xref: /freebsd/sys/kern/kern_time.c (revision ee2ea5ceafed78a5bd9810beb9e3ca927180c226)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD$
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/systm.h>
46 #include <sys/sysent.h>
47 #include <sys/proc.h>
48 #include <sys/time.h>
49 #include <sys/timetc.h>
50 #include <sys/vnode.h>
51 
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 
55 struct timezone tz;
56 
57 /*
58  * Time of day and interval timer support.
59  *
60  * These routines provide the kernel entry points to get and set
61  * the time-of-day and per-process interval timers.  Subroutines
62  * here provide support for adding and subtracting timeval structures
63  * and decrementing interval timers, optionally reloading the interval
64  * timers when they expire.
65  */
66 
67 static int	nanosleep1(struct thread *td, struct timespec *rqt,
68 		    struct timespec *rmt);
69 static int	settime(struct thread *, struct timeval *);
70 static void	timevalfix(struct timeval *);
71 static void	no_lease_updatetime(int);
72 
73 static void
74 no_lease_updatetime(deltat)
75 	int deltat;
76 {
77 }
78 
79 void (*lease_updatetime)(int)  = no_lease_updatetime;
80 
81 static int
82 settime(td, tv)
83 	struct thread *td;
84 	struct timeval *tv;
85 {
86 	struct timeval delta, tv1, tv2;
87 	static struct timeval maxtime, laststep;
88 	struct timespec ts;
89 	int s;
90 
91 	s = splclock();
92 	microtime(&tv1);
93 	delta = *tv;
94 	timevalsub(&delta, &tv1);
95 
96 	/*
97 	 * If the system is secure, we do not allow the time to be
98 	 * set to a value earlier than 1 second less than the highest
99 	 * time we have yet seen. The worst a miscreant can do in
100 	 * this circumstance is "freeze" time. He couldn't go
101 	 * back to the past.
102 	 *
103 	 * We similarly do not allow the clock to be stepped more
104 	 * than one second, nor more than once per second. This allows
105 	 * a miscreant to make the clock march double-time, but no worse.
106 	 */
107 	if (securelevel_gt(td->td_ucred, 1) != 0) {
108 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
109 			/*
110 			 * Update maxtime to latest time we've seen.
111 			 */
112 			if (tv1.tv_sec > maxtime.tv_sec)
113 				maxtime = tv1;
114 			tv2 = *tv;
115 			timevalsub(&tv2, &maxtime);
116 			if (tv2.tv_sec < -1) {
117 				tv->tv_sec = maxtime.tv_sec - 1;
118 				printf("Time adjustment clamped to -1 second\n");
119 			}
120 		} else {
121 			if (tv1.tv_sec == laststep.tv_sec) {
122 				splx(s);
123 				return (EPERM);
124 			}
125 			if (delta.tv_sec > 1) {
126 				tv->tv_sec = tv1.tv_sec + 1;
127 				printf("Time adjustment clamped to +1 second\n");
128 			}
129 			laststep = *tv;
130 		}
131 	}
132 
133 	ts.tv_sec = tv->tv_sec;
134 	ts.tv_nsec = tv->tv_usec * 1000;
135 	mtx_lock(&Giant);
136 	tc_setclock(&ts);
137 	(void) splsoftclock();
138 	lease_updatetime(delta.tv_sec);
139 	splx(s);
140 	resettodr();
141 	mtx_unlock(&Giant);
142 	return (0);
143 }
144 
145 #ifndef _SYS_SYSPROTO_H_
146 struct clock_gettime_args {
147 	clockid_t clock_id;
148 	struct	timespec *tp;
149 };
150 #endif
151 
152 /*
153  * MPSAFE
154  */
155 /* ARGSUSED */
156 int
157 clock_gettime(td, uap)
158 	struct thread *td;
159 	struct clock_gettime_args *uap;
160 {
161 	struct timespec ats;
162 
163 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
164 		return (EINVAL);
165 	mtx_lock(&Giant);
166 	nanotime(&ats);
167 	mtx_unlock(&Giant);
168 	return (copyout(&ats, SCARG(uap, tp), sizeof(ats)));
169 }
170 
171 #ifndef _SYS_SYSPROTO_H_
172 struct clock_settime_args {
173 	clockid_t clock_id;
174 	const struct	timespec *tp;
175 };
176 #endif
177 
178 /*
179  * MPSAFE
180  */
181 /* ARGSUSED */
182 int
183 clock_settime(td, uap)
184 	struct thread *td;
185 	struct clock_settime_args *uap;
186 {
187 	struct timeval atv;
188 	struct timespec ats;
189 	int error;
190 
191 	if ((error = suser(td)) != 0)
192 		return (error);
193 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
194 		return (EINVAL);
195 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
196 		return (error);
197 	if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
198 		return (EINVAL);
199 	/* XXX Don't convert nsec->usec and back */
200 	TIMESPEC_TO_TIMEVAL(&atv, &ats);
201 	error = settime(td, &atv);
202 	return (error);
203 }
204 
205 #ifndef _SYS_SYSPROTO_H_
206 struct clock_getres_args {
207 	clockid_t clock_id;
208 	struct	timespec *tp;
209 };
210 #endif
211 
212 int
213 clock_getres(td, uap)
214 	struct thread *td;
215 	struct clock_getres_args *uap;
216 {
217 	struct timespec ts;
218 	int error;
219 
220 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
221 		return (EINVAL);
222 	error = 0;
223 	if (SCARG(uap, tp)) {
224 		ts.tv_sec = 0;
225 		ts.tv_nsec = 1000000000 / tc_getfrequency();
226 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
227 	}
228 	return (error);
229 }
230 
231 static int nanowait;
232 
233 static int
234 nanosleep1(td, rqt, rmt)
235 	struct thread *td;
236 	struct timespec *rqt, *rmt;
237 {
238 	struct timespec ts, ts2, ts3;
239 	struct timeval tv;
240 	int error;
241 
242 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
243 		return (EINVAL);
244 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
245 		return (0);
246 	getnanouptime(&ts);
247 	timespecadd(&ts, rqt);
248 	TIMESPEC_TO_TIMEVAL(&tv, rqt);
249 	for (;;) {
250 		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
251 		    tvtohz(&tv));
252 		getnanouptime(&ts2);
253 		if (error != EWOULDBLOCK) {
254 			if (error == ERESTART)
255 				error = EINTR;
256 			if (rmt != NULL) {
257 				timespecsub(&ts, &ts2);
258 				if (ts.tv_sec < 0)
259 					timespecclear(&ts);
260 				*rmt = ts;
261 			}
262 			return (error);
263 		}
264 		if (timespeccmp(&ts2, &ts, >=))
265 			return (0);
266 		ts3 = ts;
267 		timespecsub(&ts3, &ts2);
268 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
269 	}
270 }
271 
272 #ifndef _SYS_SYSPROTO_H_
273 struct nanosleep_args {
274 	struct	timespec *rqtp;
275 	struct	timespec *rmtp;
276 };
277 #endif
278 
279 /*
280  * MPSAFE
281  */
282 /* ARGSUSED */
283 int
284 nanosleep(td, uap)
285 	struct thread *td;
286 	struct nanosleep_args *uap;
287 {
288 	struct timespec rmt, rqt;
289 	int error;
290 
291 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(rqt));
292 	if (error)
293 		return (error);
294 
295 	mtx_lock(&Giant);
296 	if (SCARG(uap, rmtp)) {
297 		if (!useracc((caddr_t)SCARG(uap, rmtp), sizeof(rmt),
298 		    VM_PROT_WRITE)) {
299 			error = EFAULT;
300 			goto done2;
301 		}
302 	}
303 	error = nanosleep1(td, &rqt, &rmt);
304 	if (error && SCARG(uap, rmtp)) {
305 		int error2;
306 
307 		error2 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
308 		if (error2)	/* XXX shouldn't happen, did useracc() above */
309 			error = error2;
310 	}
311 done2:
312 	mtx_unlock(&Giant);
313 	return (error);
314 }
315 
316 #ifndef _SYS_SYSPROTO_H_
317 struct gettimeofday_args {
318 	struct	timeval *tp;
319 	struct	timezone *tzp;
320 };
321 #endif
322 /*
323  * MPSAFE
324  */
325 /* ARGSUSED */
326 int
327 gettimeofday(td, uap)
328 	struct thread *td;
329 	register struct gettimeofday_args *uap;
330 {
331 	struct timeval atv;
332 	int error = 0;
333 
334 	if (uap->tp) {
335 		microtime(&atv);
336 		error = copyout((caddr_t)&atv, (caddr_t)uap->tp, sizeof (atv));
337 	}
338 	if (error == 0 && uap->tzp != NULL) {
339 		mtx_lock(&Giant);
340 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
341 		    sizeof (tz));
342 		mtx_unlock(&Giant);
343 	}
344 	return (error);
345 }
346 
347 #ifndef _SYS_SYSPROTO_H_
348 struct settimeofday_args {
349 	struct	timeval *tv;
350 	struct	timezone *tzp;
351 };
352 #endif
353 /*
354  * MPSAFE
355  */
356 /* ARGSUSED */
357 int
358 settimeofday(td, uap)
359 	struct thread *td;
360 	struct settimeofday_args *uap;
361 {
362 	struct timeval atv;
363 	struct timezone atz;
364 	int error = 0;
365 
366 	if ((error = suser(td)))
367 		return (error);
368 	/* Verify all parameters before changing time. */
369 	if (uap->tv) {
370 		if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
371 		    sizeof(atv))))
372 			return (error);
373 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
374 			return (EINVAL);
375 	}
376 	if (uap->tzp &&
377 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
378 		return (error);
379 
380 	if (uap->tv && (error = settime(td, &atv)))
381 		return (error);
382 	if (uap->tzp) {
383 		mtx_lock(&Giant);
384 		tz = atz;
385 		mtx_unlock(&Giant);
386 	}
387 	return (error);
388 }
389 /*
390  * Get value of an interval timer.  The process virtual and
391  * profiling virtual time timers are kept in the p_stats area, since
392  * they can be swapped out.  These are kept internally in the
393  * way they are specified externally: in time until they expire.
394  *
395  * The real time interval timer is kept in the process table slot
396  * for the process, and its value (it_value) is kept as an
397  * absolute time rather than as a delta, so that it is easy to keep
398  * periodic real-time signals from drifting.
399  *
400  * Virtual time timers are processed in the hardclock() routine of
401  * kern_clock.c.  The real time timer is processed by a timeout
402  * routine, called from the softclock() routine.  Since a callout
403  * may be delayed in real time due to interrupt processing in the system,
404  * it is possible for the real time timeout routine (realitexpire, given below),
405  * to be delayed in real time past when it is supposed to occur.  It
406  * does not suffice, therefore, to reload the real timer .it_value from the
407  * real time timers .it_interval.  Rather, we compute the next time in
408  * absolute time the timer should go off.
409  */
410 #ifndef _SYS_SYSPROTO_H_
411 struct getitimer_args {
412 	u_int	which;
413 	struct	itimerval *itv;
414 };
415 #endif
416 /*
417  * MPSAFE
418  */
419 /* ARGSUSED */
420 int
421 getitimer(td, uap)
422 	struct thread *td;
423 	register struct getitimer_args *uap;
424 {
425 	struct proc *p = td->td_proc;
426 	struct timeval ctv;
427 	struct itimerval aitv;
428 	int s;
429 	int error;
430 
431 	if (uap->which > ITIMER_PROF)
432 		return (EINVAL);
433 
434 	mtx_lock(&Giant);
435 
436 	s = splclock(); /* XXX still needed ? */
437 	if (uap->which == ITIMER_REAL) {
438 		/*
439 		 * Convert from absolute to relative time in .it_value
440 		 * part of real time timer.  If time for real time timer
441 		 * has passed return 0, else return difference between
442 		 * current time and time for the timer to go off.
443 		 */
444 		aitv = p->p_realtimer;
445 		if (timevalisset(&aitv.it_value)) {
446 			getmicrouptime(&ctv);
447 			if (timevalcmp(&aitv.it_value, &ctv, <))
448 				timevalclear(&aitv.it_value);
449 			else
450 				timevalsub(&aitv.it_value, &ctv);
451 		}
452 	} else {
453 		aitv = p->p_stats->p_timer[uap->which];
454 	}
455 	splx(s);
456 	error = copyout((caddr_t)&aitv, (caddr_t)uap->itv,
457 	    sizeof (struct itimerval));
458 	mtx_unlock(&Giant);
459 	return(error);
460 }
461 
462 #ifndef _SYS_SYSPROTO_H_
463 struct setitimer_args {
464 	u_int	which;
465 	struct	itimerval *itv, *oitv;
466 };
467 #endif
468 /*
469  * MPSAFE
470  */
471 /* ARGSUSED */
472 int
473 setitimer(td, uap)
474 	struct thread *td;
475 	register struct setitimer_args *uap;
476 {
477 	struct proc *p = td->td_proc;
478 	struct itimerval aitv;
479 	struct timeval ctv;
480 	register struct itimerval *itvp;
481 	int s, error = 0;
482 
483 	if (uap->which > ITIMER_PROF)
484 		return (EINVAL);
485 	itvp = uap->itv;
486 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
487 	    sizeof(struct itimerval))))
488 		return (error);
489 
490 	mtx_lock(&Giant);
491 
492 	if ((uap->itv = uap->oitv) &&
493 	    (error = getitimer(td, (struct getitimer_args *)uap))) {
494 		goto done2;
495 	}
496 	if (itvp == 0) {
497 		error = 0;
498 		goto done2;
499 	}
500 	if (itimerfix(&aitv.it_value)) {
501 		error = EINVAL;
502 		goto done2;
503 	}
504 	if (!timevalisset(&aitv.it_value)) {
505 		timevalclear(&aitv.it_interval);
506 	} else if (itimerfix(&aitv.it_interval)) {
507 		error = EINVAL;
508 		goto done2;
509 	}
510 	s = splclock(); /* XXX: still needed ? */
511 	if (uap->which == ITIMER_REAL) {
512 		if (timevalisset(&p->p_realtimer.it_value))
513 			callout_stop(&p->p_itcallout);
514 		if (timevalisset(&aitv.it_value))
515 			callout_reset(&p->p_itcallout, tvtohz(&aitv.it_value),
516 			    realitexpire, p);
517 		getmicrouptime(&ctv);
518 		timevaladd(&aitv.it_value, &ctv);
519 		p->p_realtimer = aitv;
520 	} else {
521 		p->p_stats->p_timer[uap->which] = aitv;
522 	}
523 	splx(s);
524 done2:
525 	mtx_unlock(&Giant);
526 	return (error);
527 }
528 
529 /*
530  * Real interval timer expired:
531  * send process whose timer expired an alarm signal.
532  * If time is not set up to reload, then just return.
533  * Else compute next time timer should go off which is > current time.
534  * This is where delay in processing this timeout causes multiple
535  * SIGALRM calls to be compressed into one.
536  * tvtohz() always adds 1 to allow for the time until the next clock
537  * interrupt being strictly less than 1 clock tick, but we don't want
538  * that here since we want to appear to be in sync with the clock
539  * interrupt even when we're delayed.
540  */
541 void
542 realitexpire(arg)
543 	void *arg;
544 {
545 	register struct proc *p;
546 	struct timeval ctv, ntv;
547 	int s;
548 
549 	p = (struct proc *)arg;
550 	PROC_LOCK(p);
551 	psignal(p, SIGALRM);
552 	if (!timevalisset(&p->p_realtimer.it_interval)) {
553 		timevalclear(&p->p_realtimer.it_value);
554 		PROC_UNLOCK(p);
555 		return;
556 	}
557 	for (;;) {
558 		s = splclock(); /* XXX: still neeeded ? */
559 		timevaladd(&p->p_realtimer.it_value,
560 		    &p->p_realtimer.it_interval);
561 		getmicrouptime(&ctv);
562 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
563 			ntv = p->p_realtimer.it_value;
564 			timevalsub(&ntv, &ctv);
565 			callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
566 			    realitexpire, p);
567 			splx(s);
568 			PROC_UNLOCK(p);
569 			return;
570 		}
571 		splx(s);
572 	}
573 	/*NOTREACHED*/
574 }
575 
576 /*
577  * Check that a proposed value to load into the .it_value or
578  * .it_interval part of an interval timer is acceptable, and
579  * fix it to have at least minimal value (i.e. if it is less
580  * than the resolution of the clock, round it up.)
581  */
582 int
583 itimerfix(tv)
584 	struct timeval *tv;
585 {
586 
587 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
588 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
589 		return (EINVAL);
590 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
591 		tv->tv_usec = tick;
592 	return (0);
593 }
594 
595 /*
596  * Decrement an interval timer by a specified number
597  * of microseconds, which must be less than a second,
598  * i.e. < 1000000.  If the timer expires, then reload
599  * it.  In this case, carry over (usec - old value) to
600  * reduce the value reloaded into the timer so that
601  * the timer does not drift.  This routine assumes
602  * that it is called in a context where the timers
603  * on which it is operating cannot change in value.
604  */
605 int
606 itimerdecr(itp, usec)
607 	register struct itimerval *itp;
608 	int usec;
609 {
610 
611 	if (itp->it_value.tv_usec < usec) {
612 		if (itp->it_value.tv_sec == 0) {
613 			/* expired, and already in next interval */
614 			usec -= itp->it_value.tv_usec;
615 			goto expire;
616 		}
617 		itp->it_value.tv_usec += 1000000;
618 		itp->it_value.tv_sec--;
619 	}
620 	itp->it_value.tv_usec -= usec;
621 	usec = 0;
622 	if (timevalisset(&itp->it_value))
623 		return (1);
624 	/* expired, exactly at end of interval */
625 expire:
626 	if (timevalisset(&itp->it_interval)) {
627 		itp->it_value = itp->it_interval;
628 		itp->it_value.tv_usec -= usec;
629 		if (itp->it_value.tv_usec < 0) {
630 			itp->it_value.tv_usec += 1000000;
631 			itp->it_value.tv_sec--;
632 		}
633 	} else
634 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
635 	return (0);
636 }
637 
638 /*
639  * Add and subtract routines for timevals.
640  * N.B.: subtract routine doesn't deal with
641  * results which are before the beginning,
642  * it just gets very confused in this case.
643  * Caveat emptor.
644  */
645 void
646 timevaladd(t1, t2)
647 	struct timeval *t1, *t2;
648 {
649 
650 	t1->tv_sec += t2->tv_sec;
651 	t1->tv_usec += t2->tv_usec;
652 	timevalfix(t1);
653 }
654 
655 void
656 timevalsub(t1, t2)
657 	struct timeval *t1, *t2;
658 {
659 
660 	t1->tv_sec -= t2->tv_sec;
661 	t1->tv_usec -= t2->tv_usec;
662 	timevalfix(t1);
663 }
664 
665 static void
666 timevalfix(t1)
667 	struct timeval *t1;
668 {
669 
670 	if (t1->tv_usec < 0) {
671 		t1->tv_sec--;
672 		t1->tv_usec += 1000000;
673 	}
674 	if (t1->tv_usec >= 1000000) {
675 		t1->tv_sec++;
676 		t1->tv_usec -= 1000000;
677 	}
678 }
679