1 /* 2 * Copyright (c) 1982, 1986, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93 34 * $FreeBSD$ 35 */ 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/sysproto.h> 42 #include <sys/resourcevar.h> 43 #include <sys/signalvar.h> 44 #include <sys/kernel.h> 45 #include <sys/systm.h> 46 #include <sys/sysent.h> 47 #include <sys/proc.h> 48 #include <sys/time.h> 49 #include <sys/timetc.h> 50 #include <sys/vnode.h> 51 52 #include <vm/vm.h> 53 #include <vm/vm_extern.h> 54 55 struct timezone tz; 56 57 /* 58 * Time of day and interval timer support. 59 * 60 * These routines provide the kernel entry points to get and set 61 * the time-of-day and per-process interval timers. Subroutines 62 * here provide support for adding and subtracting timeval structures 63 * and decrementing interval timers, optionally reloading the interval 64 * timers when they expire. 65 */ 66 67 static int nanosleep1(struct thread *td, struct timespec *rqt, 68 struct timespec *rmt); 69 static int settime(struct thread *, struct timeval *); 70 static void timevalfix(struct timeval *); 71 static void no_lease_updatetime(int); 72 73 static void 74 no_lease_updatetime(deltat) 75 int deltat; 76 { 77 } 78 79 void (*lease_updatetime)(int) = no_lease_updatetime; 80 81 static int 82 settime(td, tv) 83 struct thread *td; 84 struct timeval *tv; 85 { 86 struct timeval delta, tv1, tv2; 87 static struct timeval maxtime, laststep; 88 struct timespec ts; 89 int s; 90 91 s = splclock(); 92 microtime(&tv1); 93 delta = *tv; 94 timevalsub(&delta, &tv1); 95 96 /* 97 * If the system is secure, we do not allow the time to be 98 * set to a value earlier than 1 second less than the highest 99 * time we have yet seen. The worst a miscreant can do in 100 * this circumstance is "freeze" time. He couldn't go 101 * back to the past. 102 * 103 * We similarly do not allow the clock to be stepped more 104 * than one second, nor more than once per second. This allows 105 * a miscreant to make the clock march double-time, but no worse. 106 */ 107 if (securelevel_gt(td->td_ucred, 1) != 0) { 108 if (delta.tv_sec < 0 || delta.tv_usec < 0) { 109 /* 110 * Update maxtime to latest time we've seen. 111 */ 112 if (tv1.tv_sec > maxtime.tv_sec) 113 maxtime = tv1; 114 tv2 = *tv; 115 timevalsub(&tv2, &maxtime); 116 if (tv2.tv_sec < -1) { 117 tv->tv_sec = maxtime.tv_sec - 1; 118 printf("Time adjustment clamped to -1 second\n"); 119 } 120 } else { 121 if (tv1.tv_sec == laststep.tv_sec) { 122 splx(s); 123 return (EPERM); 124 } 125 if (delta.tv_sec > 1) { 126 tv->tv_sec = tv1.tv_sec + 1; 127 printf("Time adjustment clamped to +1 second\n"); 128 } 129 laststep = *tv; 130 } 131 } 132 133 ts.tv_sec = tv->tv_sec; 134 ts.tv_nsec = tv->tv_usec * 1000; 135 mtx_lock(&Giant); 136 tc_setclock(&ts); 137 (void) splsoftclock(); 138 lease_updatetime(delta.tv_sec); 139 splx(s); 140 resettodr(); 141 mtx_unlock(&Giant); 142 return (0); 143 } 144 145 #ifndef _SYS_SYSPROTO_H_ 146 struct clock_gettime_args { 147 clockid_t clock_id; 148 struct timespec *tp; 149 }; 150 #endif 151 152 /* 153 * MPSAFE 154 */ 155 /* ARGSUSED */ 156 int 157 clock_gettime(td, uap) 158 struct thread *td; 159 struct clock_gettime_args *uap; 160 { 161 struct timespec ats; 162 163 if (SCARG(uap, clock_id) != CLOCK_REALTIME) 164 return (EINVAL); 165 mtx_lock(&Giant); 166 nanotime(&ats); 167 mtx_unlock(&Giant); 168 return (copyout(&ats, SCARG(uap, tp), sizeof(ats))); 169 } 170 171 #ifndef _SYS_SYSPROTO_H_ 172 struct clock_settime_args { 173 clockid_t clock_id; 174 const struct timespec *tp; 175 }; 176 #endif 177 178 /* 179 * MPSAFE 180 */ 181 /* ARGSUSED */ 182 int 183 clock_settime(td, uap) 184 struct thread *td; 185 struct clock_settime_args *uap; 186 { 187 struct timeval atv; 188 struct timespec ats; 189 int error; 190 191 if ((error = suser(td)) != 0) 192 return (error); 193 if (SCARG(uap, clock_id) != CLOCK_REALTIME) 194 return (EINVAL); 195 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0) 196 return (error); 197 if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000) 198 return (EINVAL); 199 /* XXX Don't convert nsec->usec and back */ 200 TIMESPEC_TO_TIMEVAL(&atv, &ats); 201 error = settime(td, &atv); 202 return (error); 203 } 204 205 #ifndef _SYS_SYSPROTO_H_ 206 struct clock_getres_args { 207 clockid_t clock_id; 208 struct timespec *tp; 209 }; 210 #endif 211 212 int 213 clock_getres(td, uap) 214 struct thread *td; 215 struct clock_getres_args *uap; 216 { 217 struct timespec ts; 218 int error; 219 220 if (SCARG(uap, clock_id) != CLOCK_REALTIME) 221 return (EINVAL); 222 error = 0; 223 if (SCARG(uap, tp)) { 224 ts.tv_sec = 0; 225 ts.tv_nsec = 1000000000 / tc_getfrequency(); 226 error = copyout(&ts, SCARG(uap, tp), sizeof(ts)); 227 } 228 return (error); 229 } 230 231 static int nanowait; 232 233 static int 234 nanosleep1(td, rqt, rmt) 235 struct thread *td; 236 struct timespec *rqt, *rmt; 237 { 238 struct timespec ts, ts2, ts3; 239 struct timeval tv; 240 int error; 241 242 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000) 243 return (EINVAL); 244 if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0)) 245 return (0); 246 getnanouptime(&ts); 247 timespecadd(&ts, rqt); 248 TIMESPEC_TO_TIMEVAL(&tv, rqt); 249 for (;;) { 250 error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp", 251 tvtohz(&tv)); 252 getnanouptime(&ts2); 253 if (error != EWOULDBLOCK) { 254 if (error == ERESTART) 255 error = EINTR; 256 if (rmt != NULL) { 257 timespecsub(&ts, &ts2); 258 if (ts.tv_sec < 0) 259 timespecclear(&ts); 260 *rmt = ts; 261 } 262 return (error); 263 } 264 if (timespeccmp(&ts2, &ts, >=)) 265 return (0); 266 ts3 = ts; 267 timespecsub(&ts3, &ts2); 268 TIMESPEC_TO_TIMEVAL(&tv, &ts3); 269 } 270 } 271 272 #ifndef _SYS_SYSPROTO_H_ 273 struct nanosleep_args { 274 struct timespec *rqtp; 275 struct timespec *rmtp; 276 }; 277 #endif 278 279 /* 280 * MPSAFE 281 */ 282 /* ARGSUSED */ 283 int 284 nanosleep(td, uap) 285 struct thread *td; 286 struct nanosleep_args *uap; 287 { 288 struct timespec rmt, rqt; 289 int error; 290 291 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(rqt)); 292 if (error) 293 return (error); 294 295 mtx_lock(&Giant); 296 if (SCARG(uap, rmtp)) { 297 if (!useracc((caddr_t)SCARG(uap, rmtp), sizeof(rmt), 298 VM_PROT_WRITE)) { 299 error = EFAULT; 300 goto done2; 301 } 302 } 303 error = nanosleep1(td, &rqt, &rmt); 304 if (error && SCARG(uap, rmtp)) { 305 int error2; 306 307 error2 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt)); 308 if (error2) /* XXX shouldn't happen, did useracc() above */ 309 error = error2; 310 } 311 done2: 312 mtx_unlock(&Giant); 313 return (error); 314 } 315 316 #ifndef _SYS_SYSPROTO_H_ 317 struct gettimeofday_args { 318 struct timeval *tp; 319 struct timezone *tzp; 320 }; 321 #endif 322 /* 323 * MPSAFE 324 */ 325 /* ARGSUSED */ 326 int 327 gettimeofday(td, uap) 328 struct thread *td; 329 register struct gettimeofday_args *uap; 330 { 331 struct timeval atv; 332 int error = 0; 333 334 if (uap->tp) { 335 microtime(&atv); 336 error = copyout((caddr_t)&atv, (caddr_t)uap->tp, sizeof (atv)); 337 } 338 if (error == 0 && uap->tzp != NULL) { 339 mtx_lock(&Giant); 340 error = copyout((caddr_t)&tz, (caddr_t)uap->tzp, 341 sizeof (tz)); 342 mtx_unlock(&Giant); 343 } 344 return (error); 345 } 346 347 #ifndef _SYS_SYSPROTO_H_ 348 struct settimeofday_args { 349 struct timeval *tv; 350 struct timezone *tzp; 351 }; 352 #endif 353 /* 354 * MPSAFE 355 */ 356 /* ARGSUSED */ 357 int 358 settimeofday(td, uap) 359 struct thread *td; 360 struct settimeofday_args *uap; 361 { 362 struct timeval atv; 363 struct timezone atz; 364 int error = 0; 365 366 if ((error = suser(td))) 367 return (error); 368 /* Verify all parameters before changing time. */ 369 if (uap->tv) { 370 if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv, 371 sizeof(atv)))) 372 return (error); 373 if (atv.tv_usec < 0 || atv.tv_usec >= 1000000) 374 return (EINVAL); 375 } 376 if (uap->tzp && 377 (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz)))) 378 return (error); 379 380 if (uap->tv && (error = settime(td, &atv))) 381 return (error); 382 if (uap->tzp) { 383 mtx_lock(&Giant); 384 tz = atz; 385 mtx_unlock(&Giant); 386 } 387 return (error); 388 } 389 /* 390 * Get value of an interval timer. The process virtual and 391 * profiling virtual time timers are kept in the p_stats area, since 392 * they can be swapped out. These are kept internally in the 393 * way they are specified externally: in time until they expire. 394 * 395 * The real time interval timer is kept in the process table slot 396 * for the process, and its value (it_value) is kept as an 397 * absolute time rather than as a delta, so that it is easy to keep 398 * periodic real-time signals from drifting. 399 * 400 * Virtual time timers are processed in the hardclock() routine of 401 * kern_clock.c. The real time timer is processed by a timeout 402 * routine, called from the softclock() routine. Since a callout 403 * may be delayed in real time due to interrupt processing in the system, 404 * it is possible for the real time timeout routine (realitexpire, given below), 405 * to be delayed in real time past when it is supposed to occur. It 406 * does not suffice, therefore, to reload the real timer .it_value from the 407 * real time timers .it_interval. Rather, we compute the next time in 408 * absolute time the timer should go off. 409 */ 410 #ifndef _SYS_SYSPROTO_H_ 411 struct getitimer_args { 412 u_int which; 413 struct itimerval *itv; 414 }; 415 #endif 416 /* 417 * MPSAFE 418 */ 419 /* ARGSUSED */ 420 int 421 getitimer(td, uap) 422 struct thread *td; 423 register struct getitimer_args *uap; 424 { 425 struct proc *p = td->td_proc; 426 struct timeval ctv; 427 struct itimerval aitv; 428 int s; 429 int error; 430 431 if (uap->which > ITIMER_PROF) 432 return (EINVAL); 433 434 mtx_lock(&Giant); 435 436 s = splclock(); /* XXX still needed ? */ 437 if (uap->which == ITIMER_REAL) { 438 /* 439 * Convert from absolute to relative time in .it_value 440 * part of real time timer. If time for real time timer 441 * has passed return 0, else return difference between 442 * current time and time for the timer to go off. 443 */ 444 aitv = p->p_realtimer; 445 if (timevalisset(&aitv.it_value)) { 446 getmicrouptime(&ctv); 447 if (timevalcmp(&aitv.it_value, &ctv, <)) 448 timevalclear(&aitv.it_value); 449 else 450 timevalsub(&aitv.it_value, &ctv); 451 } 452 } else { 453 aitv = p->p_stats->p_timer[uap->which]; 454 } 455 splx(s); 456 error = copyout((caddr_t)&aitv, (caddr_t)uap->itv, 457 sizeof (struct itimerval)); 458 mtx_unlock(&Giant); 459 return(error); 460 } 461 462 #ifndef _SYS_SYSPROTO_H_ 463 struct setitimer_args { 464 u_int which; 465 struct itimerval *itv, *oitv; 466 }; 467 #endif 468 /* 469 * MPSAFE 470 */ 471 /* ARGSUSED */ 472 int 473 setitimer(td, uap) 474 struct thread *td; 475 register struct setitimer_args *uap; 476 { 477 struct proc *p = td->td_proc; 478 struct itimerval aitv; 479 struct timeval ctv; 480 register struct itimerval *itvp; 481 int s, error = 0; 482 483 if (uap->which > ITIMER_PROF) 484 return (EINVAL); 485 itvp = uap->itv; 486 if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv, 487 sizeof(struct itimerval)))) 488 return (error); 489 490 mtx_lock(&Giant); 491 492 if ((uap->itv = uap->oitv) && 493 (error = getitimer(td, (struct getitimer_args *)uap))) { 494 goto done2; 495 } 496 if (itvp == 0) { 497 error = 0; 498 goto done2; 499 } 500 if (itimerfix(&aitv.it_value)) { 501 error = EINVAL; 502 goto done2; 503 } 504 if (!timevalisset(&aitv.it_value)) { 505 timevalclear(&aitv.it_interval); 506 } else if (itimerfix(&aitv.it_interval)) { 507 error = EINVAL; 508 goto done2; 509 } 510 s = splclock(); /* XXX: still needed ? */ 511 if (uap->which == ITIMER_REAL) { 512 if (timevalisset(&p->p_realtimer.it_value)) 513 callout_stop(&p->p_itcallout); 514 if (timevalisset(&aitv.it_value)) 515 callout_reset(&p->p_itcallout, tvtohz(&aitv.it_value), 516 realitexpire, p); 517 getmicrouptime(&ctv); 518 timevaladd(&aitv.it_value, &ctv); 519 p->p_realtimer = aitv; 520 } else { 521 p->p_stats->p_timer[uap->which] = aitv; 522 } 523 splx(s); 524 done2: 525 mtx_unlock(&Giant); 526 return (error); 527 } 528 529 /* 530 * Real interval timer expired: 531 * send process whose timer expired an alarm signal. 532 * If time is not set up to reload, then just return. 533 * Else compute next time timer should go off which is > current time. 534 * This is where delay in processing this timeout causes multiple 535 * SIGALRM calls to be compressed into one. 536 * tvtohz() always adds 1 to allow for the time until the next clock 537 * interrupt being strictly less than 1 clock tick, but we don't want 538 * that here since we want to appear to be in sync with the clock 539 * interrupt even when we're delayed. 540 */ 541 void 542 realitexpire(arg) 543 void *arg; 544 { 545 register struct proc *p; 546 struct timeval ctv, ntv; 547 int s; 548 549 p = (struct proc *)arg; 550 PROC_LOCK(p); 551 psignal(p, SIGALRM); 552 if (!timevalisset(&p->p_realtimer.it_interval)) { 553 timevalclear(&p->p_realtimer.it_value); 554 PROC_UNLOCK(p); 555 return; 556 } 557 for (;;) { 558 s = splclock(); /* XXX: still neeeded ? */ 559 timevaladd(&p->p_realtimer.it_value, 560 &p->p_realtimer.it_interval); 561 getmicrouptime(&ctv); 562 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) { 563 ntv = p->p_realtimer.it_value; 564 timevalsub(&ntv, &ctv); 565 callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1, 566 realitexpire, p); 567 splx(s); 568 PROC_UNLOCK(p); 569 return; 570 } 571 splx(s); 572 } 573 /*NOTREACHED*/ 574 } 575 576 /* 577 * Check that a proposed value to load into the .it_value or 578 * .it_interval part of an interval timer is acceptable, and 579 * fix it to have at least minimal value (i.e. if it is less 580 * than the resolution of the clock, round it up.) 581 */ 582 int 583 itimerfix(tv) 584 struct timeval *tv; 585 { 586 587 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 || 588 tv->tv_usec < 0 || tv->tv_usec >= 1000000) 589 return (EINVAL); 590 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick) 591 tv->tv_usec = tick; 592 return (0); 593 } 594 595 /* 596 * Decrement an interval timer by a specified number 597 * of microseconds, which must be less than a second, 598 * i.e. < 1000000. If the timer expires, then reload 599 * it. In this case, carry over (usec - old value) to 600 * reduce the value reloaded into the timer so that 601 * the timer does not drift. This routine assumes 602 * that it is called in a context where the timers 603 * on which it is operating cannot change in value. 604 */ 605 int 606 itimerdecr(itp, usec) 607 register struct itimerval *itp; 608 int usec; 609 { 610 611 if (itp->it_value.tv_usec < usec) { 612 if (itp->it_value.tv_sec == 0) { 613 /* expired, and already in next interval */ 614 usec -= itp->it_value.tv_usec; 615 goto expire; 616 } 617 itp->it_value.tv_usec += 1000000; 618 itp->it_value.tv_sec--; 619 } 620 itp->it_value.tv_usec -= usec; 621 usec = 0; 622 if (timevalisset(&itp->it_value)) 623 return (1); 624 /* expired, exactly at end of interval */ 625 expire: 626 if (timevalisset(&itp->it_interval)) { 627 itp->it_value = itp->it_interval; 628 itp->it_value.tv_usec -= usec; 629 if (itp->it_value.tv_usec < 0) { 630 itp->it_value.tv_usec += 1000000; 631 itp->it_value.tv_sec--; 632 } 633 } else 634 itp->it_value.tv_usec = 0; /* sec is already 0 */ 635 return (0); 636 } 637 638 /* 639 * Add and subtract routines for timevals. 640 * N.B.: subtract routine doesn't deal with 641 * results which are before the beginning, 642 * it just gets very confused in this case. 643 * Caveat emptor. 644 */ 645 void 646 timevaladd(t1, t2) 647 struct timeval *t1, *t2; 648 { 649 650 t1->tv_sec += t2->tv_sec; 651 t1->tv_usec += t2->tv_usec; 652 timevalfix(t1); 653 } 654 655 void 656 timevalsub(t1, t2) 657 struct timeval *t1, *t2; 658 { 659 660 t1->tv_sec -= t2->tv_sec; 661 t1->tv_usec -= t2->tv_usec; 662 timevalfix(t1); 663 } 664 665 static void 666 timevalfix(t1) 667 struct timeval *t1; 668 { 669 670 if (t1->tv_usec < 0) { 671 t1->tv_sec--; 672 t1->tv_usec += 1000000; 673 } 674 if (t1->tv_usec >= 1000000) { 675 t1->tv_sec++; 676 t1->tv_usec -= 1000000; 677 } 678 } 679