 875 * on which it is operating cannot change in value. 876 */ 877 int 878 itimerdecr(struct itimerval *itp, int usec) 879 { 880 881 if (itp->it_value.tv_usec < usec) { 882 if (itp->it_value.tv_sec == 0) { 883 /* expired, and already in next interval */ 884 usec -= itp->it_value.tv_usec; 885 goto expire; 886 } 887 itp->it_value.tv_usec += 1000000; 888 itp->it_value.tv_sec--; 889 } 890 itp->it_value.tv_usec -= usec; 891 usec = 0; 892 if (timevalisset(&itp->it_value)) 893 return (1); 894 /* expired, exactly at end of interval */ 895 expire: 896 if (timevalisset(&itp->it_interval)) { 897 itp->it_value = itp->it_interval; 898 itp->it_value.tv_usec -= usec; 899 if (itp->it_value.tv_usec < 0) { 900 itp->it_value.tv_usec += 1000000; 901 itp->it_value.tv_sec--; 902 } 903 } else 904 itp->it_value.tv_usec = 0; /* sec is already 0 */ 905 return (0); 906 } 907 908 /* 909 * Add and subtract routines for timevals. 910 * N.B.: subtract routine doesn't deal with 911 * results which are before the beginning, 912 * it just gets very confused in this case. 913 * Caveat emptor. 914 */ 915 void 916 timevaladd(struct timeval *t1, const struct timeval *t2) 917 { 918 919 t1->tv_sec += t2->tv_sec; 920 t1->tv_usec += t2->tv_usec; 921 timevalfix(t1); 922 } 923 924 void 925 timevalsub(struct timeval *t1, const struct timeval *t2) 926 { 927 928 t1->tv_sec -= t2->tv_sec; 929 t1->tv_usec -= t2->tv_usec; 930 timevalfix(t1); 931 } 932 933 static void 934 timevalfix(struct timeval *t1) 935 { 936 937 if (t1->tv_usec < 0) { 938 t1->tv_sec--; 939 t1->tv_usec += 1000000; 940 } 941 if (t1->tv_usec >= 1000000) { 942 t1->tv_sec++; 943 t1->tv_usec -= 1000000; 944 } 945 } 946 947 /* 948 * ratecheck(): simple time-based rate-limit checking. 949 */ 950 int 951 ratecheck(struct timeval *lasttime, const struct timeval *mininterval) 952 { 953 struct timeval tv, delta; 954 int rv = 0; 955 956 getmicrouptime(&tv); /* NB: 10ms precision */ 957 delta = tv; 958 timevalsub(&delta, lasttime); 959 960 /* 961 * check for 0,0 is so that the message will be seen at least once, 962 * even if interval is huge. 963 */ 964 if (timevalcmp(&delta, mininterval, >=) || 965 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { 966 *lasttime = tv; 967 rv = 1; 968 } 969 970 return (rv); 971 } 972 973 /* 974 * ppsratecheck(): packets (or events) per second limitation. 975 * 976 * Return 0 if the limit is to be enforced (e.g. the caller 977 * should drop a packet because of the rate limitation). 978 * 979 * maxpps of 0 always causes zero to be returned. maxpps of -1 980 * always causes 1 to be returned; this effectively defeats rate 981 * limiting. 982 * 983 * Note that we maintain the struct timeval for compatibility 984 * with other bsd systems. We reuse the storage and just monitor 985 * clock ticks for minimal overhead. 986 */ 987 int 988 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) 989 { 990 int now; 991 992 /* 993 * Reset the last time and counter if this is the first call 994 * or more than a second has passed since the last update of 995 * lasttime. 996 */ 997 now = ticks; 998 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) { 999 lasttime->tv_sec = now; 1000 *curpps = 1; 1001 return (maxpps != 0); 1002 } else { 1003 (*curpps)++; /* NB: ignore potential overflow */ 1004 return (maxpps < 0 || *curpps <= maxpps); 1005 } 1006 } 1007 1008 static void 1009 itimer_start(void) 1010 { 1011 struct kclock rt_clock = { 1012 .timer_create = realtimer_create, 1013 .timer_delete = realtimer_delete, 1014 .timer_settime = realtimer_settime, 1015 .timer_gettime = realtimer_gettime, 1016 .event_hook = NULL 1017 }; 1018 1019 itimer_zone = uma_zcreate("itimer", sizeof(struct itimer), 1020 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0); 1021 register_posix_clock(CLOCK_REALTIME, &rt_clock); 1022 register_posix_clock(CLOCK_MONOTONIC, &rt_clock); 1023 p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L); 1024 p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX); 1025 p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX); 1026 EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit, 1027 (void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY); 1028 EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec, 1029 (void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY); 1030 } 1031 1032 int 1033 register_posix_clock(int clockid, struct kclock *clk) 1034 { 1035 if ((unsigned)clockid >= MAX_CLOCKS) { 1036 printf("%s: invalid clockid\n", __func__); 1037 return (0); 1038 } 1039 posix_clocks[clockid] = *clk; 1040 return (1); 1041 } 1042 1043 static int 1044 itimer_init(void *mem, int size, int flags) 1045 { 1046 struct itimer *it; 1047 1048 it = (struct itimer *)mem; 1049 mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF); 1050 return (0); 1051 } 1052 1053 static void 1054 itimer_fini(void *mem, int size) 1055 { 1056 struct itimer *it; 1057 1058 it = (struct itimer *)mem; 1059 mtx_destroy(&it->it_mtx); 1060 } 1061 1062 static void 1063 itimer_enter(struct itimer *it) 1064 { 1065 1066 mtx_assert(&it->it_mtx, MA_OWNED); 1067 it->it_usecount++; 1068 } 1069 1070 static void 1071 itimer_leave(struct itimer *it) 1072 { 1073 1074 mtx_assert(&it->it_mtx, MA_OWNED); 1075 KASSERT(it->it_usecount > 0, ("invalid it_usecount")); 1076 1077 if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0) 1078 wakeup(it); 1079 } 1080 1081 #ifndef _SYS_SYSPROTO_H_ 1082 struct ktimer_create_args { 1083 clockid_t clock_id; 1084 struct sigevent * evp; 1085 int * timerid; 1086 }; 1087 #endif 1088 int 1089 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap) 1090 { 1091 struct sigevent *evp, ev; 1092 int id; 1093 int error; 1094 1095 if (uap->evp == NULL) { 1096 evp = NULL; 1097 } else { 1098 error = copyin(uap->evp, &ev, sizeof(ev)); 1099 if (error != 0) 1100 return (error); 1101 evp = &ev; 1102 } 1103 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 1104 if (error == 0) { 1105 error = copyout(&id, uap->timerid, sizeof(int)); 1106 if (error != 0) 1107 kern_ktimer_delete(td, id); 1108 } 1109 return (error); 1110 } 1111 1112 int 1113 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp, 1114 int *timerid, int preset_id) 1115 { 1116 struct proc *p = td->td_proc; 1117 struct itimer *it; 1118 int id; 1119 int error; 1120 1121 if (clock_id < 0 || clock_id >= MAX_CLOCKS) 1122 return (EINVAL); 1123 1124 if (posix_clocks[clock_id].timer_create == NULL) 1125 return (EINVAL); 1126 1127 if (evp != NULL) { 1128 if (evp->sigev_notify != SIGEV_NONE && 1129 evp->sigev_notify != SIGEV_SIGNAL && 1130 evp->sigev_notify != SIGEV_THREAD_ID) 1131 return (EINVAL); 1132 if ((evp->sigev_notify == SIGEV_SIGNAL || 1133 evp->sigev_notify == SIGEV_THREAD_ID) && 1134 !_SIG_VALID(evp->sigev_signo)) 1135 return (EINVAL); 1136 } 1137 1138 if (p->p_itimers == NULL) 1139 itimers_alloc(p); 1140 1141 it = uma_zalloc(itimer_zone, M_WAITOK); 1142 it->it_flags = 0; 1143 it->it_usecount = 0; 1144 it->it_active = 0; 1145 timespecclear(&it->it_time.it_value); 1146 timespecclear(&it->it_time.it_interval); 1147 it->it_overrun = 0; 1148 it->it_overrun_last = 0; 1149 it->it_clockid = clock_id; 1150 it->it_timerid = -1; 1151 it->it_proc = p; 1152 ksiginfo_init(&it->it_ksi); 1153 it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT; 1154 error = CLOCK_CALL(clock_id, timer_create, (it)); 1155 if (error != 0) 1156 goto out; 1157 1158 PROC_LOCK(p); 1159 if (preset_id != -1) { 1160 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id")); 1161 id = preset_id; 1162 if (p->p_itimers->its_timers[id] != NULL) { 1163 PROC_UNLOCK(p); 1164 error = 0; 1165 goto out; 1166 } 1167 } else { 1168 /* 1169 * Find a free timer slot, skipping those reserved 1170 * for setitimer(). 1171 */ 1172 for (id = 3; id < TIMER_MAX; id++) 1173 if (p->p_itimers->its_timers[id] == NULL) 1174 break; 1175 if (id == TIMER_MAX) { 1176 PROC_UNLOCK(p); 1177 error = EAGAIN; 1178 goto out; 1179 } 1180 } 1181 it->it_timerid = id; 1182 p->p_itimers->its_timers[id] = it; 1183 if (evp != NULL) 1184 it->it_sigev = *evp; 1185 else { 1186 it->it_sigev.sigev_notify = SIGEV_SIGNAL; 1187 switch (clock_id) { 1188 default: 1189 case CLOCK_REALTIME: 1190 it->it_sigev.sigev_signo = SIGALRM; 1191 break; 1192 case CLOCK_VIRTUAL: 1193 it->it_sigev.sigev_signo = SIGVTALRM; 1194 break; 1195 case CLOCK_PROF: 1196 it->it_sigev.sigev_signo = SIGPROF; 1197 break; 1198 } 1199 it->it_sigev.sigev_value.sival_int = id; 1200 } 1201 1202 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1203 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1204 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo; 1205 it->it_ksi.ksi_code = SI_TIMER; 1206 it->it_ksi.ksi_value = it->it_sigev.sigev_value; 1207 it->it_ksi.ksi_timerid = id; 1208 } 1209 PROC_UNLOCK(p); 1210 *timerid = id; 1211 return (0); 1212 1213 out: 1214 ITIMER_LOCK(it); 1215 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1216 ITIMER_UNLOCK(it); 1217 uma_zfree(itimer_zone, it); 1218 return (error); 1219 } 1220 1221 #ifndef _SYS_SYSPROTO_H_ 1222 struct ktimer_delete_args { 1223 int timerid; 1224 }; 1225 #endif 1226 int 1227 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap) 1228 { 1229 1230 return (kern_ktimer_delete(td, uap->timerid)); 1231 } 1232 1233 static struct itimer * 1234 itimer_find(struct proc *p, int timerid) 1235 { 1236 struct itimer *it; 1237 1238 PROC_LOCK_ASSERT(p, MA_OWNED); 1239 if ((p->p_itimers == NULL) || 1240 (timerid < 0) || (timerid >= TIMER_MAX) || 1241 (it = p->p_itimers->its_timers[timerid]) == NULL) { 1242 return (NULL); 1243 } 1244 ITIMER_LOCK(it); 1245 if ((it->it_flags & ITF_DELETING) != 0) { 1246 ITIMER_UNLOCK(it); 1247 it = NULL; 1248 } 1249 return (it); 1250 } 1251 1252 int 1253 kern_ktimer_delete(struct thread *td, int timerid) 1254 { 1255 struct proc *p = td->td_proc; 1256 struct itimer *it; 1257 1258 PROC_LOCK(p); 1259 it = itimer_find(p, timerid); 1260 if (it == NULL) { 1261 PROC_UNLOCK(p); 1262 return (EINVAL); 1263 } 1264 PROC_UNLOCK(p); 1265 1266 it->it_flags |= ITF_DELETING; 1267 while (it->it_usecount > 0) { 1268 it->it_flags |= ITF_WANTED; 1269 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0); 1270 } 1271 it->it_flags &= ~ITF_WANTED; 1272 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1273 ITIMER_UNLOCK(it); 1274 1275 PROC_LOCK(p); 1276 if (KSI_ONQ(&it->it_ksi)) 1277 sigqueue_take(&it->it_ksi); 1278 p->p_itimers->its_timers[timerid] = NULL; 1279 PROC_UNLOCK(p); 1280 uma_zfree(itimer_zone, it); 1281 return (0); 1282 } 1283 1284 #ifndef _SYS_SYSPROTO_H_ 1285 struct ktimer_settime_args { 1286 int timerid; 1287 int flags; 1288 const struct itimerspec * value; 1289 struct itimerspec * ovalue; 1290 }; 1291 #endif 1292 int 1293 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap) 1294 { 1295 struct itimerspec val, oval, *ovalp; 1296 int error; 1297 1298 error = copyin(uap->value, &val, sizeof(val)); 1299 if (error != 0) 1300 return (error); 1301 ovalp = uap->ovalue != NULL ? &oval : NULL; 1302 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 1303 if (error == 0 && uap->ovalue != NULL) 1304 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp)); 1305 return (error); 1306 } 1307 1308 int 1309 kern_ktimer_settime(struct thread *td, int timer_id, int flags, 1310 struct itimerspec *val, struct itimerspec *oval) 1311 { 1312 struct proc *p; 1313 struct itimer *it; 1314 int error; 1315 1316 p = td->td_proc; 1317 PROC_LOCK(p); 1318 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1319 PROC_UNLOCK(p); 1320 error = EINVAL; 1321 } else { 1322 PROC_UNLOCK(p); 1323 itimer_enter(it); 1324 error = CLOCK_CALL(it->it_clockid, timer_settime, (it, 1325 flags, val, oval)); 1326 itimer_leave(it); 1327 ITIMER_UNLOCK(it); 1328 } 1329 return (error); 1330 } 1331 1332 #ifndef _SYS_SYSPROTO_H_ 1333 struct ktimer_gettime_args { 1334 int timerid; 1335 struct itimerspec * value; 1336 }; 1337 #endif 1338 int 1339 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap) 1340 { 1341 struct itimerspec val; 1342 int error; 1343 1344 error = kern_ktimer_gettime(td, uap->timerid, &val); 1345 if (error == 0) 1346 error = copyout(&val, uap->value, sizeof(val)); 1347 return (error); 1348 } 1349 1350 int 1351 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val) 1352 { 1353 struct proc *p; 1354 struct itimer *it; 1355 int error; 1356 1357 p = td->td_proc; 1358 PROC_LOCK(p); 1359 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1360 PROC_UNLOCK(p); 1361 error = EINVAL; 1362 } else { 1363 PROC_UNLOCK(p); 1364 itimer_enter(it); 1365 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val)); 1366 itimer_leave(it); 1367 ITIMER_UNLOCK(it); 1368 } 1369 return (error); 1370 } 1371 1372 #ifndef _SYS_SYSPROTO_H_ 1373 struct timer_getoverrun_args { 1374 int timerid; 1375 }; 1376 #endif 1377 int 1378 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap) 1379 { 1380 1381 return (kern_ktimer_getoverrun(td, uap->timerid)); 1382 } 1383 1384 int 1385 kern_ktimer_getoverrun(struct thread *td, int timer_id) 1386 { 1387 struct proc *p = td->td_proc; 1388 struct itimer *it; 1389 int error ; 1390 1391 PROC_LOCK(p); 1392 if (timer_id < 3 || 1393 (it = itimer_find(p, timer_id)) == NULL) { 1394 PROC_UNLOCK(p); 1395 error = EINVAL; 1396 } else { 1397 td->td_retval[0] = it->it_overrun_last; 1398 ITIMER_UNLOCK(it); 1399 PROC_UNLOCK(p); 1400 error = 0; 1401 } 1402 return (error); 1403 } 1404 1405 static int 1406 realtimer_create(struct itimer *it) 1407 { 1408 callout_init_mtx(&it->it_callout, &it->it_mtx, 0); 1409 return (0); 1410 } 1411 1412 static int 1413 realtimer_delete(struct itimer *it) 1414 { 1415 mtx_assert(&it->it_mtx, MA_OWNED); 1416 1417 /* 1418 * clear timer's value and interval to tell realtimer_expire 1419 * to not rearm the timer. 1420 */ 1421 timespecclear(&it->it_time.it_value); 1422 timespecclear(&it->it_time.it_interval); 1423 ITIMER_UNLOCK(it); 1424 callout_drain(&it->it_callout); 1425 ITIMER_LOCK(it); 1426 return (0); 1427 } 1428 1429 static int 1430 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue) 1431 { 1432 struct timespec cts; 1433 1434 mtx_assert(&it->it_mtx, MA_OWNED); 1435 1436 realtimer_clocktime(it->it_clockid, &cts); 1437 *ovalue = it->it_time; 1438 if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) { 1439 timespecsub(&ovalue->it_value, &cts); 1440 if (ovalue->it_value.tv_sec < 0 || 1441 (ovalue->it_value.tv_sec == 0 && 1442 ovalue->it_value.tv_nsec == 0)) { 1443 ovalue->it_value.tv_sec = 0; 1444 ovalue->it_value.tv_nsec = 1; 1445 } 1446 } 1447 return (0); 1448 } 1449 1450 static int 1451 realtimer_settime(struct itimer *it, int flags, 1452 struct itimerspec *value, struct itimerspec *ovalue) 1453 { 1454 struct timespec cts, ts; 1455 struct timeval tv; 1456 struct itimerspec val; 1457 1458 mtx_assert(&it->it_mtx, MA_OWNED); 1459 1460 val = *value; 1461 if (itimespecfix(&val.it_value)) 1462 return (EINVAL); 1463 1464 if (timespecisset(&val.it_value)) { 1465 if (itimespecfix(&val.it_interval)) 1466 return (EINVAL); 1467 } else { 1468 timespecclear(&val.it_interval); 1469 } 1470 1471 if (ovalue != NULL) 1472 realtimer_gettime(it, ovalue); 1473 1474 it->it_time = val; 1475 if (timespecisset(&val.it_value)) { 1476 realtimer_clocktime(it->it_clockid, &cts); 1477 ts = val.it_value; 1478 if ((flags & TIMER_ABSTIME) == 0) { 1479 /* Convert to absolute time. */ 1480 timespecadd(&it->it_time.it_value, &cts); 1481 } else { 1482 timespecsub(&ts, &cts); 1483 /* 1484 * We don't care if ts is negative, tztohz will 1485 * fix it. 1486 */ 1487 } 1488 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1489 callout_reset(&it->it_callout, tvtohz(&tv), 1490 realtimer_expire, it); 1491 } else { 1492 callout_stop(&it->it_callout); 1493 } 1494 1495 return (0); 1496 } 1497 1498 static void 1499 realtimer_clocktime(clockid_t id, struct timespec *ts) 1500 { 1501 if (id == CLOCK_REALTIME) 1502 getnanotime(ts); 1503 else /* CLOCK_MONOTONIC */ 1504 getnanouptime(ts); 1505 } 1506 1507 int 1508 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi) 1509 { 1510 struct itimer *it; 1511 1512 PROC_LOCK_ASSERT(p, MA_OWNED); 1513 it = itimer_find(p, timerid); 1514 if (it != NULL) { 1515 ksi->ksi_overrun = it->it_overrun; 1516 it->it_overrun_last = it->it_overrun; 1517 it->it_overrun = 0; 1518 ITIMER_UNLOCK(it); 1519 return (0); 1520 } 1521 return (EINVAL); 1522 } 1523 1524 int 1525 itimespecfix(struct timespec *ts) 1526 { 1527 1528 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1529 return (EINVAL); 1530 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000) 1531 ts->tv_nsec = tick * 1000; 1532 return (0); 1533 } 1534 1535 /* Timeout callback for realtime timer */ 1536 static void 1537 realtimer_expire(void *arg) 1538 { 1539 struct timespec cts, ts; 1540 struct timeval tv; 1541 struct itimer *it; 1542 1543 it = (struct itimer *)arg; 1544 1545 realtimer_clocktime(it->it_clockid, &cts); 1546 /* Only fire if time is reached. */ 1547 if (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1548 if (timespecisset(&it->it_time.it_interval)) { 1549 timespecadd(&it->it_time.it_value, 1550 &it->it_time.it_interval); 1551 while (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1552 if (it->it_overrun < INT_MAX) 1553 it->it_overrun++; 1554 else 1555 it->it_ksi.ksi_errno = ERANGE; 1556 timespecadd(&it->it_time.it_value, 1557 &it->it_time.it_interval); 1558 } 1559 } else { 1560 /* single shot timer ? */ 1561 timespecclear(&it->it_time.it_value); 1562 } 1563 if (timespecisset(&it->it_time.it_value)) { 1564 ts = it->it_time.it_value; 1565 timespecsub(&ts, &cts); 1566 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1567 callout_reset(&it->it_callout, tvtohz(&tv), 1568 realtimer_expire, it); 1569 } 1570 itimer_enter(it); 1571 ITIMER_UNLOCK(it); 1572 itimer_fire(it); 1573 ITIMER_LOCK(it); 1574 itimer_leave(it); 1575 } else if (timespecisset(&it->it_time.it_value)) { 1576 ts = it->it_time.it_value; 1577 timespecsub(&ts, &cts); 1578 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1579 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire, 1580 it); 1581 } 1582 } 1583 1584 void 1585 itimer_fire(struct itimer *it) 1586 { 1587 struct proc *p = it->it_proc; 1588 struct thread *td; 1589 1590 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1591 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1592 if (sigev_findtd(p, &it->it_sigev, &td) != 0) { 1593 ITIMER_LOCK(it); 1594 timespecclear(&it->it_time.it_value); 1595 timespecclear(&it->it_time.it_interval); 1596 callout_stop(&it->it_callout); 1597 ITIMER_UNLOCK(it); 1598 return; 1599 } 1600 if (!KSI_ONQ(&it->it_ksi)) { 1601 it->it_ksi.ksi_errno = 0; 1602 ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev); 1603 tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi); 1604 } else { 1605 if (it->it_overrun < INT_MAX) 1606 it->it_overrun++; 1607 else 1608 it->it_ksi.ksi_errno = ERANGE; 1609 } 1610 PROC_UNLOCK(p); 1611 } 1612 } 1613 1614 static void 1615 itimers_alloc(struct proc *p) 1616 { 1617 struct itimers *its; 1618 int i; 1619 1620 its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO); 1621 LIST_INIT(&its->its_virtual); 1622 LIST_INIT(&its->its_prof); 1623 TAILQ_INIT(&its->its_worklist); 1624 for (i = 0; i < TIMER_MAX; i++) 1625 its->its_timers[i] = NULL; 1626 PROC_LOCK(p); 1627 if (p->p_itimers == NULL) { 1628 p->p_itimers = its; 1629 PROC_UNLOCK(p); 1630 } 1631 else { 1632 PROC_UNLOCK(p); 1633 free(its, M_SUBPROC); 1634 } 1635 } 1636 1637 static void 1638 itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused) 1639 { 1640 itimers_event_hook_exit(arg, p); 1641 } 1642 1643 /* Clean up timers when some process events are being triggered. */ 1644 static void 1645 itimers_event_hook_exit(void *arg, struct proc *p) 1646 { 1647 struct itimers *its; 1648 struct itimer *it; 1649 int event = (int)(intptr_t)arg; 1650 int i; 1651 1652 if (p->p_itimers != NULL) { 1653 its = p->p_itimers; 1654 for (i = 0; i < MAX_CLOCKS; ++i) { 1655 if (posix_clocks[i].event_hook != NULL) 1656 CLOCK_CALL(i, event_hook, (p, i, event)); 1657 } 1658 /* 1659 * According to susv3, XSI interval timers should be inherited 1660 * by new image. 1661 */ 1662 if (event == ITIMER_EV_EXEC) 1663 i = 3; 1664 else if (event == ITIMER_EV_EXIT) 1665 i = 0; 1666 else 1667 panic("unhandled event"); 1668 for (; i < TIMER_MAX; ++i) { 1669 if ((it = its->its_timers[i]) != NULL) 1670 kern_ktimer_delete(curthread, i); 1671 } 1672 if (its->its_timers[0] == NULL && 1673 its->its_timers[1] == NULL && 1674 its->its_timers[2] == NULL) { 1675 free(its, M_SUBPROC); 1676 p->p_itimers = NULL; 1677 } 1678 } 1679 } 1680