xref: /freebsd/sys/kern/kern_time.c (revision e627b39baccd1ec9129690167cf5e6d860509655)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $Id: kern_time.c,v 1.17 1996/07/12 07:55:35 bde Exp $
35  */
36 
37 #include <sys/param.h>
38 #include <sys/sysproto.h>
39 #include <sys/resourcevar.h>
40 #include <sys/signalvar.h>
41 #include <sys/kernel.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/vnode.h>
45 
46 struct timezone tz;
47 
48 /*
49  * Time of day and interval timer support.
50  *
51  * These routines provide the kernel entry points to get and set
52  * the time-of-day and per-process interval timers.  Subroutines
53  * here provide support for adding and subtracting timeval structures
54  * and decrementing interval timers, optionally reloading the interval
55  * timers when they expire.
56  */
57 
58 static void	timevalfix __P((struct timeval *));
59 
60 #ifndef _SYS_SYSPROTO_H_
61 struct gettimeofday_args {
62 	struct	timeval *tp;
63 	struct	timezone *tzp;
64 };
65 #endif
66 /* ARGSUSED */
67 int
68 gettimeofday(p, uap, retval)
69 	struct proc *p;
70 	register struct gettimeofday_args *uap;
71 	int *retval;
72 {
73 	struct timeval atv;
74 	int error = 0;
75 
76 	if (uap->tp) {
77 		microtime(&atv);
78 		if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
79 		    sizeof (atv))))
80 			return (error);
81 	}
82 	if (uap->tzp)
83 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
84 		    sizeof (tz));
85 	return (error);
86 }
87 
88 #ifndef _SYS_SYSPROTO_H_
89 struct settimeofday_args {
90 	struct	timeval *tv;
91 	struct	timezone *tzp;
92 };
93 #endif
94 /* ARGSUSED */
95 int
96 settimeofday(p, uap, retval)
97 	struct proc *p;
98 	struct settimeofday_args *uap;
99 	int *retval;
100 {
101 	struct timeval atv, delta;
102 	struct timezone atz;
103 	int error, s;
104 
105 	if ((error = suser(p->p_ucred, &p->p_acflag)))
106 		return (error);
107 	/* Verify all parameters before changing time. */
108 	if (uap->tv &&
109 	    (error = copyin((caddr_t)uap->tv, (caddr_t)&atv, sizeof(atv))))
110 		return (error);
111 	if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
112 		return (EINVAL);
113 	if (uap->tzp &&
114 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
115 		return (error);
116 	if (uap->tv) {
117 		s = splclock();
118 		/*
119 		 * Calculate delta directly to minimize clock interrupt
120 		 * latency.  Fix it after the ipl has been lowered.
121 		 */
122 		delta.tv_sec = atv.tv_sec - time.tv_sec;
123 		delta.tv_usec = atv.tv_usec - time.tv_usec;
124 		time = atv;
125 		/*
126 		 * XXX should arrange for microtime() to agree with atv if
127 		 * it is called now.  As it is, it may add up to about
128 		 * `tick' unwanted usec.
129 		 * Another problem is that clock interrupts may occur at
130 		 * other than multiples of `tick'.  It's not worth fixing
131 		 * this here, since the problem is also caused by tick
132 		 * adjustments.
133 		 */
134 		(void) splsoftclock();
135 		timevalfix(&delta);
136 		timevaladd(&boottime, &delta);
137 		timevaladd(&runtime, &delta);
138 		/* re-use 'p' */
139 		for (p = allproc.lh_first; p != 0; p = p->p_list.le_next)
140 			if (timerisset(&p->p_realtimer.it_value))
141 				timevaladd(&p->p_realtimer.it_value, &delta);
142 		LEASE_UPDATETIME(delta.tv_sec);
143 		splx(s);
144 		resettodr();
145 	}
146 	if (uap->tzp)
147 		tz = atz;
148 	return (0);
149 }
150 
151 extern	int tickadj;			/* "standard" clock skew, us./tick */
152 int	tickdelta;			/* current clock skew, us. per tick */
153 long	timedelta;			/* unapplied time correction, us. */
154 static long	bigadj = 1000000;	/* use 10x skew above bigadj us. */
155 
156 #ifndef _SYS_SYSPROTO_H_
157 struct adjtime_args {
158 	struct timeval *delta;
159 	struct timeval *olddelta;
160 };
161 #endif
162 /* ARGSUSED */
163 int
164 adjtime(p, uap, retval)
165 	struct proc *p;
166 	register struct adjtime_args *uap;
167 	int *retval;
168 {
169 	struct timeval atv;
170 	register long ndelta, ntickdelta, odelta;
171 	int s, error;
172 
173 	if ((error = suser(p->p_ucred, &p->p_acflag)))
174 		return (error);
175 	if ((error =
176 	    copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval))))
177 		return (error);
178 
179 	/*
180 	 * Compute the total correction and the rate at which to apply it.
181 	 * Round the adjustment down to a whole multiple of the per-tick
182 	 * delta, so that after some number of incremental changes in
183 	 * hardclock(), tickdelta will become zero, lest the correction
184 	 * overshoot and start taking us away from the desired final time.
185 	 */
186 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
187 	if (ndelta > bigadj || ndelta < -bigadj)
188 		ntickdelta = 10 * tickadj;
189 	else
190 		ntickdelta = tickadj;
191 	if (ndelta % ntickdelta)
192 		ndelta = ndelta / ntickdelta * ntickdelta;
193 
194 	/*
195 	 * To make hardclock()'s job easier, make the per-tick delta negative
196 	 * if we want time to run slower; then hardclock can simply compute
197 	 * tick + tickdelta, and subtract tickdelta from timedelta.
198 	 */
199 	if (ndelta < 0)
200 		ntickdelta = -ntickdelta;
201 	s = splclock();
202 	odelta = timedelta;
203 	timedelta = ndelta;
204 	tickdelta = ntickdelta;
205 	splx(s);
206 
207 	if (uap->olddelta) {
208 		atv.tv_sec = odelta / 1000000;
209 		atv.tv_usec = odelta % 1000000;
210 		(void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
211 		    sizeof(struct timeval));
212 	}
213 	return (0);
214 }
215 
216 /*
217  * Get value of an interval timer.  The process virtual and
218  * profiling virtual time timers are kept in the p_stats area, since
219  * they can be swapped out.  These are kept internally in the
220  * way they are specified externally: in time until they expire.
221  *
222  * The real time interval timer is kept in the process table slot
223  * for the process, and its value (it_value) is kept as an
224  * absolute time rather than as a delta, so that it is easy to keep
225  * periodic real-time signals from drifting.
226  *
227  * Virtual time timers are processed in the hardclock() routine of
228  * kern_clock.c.  The real time timer is processed by a timeout
229  * routine, called from the softclock() routine.  Since a callout
230  * may be delayed in real time due to interrupt processing in the system,
231  * it is possible for the real time timeout routine (realitexpire, given below),
232  * to be delayed in real time past when it is supposed to occur.  It
233  * does not suffice, therefore, to reload the real timer .it_value from the
234  * real time timers .it_interval.  Rather, we compute the next time in
235  * absolute time the timer should go off.
236  */
237 #ifndef _SYS_SYSPROTO_H_
238 struct getitimer_args {
239 	u_int	which;
240 	struct	itimerval *itv;
241 };
242 #endif
243 /* ARGSUSED */
244 int
245 getitimer(p, uap, retval)
246 	struct proc *p;
247 	register struct getitimer_args *uap;
248 	int *retval;
249 {
250 	struct itimerval aitv;
251 	int s;
252 
253 	if (uap->which > ITIMER_PROF)
254 		return (EINVAL);
255 	s = splclock();
256 	if (uap->which == ITIMER_REAL) {
257 		/*
258 		 * Convert from absoulte to relative time in .it_value
259 		 * part of real time timer.  If time for real time timer
260 		 * has passed return 0, else return difference between
261 		 * current time and time for the timer to go off.
262 		 */
263 		aitv = p->p_realtimer;
264 		if (timerisset(&aitv.it_value))
265 			if (timercmp(&aitv.it_value, &time, <))
266 				timerclear(&aitv.it_value);
267 			else
268 				timevalsub(&aitv.it_value,
269 				    (struct timeval *)&time);
270 	} else
271 		aitv = p->p_stats->p_timer[uap->which];
272 	splx(s);
273 	return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
274 	    sizeof (struct itimerval)));
275 }
276 
277 #ifndef _SYS_SYSPROTO_H_
278 struct setitimer_args {
279 	u_int	which;
280 	struct	itimerval *itv, *oitv;
281 };
282 #endif
283 /* ARGSUSED */
284 int
285 setitimer(p, uap, retval)
286 	struct proc *p;
287 	register struct setitimer_args *uap;
288 	int *retval;
289 {
290 	struct itimerval aitv;
291 	register struct itimerval *itvp;
292 	int s, error;
293 
294 	if (uap->which > ITIMER_PROF)
295 		return (EINVAL);
296 	itvp = uap->itv;
297 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
298 	    sizeof(struct itimerval))))
299 		return (error);
300 	if ((uap->itv = uap->oitv) &&
301 	    (error = getitimer(p, (struct getitimer_args *)uap, retval)))
302 		return (error);
303 	if (itvp == 0)
304 		return (0);
305 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
306 		return (EINVAL);
307 	s = splclock();
308 	if (uap->which == ITIMER_REAL) {
309 		untimeout(realitexpire, (caddr_t)p);
310 		if (timerisset(&aitv.it_value)) {
311 			timevaladd(&aitv.it_value, (struct timeval *)&time);
312 			timeout(realitexpire, (caddr_t)p, hzto(&aitv.it_value));
313 		}
314 		p->p_realtimer = aitv;
315 	} else
316 		p->p_stats->p_timer[uap->which] = aitv;
317 	splx(s);
318 	return (0);
319 }
320 
321 /*
322  * Real interval timer expired:
323  * send process whose timer expired an alarm signal.
324  * If time is not set up to reload, then just return.
325  * Else compute next time timer should go off which is > current time.
326  * This is where delay in processing this timeout causes multiple
327  * SIGALRM calls to be compressed into one.
328  * hzto() always adds 1 to allow for the time until the next clock
329  * interrupt being strictly less than 1 clock tick, but we don't want
330  * that here since we want to appear to be in sync with the clock
331  * interrupt even when we're delayed.
332  */
333 void
334 realitexpire(arg)
335 	void *arg;
336 {
337 	register struct proc *p;
338 	int s;
339 
340 	p = (struct proc *)arg;
341 	psignal(p, SIGALRM);
342 	if (!timerisset(&p->p_realtimer.it_interval)) {
343 		timerclear(&p->p_realtimer.it_value);
344 		return;
345 	}
346 	for (;;) {
347 		s = splclock();
348 		timevaladd(&p->p_realtimer.it_value,
349 		    &p->p_realtimer.it_interval);
350 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
351 			timeout(realitexpire, (caddr_t)p,
352 			    hzto(&p->p_realtimer.it_value) - 1);
353 			splx(s);
354 			return;
355 		}
356 		splx(s);
357 	}
358 }
359 
360 /*
361  * Check that a proposed value to load into the .it_value or
362  * .it_interval part of an interval timer is acceptable, and
363  * fix it to have at least minimal value (i.e. if it is less
364  * than the resolution of the clock, round it up.)
365  */
366 int
367 itimerfix(tv)
368 	struct timeval *tv;
369 {
370 
371 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
372 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
373 		return (EINVAL);
374 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
375 		tv->tv_usec = tick;
376 	return (0);
377 }
378 
379 /*
380  * Decrement an interval timer by a specified number
381  * of microseconds, which must be less than a second,
382  * i.e. < 1000000.  If the timer expires, then reload
383  * it.  In this case, carry over (usec - old value) to
384  * reduce the value reloaded into the timer so that
385  * the timer does not drift.  This routine assumes
386  * that it is called in a context where the timers
387  * on which it is operating cannot change in value.
388  */
389 int
390 itimerdecr(itp, usec)
391 	register struct itimerval *itp;
392 	int usec;
393 {
394 
395 	if (itp->it_value.tv_usec < usec) {
396 		if (itp->it_value.tv_sec == 0) {
397 			/* expired, and already in next interval */
398 			usec -= itp->it_value.tv_usec;
399 			goto expire;
400 		}
401 		itp->it_value.tv_usec += 1000000;
402 		itp->it_value.tv_sec--;
403 	}
404 	itp->it_value.tv_usec -= usec;
405 	usec = 0;
406 	if (timerisset(&itp->it_value))
407 		return (1);
408 	/* expired, exactly at end of interval */
409 expire:
410 	if (timerisset(&itp->it_interval)) {
411 		itp->it_value = itp->it_interval;
412 		itp->it_value.tv_usec -= usec;
413 		if (itp->it_value.tv_usec < 0) {
414 			itp->it_value.tv_usec += 1000000;
415 			itp->it_value.tv_sec--;
416 		}
417 	} else
418 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
419 	return (0);
420 }
421 
422 /*
423  * Add and subtract routines for timevals.
424  * N.B.: subtract routine doesn't deal with
425  * results which are before the beginning,
426  * it just gets very confused in this case.
427  * Caveat emptor.
428  */
429 void
430 timevaladd(t1, t2)
431 	struct timeval *t1, *t2;
432 {
433 
434 	t1->tv_sec += t2->tv_sec;
435 	t1->tv_usec += t2->tv_usec;
436 	timevalfix(t1);
437 }
438 
439 void
440 timevalsub(t1, t2)
441 	struct timeval *t1, *t2;
442 {
443 
444 	t1->tv_sec -= t2->tv_sec;
445 	t1->tv_usec -= t2->tv_usec;
446 	timevalfix(t1);
447 }
448 
449 static void
450 timevalfix(t1)
451 	struct timeval *t1;
452 {
453 
454 	if (t1->tv_usec < 0) {
455 		t1->tv_sec--;
456 		t1->tv_usec += 1000000;
457 	}
458 	if (t1->tv_usec >= 1000000) {
459 		t1->tv_sec++;
460 		t1->tv_usec -= 1000000;
461 	}
462 }
463