1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93 32 */ 33 34 #include <sys/cdefs.h> 35 #include "opt_ktrace.h" 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/limits.h> 40 #include <sys/clock.h> 41 #include <sys/lock.h> 42 #include <sys/mutex.h> 43 #include <sys/sysproto.h> 44 #include <sys/resourcevar.h> 45 #include <sys/signalvar.h> 46 #include <sys/kernel.h> 47 #include <sys/sleepqueue.h> 48 #include <sys/syscallsubr.h> 49 #include <sys/sysctl.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/posix4.h> 53 #include <sys/time.h> 54 #include <sys/timers.h> 55 #include <sys/timetc.h> 56 #include <sys/vnode.h> 57 #ifdef KTRACE 58 #include <sys/ktrace.h> 59 #endif 60 61 #include <vm/vm.h> 62 #include <vm/vm_extern.h> 63 64 #define MAX_CLOCKS (CLOCK_MONOTONIC+1) 65 #define CPUCLOCK_BIT 0x80000000 66 #define CPUCLOCK_PROCESS_BIT 0x40000000 67 #define CPUCLOCK_ID_MASK (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT)) 68 #define MAKE_THREAD_CPUCLOCK(tid) (CPUCLOCK_BIT|(tid)) 69 #define MAKE_PROCESS_CPUCLOCK(pid) \ 70 (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid)) 71 72 #define NS_PER_SEC 1000000000 73 74 static struct kclock posix_clocks[MAX_CLOCKS]; 75 static uma_zone_t itimer_zone = NULL; 76 77 /* 78 * Time of day and interval timer support. 79 * 80 * These routines provide the kernel entry points to get and set 81 * the time-of-day and per-process interval timers. Subroutines 82 * here provide support for adding and subtracting timeval structures 83 * and decrementing interval timers, optionally reloading the interval 84 * timers when they expire. 85 */ 86 87 static int settime(struct thread *, struct timeval *); 88 static void timevalfix(struct timeval *); 89 static int user_clock_nanosleep(struct thread *td, clockid_t clock_id, 90 int flags, const struct timespec *ua_rqtp, 91 struct timespec *ua_rmtp); 92 93 static void itimer_start(void); 94 static int itimer_init(void *, int, int); 95 static void itimer_fini(void *, int); 96 static void itimer_enter(struct itimer *); 97 static void itimer_leave(struct itimer *); 98 static struct itimer *itimer_find(struct proc *, int); 99 static void itimers_alloc(struct proc *); 100 static int realtimer_create(struct itimer *); 101 static int realtimer_gettime(struct itimer *, struct itimerspec *); 102 static int realtimer_settime(struct itimer *, int, 103 struct itimerspec *, struct itimerspec *); 104 static int realtimer_delete(struct itimer *); 105 static void realtimer_clocktime(clockid_t, struct timespec *); 106 static void realtimer_expire(void *); 107 static void realtimer_expire_l(struct itimer *it, bool proc_locked); 108 109 static void realitexpire(void *arg); 110 111 static int register_posix_clock(int, const struct kclock *); 112 static void itimer_fire(struct itimer *it); 113 static int itimespecfix(struct timespec *ts); 114 115 #define CLOCK_CALL(clock, call, arglist) \ 116 ((*posix_clocks[clock].call) arglist) 117 118 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL); 119 120 static int 121 settime(struct thread *td, struct timeval *tv) 122 { 123 struct timeval delta, tv1, tv2; 124 static struct timeval maxtime, laststep; 125 struct timespec ts; 126 127 microtime(&tv1); 128 delta = *tv; 129 timevalsub(&delta, &tv1); 130 131 /* 132 * If the system is secure, we do not allow the time to be 133 * set to a value earlier than 1 second less than the highest 134 * time we have yet seen. The worst a miscreant can do in 135 * this circumstance is "freeze" time. He couldn't go 136 * back to the past. 137 * 138 * We similarly do not allow the clock to be stepped more 139 * than one second, nor more than once per second. This allows 140 * a miscreant to make the clock march double-time, but no worse. 141 */ 142 if (securelevel_gt(td->td_ucred, 1) != 0) { 143 if (delta.tv_sec < 0 || delta.tv_usec < 0) { 144 /* 145 * Update maxtime to latest time we've seen. 146 */ 147 if (tv1.tv_sec > maxtime.tv_sec) 148 maxtime = tv1; 149 tv2 = *tv; 150 timevalsub(&tv2, &maxtime); 151 if (tv2.tv_sec < -1) { 152 tv->tv_sec = maxtime.tv_sec - 1; 153 printf("Time adjustment clamped to -1 second\n"); 154 } 155 } else { 156 if (tv1.tv_sec == laststep.tv_sec) 157 return (EPERM); 158 if (delta.tv_sec > 1) { 159 tv->tv_sec = tv1.tv_sec + 1; 160 printf("Time adjustment clamped to +1 second\n"); 161 } 162 laststep = *tv; 163 } 164 } 165 166 ts.tv_sec = tv->tv_sec; 167 ts.tv_nsec = tv->tv_usec * 1000; 168 tc_setclock(&ts); 169 resettodr(); 170 return (0); 171 } 172 173 #ifndef _SYS_SYSPROTO_H_ 174 struct clock_getcpuclockid2_args { 175 id_t id; 176 int which, 177 clockid_t *clock_id; 178 }; 179 #endif 180 /* ARGSUSED */ 181 int 182 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap) 183 { 184 clockid_t clk_id; 185 int error; 186 187 error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id); 188 if (error == 0) 189 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 190 return (error); 191 } 192 193 int 194 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which, 195 clockid_t *clk_id) 196 { 197 struct proc *p; 198 pid_t pid; 199 lwpid_t tid; 200 int error; 201 202 switch (which) { 203 case CPUCLOCK_WHICH_PID: 204 if (id != 0) { 205 error = pget(id, PGET_CANSEE | PGET_NOTID, &p); 206 if (error != 0) 207 return (error); 208 PROC_UNLOCK(p); 209 pid = id; 210 } else { 211 pid = td->td_proc->p_pid; 212 } 213 *clk_id = MAKE_PROCESS_CPUCLOCK(pid); 214 return (0); 215 case CPUCLOCK_WHICH_TID: 216 tid = id == 0 ? td->td_tid : id; 217 *clk_id = MAKE_THREAD_CPUCLOCK(tid); 218 return (0); 219 default: 220 return (EINVAL); 221 } 222 } 223 224 #ifndef _SYS_SYSPROTO_H_ 225 struct clock_gettime_args { 226 clockid_t clock_id; 227 struct timespec *tp; 228 }; 229 #endif 230 /* ARGSUSED */ 231 int 232 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap) 233 { 234 struct timespec ats; 235 int error; 236 237 error = kern_clock_gettime(td, uap->clock_id, &ats); 238 if (error == 0) 239 error = copyout(&ats, uap->tp, sizeof(ats)); 240 241 return (error); 242 } 243 244 static inline void 245 cputick2timespec(uint64_t runtime, struct timespec *ats) 246 { 247 uint64_t tr; 248 tr = cpu_tickrate(); 249 ats->tv_sec = runtime / tr; 250 ats->tv_nsec = ((runtime % tr) * 1000000000ULL) / tr; 251 } 252 253 void 254 kern_thread_cputime(struct thread *targettd, struct timespec *ats) 255 { 256 uint64_t runtime, curtime, switchtime; 257 258 if (targettd == NULL) { /* current thread */ 259 spinlock_enter(); 260 switchtime = PCPU_GET(switchtime); 261 curtime = cpu_ticks(); 262 runtime = curthread->td_runtime; 263 spinlock_exit(); 264 runtime += curtime - switchtime; 265 } else { 266 PROC_LOCK_ASSERT(targettd->td_proc, MA_OWNED); 267 thread_lock(targettd); 268 runtime = targettd->td_runtime; 269 thread_unlock(targettd); 270 } 271 cputick2timespec(runtime, ats); 272 } 273 274 void 275 kern_process_cputime(struct proc *targetp, struct timespec *ats) 276 { 277 uint64_t runtime; 278 struct rusage ru; 279 280 PROC_LOCK_ASSERT(targetp, MA_OWNED); 281 PROC_STATLOCK(targetp); 282 rufetch(targetp, &ru); 283 runtime = targetp->p_rux.rux_runtime; 284 if (curthread->td_proc == targetp) 285 runtime += cpu_ticks() - PCPU_GET(switchtime); 286 PROC_STATUNLOCK(targetp); 287 cputick2timespec(runtime, ats); 288 } 289 290 static int 291 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats) 292 { 293 struct proc *p, *p2; 294 struct thread *td2; 295 lwpid_t tid; 296 pid_t pid; 297 int error; 298 299 p = td->td_proc; 300 if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) { 301 tid = clock_id & CPUCLOCK_ID_MASK; 302 td2 = tdfind(tid, p->p_pid); 303 if (td2 == NULL) 304 return (EINVAL); 305 kern_thread_cputime(td2, ats); 306 PROC_UNLOCK(td2->td_proc); 307 } else { 308 pid = clock_id & CPUCLOCK_ID_MASK; 309 error = pget(pid, PGET_CANSEE, &p2); 310 if (error != 0) 311 return (EINVAL); 312 kern_process_cputime(p2, ats); 313 PROC_UNLOCK(p2); 314 } 315 return (0); 316 } 317 318 int 319 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats) 320 { 321 struct timeval sys, user; 322 struct proc *p; 323 324 p = td->td_proc; 325 switch (clock_id) { 326 case CLOCK_REALTIME: /* Default to precise. */ 327 case CLOCK_REALTIME_PRECISE: 328 nanotime(ats); 329 break; 330 case CLOCK_REALTIME_FAST: 331 getnanotime(ats); 332 break; 333 case CLOCK_VIRTUAL: 334 PROC_LOCK(p); 335 PROC_STATLOCK(p); 336 calcru(p, &user, &sys); 337 PROC_STATUNLOCK(p); 338 PROC_UNLOCK(p); 339 TIMEVAL_TO_TIMESPEC(&user, ats); 340 break; 341 case CLOCK_PROF: 342 PROC_LOCK(p); 343 PROC_STATLOCK(p); 344 calcru(p, &user, &sys); 345 PROC_STATUNLOCK(p); 346 PROC_UNLOCK(p); 347 timevaladd(&user, &sys); 348 TIMEVAL_TO_TIMESPEC(&user, ats); 349 break; 350 case CLOCK_MONOTONIC: /* Default to precise. */ 351 case CLOCK_MONOTONIC_PRECISE: 352 case CLOCK_UPTIME: 353 case CLOCK_UPTIME_PRECISE: 354 nanouptime(ats); 355 break; 356 case CLOCK_UPTIME_FAST: 357 case CLOCK_MONOTONIC_FAST: 358 getnanouptime(ats); 359 break; 360 case CLOCK_SECOND: 361 ats->tv_sec = time_second; 362 ats->tv_nsec = 0; 363 break; 364 case CLOCK_THREAD_CPUTIME_ID: 365 kern_thread_cputime(NULL, ats); 366 break; 367 case CLOCK_PROCESS_CPUTIME_ID: 368 PROC_LOCK(p); 369 kern_process_cputime(p, ats); 370 PROC_UNLOCK(p); 371 break; 372 default: 373 if ((int)clock_id >= 0) 374 return (EINVAL); 375 return (get_cputime(td, clock_id, ats)); 376 } 377 return (0); 378 } 379 380 #ifndef _SYS_SYSPROTO_H_ 381 struct clock_settime_args { 382 clockid_t clock_id; 383 const struct timespec *tp; 384 }; 385 #endif 386 /* ARGSUSED */ 387 int 388 sys_clock_settime(struct thread *td, struct clock_settime_args *uap) 389 { 390 struct timespec ats; 391 int error; 392 393 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0) 394 return (error); 395 return (kern_clock_settime(td, uap->clock_id, &ats)); 396 } 397 398 static int allow_insane_settime = 0; 399 SYSCTL_INT(_debug, OID_AUTO, allow_insane_settime, CTLFLAG_RWTUN, 400 &allow_insane_settime, 0, 401 "do not perform possibly restrictive checks on settime(2) args"); 402 403 int 404 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats) 405 { 406 struct timeval atv; 407 int error; 408 409 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 410 return (error); 411 if (clock_id != CLOCK_REALTIME) 412 return (EINVAL); 413 if (!timespecvalid_interval(ats)) 414 return (EINVAL); 415 if (!allow_insane_settime && 416 (ats->tv_sec > 8000ULL * 365 * 24 * 60 * 60 || 417 ats->tv_sec < utc_offset())) 418 return (EINVAL); 419 /* XXX Don't convert nsec->usec and back */ 420 TIMESPEC_TO_TIMEVAL(&atv, ats); 421 error = settime(td, &atv); 422 return (error); 423 } 424 425 #ifndef _SYS_SYSPROTO_H_ 426 struct clock_getres_args { 427 clockid_t clock_id; 428 struct timespec *tp; 429 }; 430 #endif 431 int 432 sys_clock_getres(struct thread *td, struct clock_getres_args *uap) 433 { 434 struct timespec ts; 435 int error; 436 437 if (uap->tp == NULL) 438 return (0); 439 440 error = kern_clock_getres(td, uap->clock_id, &ts); 441 if (error == 0) 442 error = copyout(&ts, uap->tp, sizeof(ts)); 443 return (error); 444 } 445 446 int 447 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts) 448 { 449 450 ts->tv_sec = 0; 451 switch (clock_id) { 452 case CLOCK_REALTIME: 453 case CLOCK_REALTIME_FAST: 454 case CLOCK_REALTIME_PRECISE: 455 case CLOCK_MONOTONIC: 456 case CLOCK_MONOTONIC_FAST: 457 case CLOCK_MONOTONIC_PRECISE: 458 case CLOCK_UPTIME: 459 case CLOCK_UPTIME_FAST: 460 case CLOCK_UPTIME_PRECISE: 461 /* 462 * Round up the result of the division cheaply by adding 1. 463 * Rounding up is especially important if rounding down 464 * would give 0. Perfect rounding is unimportant. 465 */ 466 ts->tv_nsec = NS_PER_SEC / tc_getfrequency() + 1; 467 break; 468 case CLOCK_VIRTUAL: 469 case CLOCK_PROF: 470 /* Accurately round up here because we can do so cheaply. */ 471 ts->tv_nsec = howmany(NS_PER_SEC, hz); 472 break; 473 case CLOCK_SECOND: 474 ts->tv_sec = 1; 475 ts->tv_nsec = 0; 476 break; 477 case CLOCK_THREAD_CPUTIME_ID: 478 case CLOCK_PROCESS_CPUTIME_ID: 479 cputime: 480 ts->tv_nsec = 1000000000 / cpu_tickrate() + 1; 481 break; 482 default: 483 if ((int)clock_id < 0) 484 goto cputime; 485 return (EINVAL); 486 } 487 return (0); 488 } 489 490 int 491 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt) 492 { 493 494 return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt, 495 rmt)); 496 } 497 498 static uint8_t nanowait[MAXCPU]; 499 500 int 501 kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 502 const struct timespec *rqt, struct timespec *rmt) 503 { 504 struct timespec ts, now; 505 sbintime_t sbt, sbtt, prec, tmp; 506 time_t over; 507 int error; 508 bool is_abs_real; 509 510 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= NS_PER_SEC) 511 return (EINVAL); 512 if ((flags & ~TIMER_ABSTIME) != 0) 513 return (EINVAL); 514 switch (clock_id) { 515 case CLOCK_REALTIME: 516 case CLOCK_REALTIME_PRECISE: 517 case CLOCK_REALTIME_FAST: 518 case CLOCK_SECOND: 519 is_abs_real = (flags & TIMER_ABSTIME) != 0; 520 break; 521 case CLOCK_MONOTONIC: 522 case CLOCK_MONOTONIC_PRECISE: 523 case CLOCK_MONOTONIC_FAST: 524 case CLOCK_UPTIME: 525 case CLOCK_UPTIME_PRECISE: 526 case CLOCK_UPTIME_FAST: 527 is_abs_real = false; 528 break; 529 case CLOCK_VIRTUAL: 530 case CLOCK_PROF: 531 case CLOCK_PROCESS_CPUTIME_ID: 532 return (ENOTSUP); 533 case CLOCK_THREAD_CPUTIME_ID: 534 default: 535 return (EINVAL); 536 } 537 do { 538 ts = *rqt; 539 if ((flags & TIMER_ABSTIME) != 0) { 540 if (is_abs_real) 541 td->td_rtcgen = 542 atomic_load_acq_int(&rtc_generation); 543 error = kern_clock_gettime(td, clock_id, &now); 544 KASSERT(error == 0, ("kern_clock_gettime: %d", error)); 545 timespecsub(&ts, &now, &ts); 546 } 547 if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) { 548 error = EWOULDBLOCK; 549 break; 550 } 551 if (ts.tv_sec > INT32_MAX / 2) { 552 over = ts.tv_sec - INT32_MAX / 2; 553 ts.tv_sec -= over; 554 } else 555 over = 0; 556 tmp = tstosbt(ts); 557 prec = tmp; 558 prec >>= tc_precexp; 559 if (TIMESEL(&sbt, tmp)) 560 sbt += tc_tick_sbt; 561 sbt += tmp; 562 error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp", 563 sbt, prec, C_ABSOLUTE); 564 } while (error == 0 && is_abs_real && td->td_rtcgen == 0); 565 td->td_rtcgen = 0; 566 if (error != EWOULDBLOCK) { 567 if (TIMESEL(&sbtt, tmp)) 568 sbtt += tc_tick_sbt; 569 if (sbtt >= sbt) 570 return (0); 571 if (error == ERESTART) 572 error = EINTR; 573 if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) { 574 ts = sbttots(sbt - sbtt); 575 ts.tv_sec += over; 576 if (ts.tv_sec < 0) 577 timespecclear(&ts); 578 *rmt = ts; 579 } 580 return (error); 581 } 582 return (0); 583 } 584 585 #ifndef _SYS_SYSPROTO_H_ 586 struct nanosleep_args { 587 struct timespec *rqtp; 588 struct timespec *rmtp; 589 }; 590 #endif 591 /* ARGSUSED */ 592 int 593 sys_nanosleep(struct thread *td, struct nanosleep_args *uap) 594 { 595 596 return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, 597 uap->rqtp, uap->rmtp)); 598 } 599 600 #ifndef _SYS_SYSPROTO_H_ 601 struct clock_nanosleep_args { 602 clockid_t clock_id; 603 int flags; 604 struct timespec *rqtp; 605 struct timespec *rmtp; 606 }; 607 #endif 608 /* ARGSUSED */ 609 int 610 sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap) 611 { 612 int error; 613 614 error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp, 615 uap->rmtp); 616 return (kern_posix_error(td, error)); 617 } 618 619 static int 620 user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 621 const struct timespec *ua_rqtp, struct timespec *ua_rmtp) 622 { 623 struct timespec rmt, rqt; 624 int error, error2; 625 626 error = copyin(ua_rqtp, &rqt, sizeof(rqt)); 627 if (error) 628 return (error); 629 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 630 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 631 error2 = copyout(&rmt, ua_rmtp, sizeof(rmt)); 632 if (error2 != 0) 633 error = error2; 634 } 635 return (error); 636 } 637 638 #ifndef _SYS_SYSPROTO_H_ 639 struct gettimeofday_args { 640 struct timeval *tp; 641 struct timezone *tzp; 642 }; 643 #endif 644 /* ARGSUSED */ 645 int 646 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap) 647 { 648 struct timeval atv; 649 struct timezone rtz; 650 int error = 0; 651 652 if (uap->tp) { 653 microtime(&atv); 654 error = copyout(&atv, uap->tp, sizeof (atv)); 655 } 656 if (error == 0 && uap->tzp != NULL) { 657 rtz.tz_minuteswest = 0; 658 rtz.tz_dsttime = 0; 659 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 660 } 661 return (error); 662 } 663 664 #ifndef _SYS_SYSPROTO_H_ 665 struct settimeofday_args { 666 struct timeval *tv; 667 struct timezone *tzp; 668 }; 669 #endif 670 /* ARGSUSED */ 671 int 672 sys_settimeofday(struct thread *td, struct settimeofday_args *uap) 673 { 674 struct timeval atv, *tvp; 675 struct timezone atz, *tzp; 676 int error; 677 678 if (uap->tv) { 679 error = copyin(uap->tv, &atv, sizeof(atv)); 680 if (error) 681 return (error); 682 tvp = &atv; 683 } else 684 tvp = NULL; 685 if (uap->tzp) { 686 error = copyin(uap->tzp, &atz, sizeof(atz)); 687 if (error) 688 return (error); 689 tzp = &atz; 690 } else 691 tzp = NULL; 692 return (kern_settimeofday(td, tvp, tzp)); 693 } 694 695 int 696 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp) 697 { 698 int error; 699 700 error = priv_check(td, PRIV_SETTIMEOFDAY); 701 if (error) 702 return (error); 703 /* Verify all parameters before changing time. */ 704 if (tv) { 705 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 || 706 tv->tv_sec < 0) 707 return (EINVAL); 708 error = settime(td, tv); 709 } 710 return (error); 711 } 712 713 /* 714 * Get value of an interval timer. The process virtual and profiling virtual 715 * time timers are kept in the p_stats area, since they can be swapped out. 716 * These are kept internally in the way they are specified externally: in 717 * time until they expire. 718 * 719 * The real time interval timer is kept in the process table slot for the 720 * process, and its value (it_value) is kept as an absolute time rather than 721 * as a delta, so that it is easy to keep periodic real-time signals from 722 * drifting. 723 * 724 * Virtual time timers are processed in the hardclock() routine of 725 * kern_clock.c. The real time timer is processed by a timeout routine, 726 * called from the softclock() routine. Since a callout may be delayed in 727 * real time due to interrupt processing in the system, it is possible for 728 * the real time timeout routine (realitexpire, given below), to be delayed 729 * in real time past when it is supposed to occur. It does not suffice, 730 * therefore, to reload the real timer .it_value from the real time timers 731 * .it_interval. Rather, we compute the next time in absolute time the timer 732 * should go off. 733 */ 734 #ifndef _SYS_SYSPROTO_H_ 735 struct getitimer_args { 736 u_int which; 737 struct itimerval *itv; 738 }; 739 #endif 740 int 741 sys_getitimer(struct thread *td, struct getitimer_args *uap) 742 { 743 struct itimerval aitv; 744 int error; 745 746 error = kern_getitimer(td, uap->which, &aitv); 747 if (error != 0) 748 return (error); 749 return (copyout(&aitv, uap->itv, sizeof (struct itimerval))); 750 } 751 752 int 753 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv) 754 { 755 struct proc *p = td->td_proc; 756 struct timeval ctv; 757 758 if (which > ITIMER_PROF) 759 return (EINVAL); 760 761 if (which == ITIMER_REAL) { 762 /* 763 * Convert from absolute to relative time in .it_value 764 * part of real time timer. If time for real time timer 765 * has passed return 0, else return difference between 766 * current time and time for the timer to go off. 767 */ 768 PROC_LOCK(p); 769 *aitv = p->p_realtimer; 770 PROC_UNLOCK(p); 771 if (timevalisset(&aitv->it_value)) { 772 microuptime(&ctv); 773 if (timevalcmp(&aitv->it_value, &ctv, <)) 774 timevalclear(&aitv->it_value); 775 else 776 timevalsub(&aitv->it_value, &ctv); 777 } 778 } else { 779 PROC_ITIMLOCK(p); 780 *aitv = p->p_stats->p_timer[which]; 781 PROC_ITIMUNLOCK(p); 782 } 783 #ifdef KTRACE 784 if (KTRPOINT(td, KTR_STRUCT)) 785 ktritimerval(aitv); 786 #endif 787 return (0); 788 } 789 790 #ifndef _SYS_SYSPROTO_H_ 791 struct setitimer_args { 792 u_int which; 793 struct itimerval *itv, *oitv; 794 }; 795 #endif 796 int 797 sys_setitimer(struct thread *td, struct setitimer_args *uap) 798 { 799 struct itimerval aitv, oitv; 800 int error; 801 802 if (uap->itv == NULL) { 803 uap->itv = uap->oitv; 804 return (sys_getitimer(td, (struct getitimer_args *)uap)); 805 } 806 807 if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval)))) 808 return (error); 809 error = kern_setitimer(td, uap->which, &aitv, &oitv); 810 if (error != 0 || uap->oitv == NULL) 811 return (error); 812 return (copyout(&oitv, uap->oitv, sizeof(struct itimerval))); 813 } 814 815 int 816 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv, 817 struct itimerval *oitv) 818 { 819 struct proc *p = td->td_proc; 820 struct timeval ctv; 821 sbintime_t sbt, pr; 822 823 if (aitv == NULL) 824 return (kern_getitimer(td, which, oitv)); 825 826 if (which > ITIMER_PROF) 827 return (EINVAL); 828 #ifdef KTRACE 829 if (KTRPOINT(td, KTR_STRUCT)) 830 ktritimerval(aitv); 831 #endif 832 if (itimerfix(&aitv->it_value) || 833 aitv->it_value.tv_sec > INT32_MAX / 2) 834 return (EINVAL); 835 if (!timevalisset(&aitv->it_value)) 836 timevalclear(&aitv->it_interval); 837 else if (itimerfix(&aitv->it_interval) || 838 aitv->it_interval.tv_sec > INT32_MAX / 2) 839 return (EINVAL); 840 841 if (which == ITIMER_REAL) { 842 PROC_LOCK(p); 843 if (timevalisset(&p->p_realtimer.it_value)) 844 callout_stop(&p->p_itcallout); 845 microuptime(&ctv); 846 if (timevalisset(&aitv->it_value)) { 847 pr = tvtosbt(aitv->it_value) >> tc_precexp; 848 timevaladd(&aitv->it_value, &ctv); 849 sbt = tvtosbt(aitv->it_value); 850 callout_reset_sbt(&p->p_itcallout, sbt, pr, 851 realitexpire, p, C_ABSOLUTE); 852 } 853 *oitv = p->p_realtimer; 854 p->p_realtimer = *aitv; 855 PROC_UNLOCK(p); 856 if (timevalisset(&oitv->it_value)) { 857 if (timevalcmp(&oitv->it_value, &ctv, <)) 858 timevalclear(&oitv->it_value); 859 else 860 timevalsub(&oitv->it_value, &ctv); 861 } 862 } else { 863 if (aitv->it_interval.tv_sec == 0 && 864 aitv->it_interval.tv_usec != 0 && 865 aitv->it_interval.tv_usec < tick) 866 aitv->it_interval.tv_usec = tick; 867 if (aitv->it_value.tv_sec == 0 && 868 aitv->it_value.tv_usec != 0 && 869 aitv->it_value.tv_usec < tick) 870 aitv->it_value.tv_usec = tick; 871 PROC_ITIMLOCK(p); 872 *oitv = p->p_stats->p_timer[which]; 873 p->p_stats->p_timer[which] = *aitv; 874 PROC_ITIMUNLOCK(p); 875 } 876 #ifdef KTRACE 877 if (KTRPOINT(td, KTR_STRUCT)) 878 ktritimerval(oitv); 879 #endif 880 return (0); 881 } 882 883 static void 884 realitexpire_reset_callout(struct proc *p, sbintime_t *isbtp) 885 { 886 sbintime_t prec; 887 888 prec = isbtp == NULL ? tvtosbt(p->p_realtimer.it_interval) : *isbtp; 889 callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value), 890 prec >> tc_precexp, realitexpire, p, C_ABSOLUTE); 891 } 892 893 void 894 itimer_proc_continue(struct proc *p) 895 { 896 struct timeval ctv; 897 struct itimer *it; 898 int id; 899 900 PROC_LOCK_ASSERT(p, MA_OWNED); 901 902 if ((p->p_flag2 & P2_ITSTOPPED) != 0) { 903 p->p_flag2 &= ~P2_ITSTOPPED; 904 microuptime(&ctv); 905 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >=)) 906 realitexpire(p); 907 else 908 realitexpire_reset_callout(p, NULL); 909 } 910 911 if (p->p_itimers != NULL) { 912 for (id = 3; id < TIMER_MAX; id++) { 913 it = p->p_itimers->its_timers[id]; 914 if (it == NULL) 915 continue; 916 if ((it->it_flags & ITF_PSTOPPED) != 0) { 917 ITIMER_LOCK(it); 918 if ((it->it_flags & ITF_PSTOPPED) != 0) { 919 it->it_flags &= ~ITF_PSTOPPED; 920 if ((it->it_flags & ITF_DELETING) == 0) 921 realtimer_expire_l(it, true); 922 } 923 ITIMER_UNLOCK(it); 924 } 925 } 926 } 927 } 928 929 /* 930 * Real interval timer expired: 931 * send process whose timer expired an alarm signal. 932 * If time is not set up to reload, then just return. 933 * Else compute next time timer should go off which is > current time. 934 * This is where delay in processing this timeout causes multiple 935 * SIGALRM calls to be compressed into one. 936 * tvtohz() always adds 1 to allow for the time until the next clock 937 * interrupt being strictly less than 1 clock tick, but we don't want 938 * that here since we want to appear to be in sync with the clock 939 * interrupt even when we're delayed. 940 */ 941 static void 942 realitexpire(void *arg) 943 { 944 struct proc *p; 945 struct timeval ctv; 946 sbintime_t isbt; 947 948 p = (struct proc *)arg; 949 kern_psignal(p, SIGALRM); 950 if (!timevalisset(&p->p_realtimer.it_interval)) { 951 timevalclear(&p->p_realtimer.it_value); 952 return; 953 } 954 955 isbt = tvtosbt(p->p_realtimer.it_interval); 956 if (isbt >= sbt_timethreshold) 957 getmicrouptime(&ctv); 958 else 959 microuptime(&ctv); 960 do { 961 timevaladd(&p->p_realtimer.it_value, 962 &p->p_realtimer.it_interval); 963 } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=)); 964 965 if (P_SHOULDSTOP(p) || P_KILLED(p)) { 966 p->p_flag2 |= P2_ITSTOPPED; 967 return; 968 } 969 970 p->p_flag2 &= ~P2_ITSTOPPED; 971 realitexpire_reset_callout(p, &isbt); 972 } 973 974 /* 975 * Check that a proposed value to load into the .it_value or 976 * .it_interval part of an interval timer is acceptable, and 977 * fix it to have at least minimal value (i.e. if it is less 978 * than the resolution of the clock, round it up.) 979 */ 980 int 981 itimerfix(struct timeval *tv) 982 { 983 984 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000) 985 return (EINVAL); 986 if (tv->tv_sec == 0 && tv->tv_usec != 0 && 987 tv->tv_usec < (u_int)tick / 16) 988 tv->tv_usec = (u_int)tick / 16; 989 return (0); 990 } 991 992 /* 993 * Decrement an interval timer by a specified number 994 * of microseconds, which must be less than a second, 995 * i.e. < 1000000. If the timer expires, then reload 996 * it. In this case, carry over (usec - old value) to 997 * reduce the value reloaded into the timer so that 998 * the timer does not drift. This routine assumes 999 * that it is called in a context where the timers 1000 * on which it is operating cannot change in value. 1001 */ 1002 int 1003 itimerdecr(struct itimerval *itp, int usec) 1004 { 1005 1006 if (itp->it_value.tv_usec < usec) { 1007 if (itp->it_value.tv_sec == 0) { 1008 /* expired, and already in next interval */ 1009 usec -= itp->it_value.tv_usec; 1010 goto expire; 1011 } 1012 itp->it_value.tv_usec += 1000000; 1013 itp->it_value.tv_sec--; 1014 } 1015 itp->it_value.tv_usec -= usec; 1016 usec = 0; 1017 if (timevalisset(&itp->it_value)) 1018 return (1); 1019 /* expired, exactly at end of interval */ 1020 expire: 1021 if (timevalisset(&itp->it_interval)) { 1022 itp->it_value = itp->it_interval; 1023 itp->it_value.tv_usec -= usec; 1024 if (itp->it_value.tv_usec < 0) { 1025 itp->it_value.tv_usec += 1000000; 1026 itp->it_value.tv_sec--; 1027 } 1028 } else 1029 itp->it_value.tv_usec = 0; /* sec is already 0 */ 1030 return (0); 1031 } 1032 1033 /* 1034 * Add and subtract routines for timevals. 1035 * N.B.: subtract routine doesn't deal with 1036 * results which are before the beginning, 1037 * it just gets very confused in this case. 1038 * Caveat emptor. 1039 */ 1040 void 1041 timevaladd(struct timeval *t1, const struct timeval *t2) 1042 { 1043 1044 t1->tv_sec += t2->tv_sec; 1045 t1->tv_usec += t2->tv_usec; 1046 timevalfix(t1); 1047 } 1048 1049 void 1050 timevalsub(struct timeval *t1, const struct timeval *t2) 1051 { 1052 1053 t1->tv_sec -= t2->tv_sec; 1054 t1->tv_usec -= t2->tv_usec; 1055 timevalfix(t1); 1056 } 1057 1058 static void 1059 timevalfix(struct timeval *t1) 1060 { 1061 1062 if (t1->tv_usec < 0) { 1063 t1->tv_sec--; 1064 t1->tv_usec += 1000000; 1065 } 1066 if (t1->tv_usec >= 1000000) { 1067 t1->tv_sec++; 1068 t1->tv_usec -= 1000000; 1069 } 1070 } 1071 1072 /* 1073 * ratecheck(): simple time-based rate-limit checking. 1074 */ 1075 int 1076 ratecheck(struct timeval *lasttime, const struct timeval *mininterval) 1077 { 1078 struct timeval tv, delta; 1079 int rv = 0; 1080 1081 getmicrouptime(&tv); /* NB: 10ms precision */ 1082 delta = tv; 1083 timevalsub(&delta, lasttime); 1084 1085 /* 1086 * check for 0,0 is so that the message will be seen at least once, 1087 * even if interval is huge. 1088 */ 1089 if (timevalcmp(&delta, mininterval, >=) || 1090 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { 1091 *lasttime = tv; 1092 rv = 1; 1093 } 1094 1095 return (rv); 1096 } 1097 1098 /* 1099 * eventratecheck(): events per second limitation. 1100 * 1101 * Return 0 if the limit is to be enforced (e.g. the caller 1102 * should ignore the event because of the rate limitation). 1103 * 1104 * maxeps of 0 always causes zero to be returned. maxeps of -1 1105 * always causes 1 to be returned; this effectively defeats rate 1106 * limiting. 1107 * 1108 * Note that we maintain the struct timeval for compatibility 1109 * with other bsd systems. We reuse the storage and just monitor 1110 * clock ticks for minimal overhead. 1111 */ 1112 int 1113 eventratecheck(struct timeval *lasttime, int *cureps, int maxeps) 1114 { 1115 int now; 1116 1117 /* 1118 * Reset the last time and counter if this is the first call 1119 * or more than a second has passed since the last update of 1120 * lasttime. 1121 */ 1122 now = ticks; 1123 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) { 1124 lasttime->tv_sec = now; 1125 *cureps = 1; 1126 return (maxeps != 0); 1127 } else { 1128 (*cureps)++; /* NB: ignore potential overflow */ 1129 return (maxeps < 0 || *cureps <= maxeps); 1130 } 1131 } 1132 1133 static void 1134 itimer_start(void) 1135 { 1136 static const struct kclock rt_clock = { 1137 .timer_create = realtimer_create, 1138 .timer_delete = realtimer_delete, 1139 .timer_settime = realtimer_settime, 1140 .timer_gettime = realtimer_gettime, 1141 }; 1142 1143 itimer_zone = uma_zcreate("itimer", sizeof(struct itimer), 1144 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0); 1145 register_posix_clock(CLOCK_REALTIME, &rt_clock); 1146 register_posix_clock(CLOCK_MONOTONIC, &rt_clock); 1147 p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L); 1148 p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX); 1149 p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX); 1150 } 1151 1152 static int 1153 register_posix_clock(int clockid, const struct kclock *clk) 1154 { 1155 if ((unsigned)clockid >= MAX_CLOCKS) { 1156 printf("%s: invalid clockid\n", __func__); 1157 return (0); 1158 } 1159 posix_clocks[clockid] = *clk; 1160 return (1); 1161 } 1162 1163 static int 1164 itimer_init(void *mem, int size, int flags) 1165 { 1166 struct itimer *it; 1167 1168 it = (struct itimer *)mem; 1169 mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF); 1170 return (0); 1171 } 1172 1173 static void 1174 itimer_fini(void *mem, int size) 1175 { 1176 struct itimer *it; 1177 1178 it = (struct itimer *)mem; 1179 mtx_destroy(&it->it_mtx); 1180 } 1181 1182 static void 1183 itimer_enter(struct itimer *it) 1184 { 1185 1186 mtx_assert(&it->it_mtx, MA_OWNED); 1187 it->it_usecount++; 1188 } 1189 1190 static void 1191 itimer_leave(struct itimer *it) 1192 { 1193 1194 mtx_assert(&it->it_mtx, MA_OWNED); 1195 KASSERT(it->it_usecount > 0, ("invalid it_usecount")); 1196 1197 if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0) 1198 wakeup(it); 1199 } 1200 1201 #ifndef _SYS_SYSPROTO_H_ 1202 struct ktimer_create_args { 1203 clockid_t clock_id; 1204 struct sigevent * evp; 1205 int * timerid; 1206 }; 1207 #endif 1208 int 1209 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap) 1210 { 1211 struct sigevent *evp, ev; 1212 int id; 1213 int error; 1214 1215 if (uap->evp == NULL) { 1216 evp = NULL; 1217 } else { 1218 error = copyin(uap->evp, &ev, sizeof(ev)); 1219 if (error != 0) 1220 return (error); 1221 evp = &ev; 1222 } 1223 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 1224 if (error == 0) { 1225 error = copyout(&id, uap->timerid, sizeof(int)); 1226 if (error != 0) 1227 kern_ktimer_delete(td, id); 1228 } 1229 return (error); 1230 } 1231 1232 int 1233 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp, 1234 int *timerid, int preset_id) 1235 { 1236 struct proc *p = td->td_proc; 1237 struct itimer *it; 1238 int id; 1239 int error; 1240 1241 if (clock_id < 0 || clock_id >= MAX_CLOCKS) 1242 return (EINVAL); 1243 1244 if (posix_clocks[clock_id].timer_create == NULL) 1245 return (EINVAL); 1246 1247 if (evp != NULL) { 1248 if (evp->sigev_notify != SIGEV_NONE && 1249 evp->sigev_notify != SIGEV_SIGNAL && 1250 evp->sigev_notify != SIGEV_THREAD_ID) 1251 return (EINVAL); 1252 if ((evp->sigev_notify == SIGEV_SIGNAL || 1253 evp->sigev_notify == SIGEV_THREAD_ID) && 1254 !_SIG_VALID(evp->sigev_signo)) 1255 return (EINVAL); 1256 } 1257 1258 if (p->p_itimers == NULL) 1259 itimers_alloc(p); 1260 1261 it = uma_zalloc(itimer_zone, M_WAITOK); 1262 it->it_flags = 0; 1263 it->it_usecount = 0; 1264 timespecclear(&it->it_time.it_value); 1265 timespecclear(&it->it_time.it_interval); 1266 it->it_overrun = 0; 1267 it->it_overrun_last = 0; 1268 it->it_clockid = clock_id; 1269 it->it_proc = p; 1270 ksiginfo_init(&it->it_ksi); 1271 it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT; 1272 error = CLOCK_CALL(clock_id, timer_create, (it)); 1273 if (error != 0) 1274 goto out; 1275 1276 PROC_LOCK(p); 1277 if (preset_id != -1) { 1278 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id")); 1279 id = preset_id; 1280 if (p->p_itimers->its_timers[id] != NULL) { 1281 PROC_UNLOCK(p); 1282 error = 0; 1283 goto out; 1284 } 1285 } else { 1286 /* 1287 * Find a free timer slot, skipping those reserved 1288 * for setitimer(). 1289 */ 1290 for (id = 3; id < TIMER_MAX; id++) 1291 if (p->p_itimers->its_timers[id] == NULL) 1292 break; 1293 if (id == TIMER_MAX) { 1294 PROC_UNLOCK(p); 1295 error = EAGAIN; 1296 goto out; 1297 } 1298 } 1299 p->p_itimers->its_timers[id] = it; 1300 if (evp != NULL) 1301 it->it_sigev = *evp; 1302 else { 1303 it->it_sigev.sigev_notify = SIGEV_SIGNAL; 1304 switch (clock_id) { 1305 default: 1306 case CLOCK_REALTIME: 1307 it->it_sigev.sigev_signo = SIGALRM; 1308 break; 1309 case CLOCK_VIRTUAL: 1310 it->it_sigev.sigev_signo = SIGVTALRM; 1311 break; 1312 case CLOCK_PROF: 1313 it->it_sigev.sigev_signo = SIGPROF; 1314 break; 1315 } 1316 it->it_sigev.sigev_value.sival_int = id; 1317 } 1318 1319 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1320 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1321 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo; 1322 it->it_ksi.ksi_code = SI_TIMER; 1323 it->it_ksi.ksi_value = it->it_sigev.sigev_value; 1324 it->it_ksi.ksi_timerid = id; 1325 } 1326 PROC_UNLOCK(p); 1327 *timerid = id; 1328 return (0); 1329 1330 out: 1331 ITIMER_LOCK(it); 1332 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1333 ITIMER_UNLOCK(it); 1334 uma_zfree(itimer_zone, it); 1335 return (error); 1336 } 1337 1338 #ifndef _SYS_SYSPROTO_H_ 1339 struct ktimer_delete_args { 1340 int timerid; 1341 }; 1342 #endif 1343 int 1344 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap) 1345 { 1346 1347 return (kern_ktimer_delete(td, uap->timerid)); 1348 } 1349 1350 static struct itimer * 1351 itimer_find(struct proc *p, int timerid) 1352 { 1353 struct itimer *it; 1354 1355 PROC_LOCK_ASSERT(p, MA_OWNED); 1356 if ((p->p_itimers == NULL) || 1357 (timerid < 0) || (timerid >= TIMER_MAX) || 1358 (it = p->p_itimers->its_timers[timerid]) == NULL) { 1359 return (NULL); 1360 } 1361 ITIMER_LOCK(it); 1362 if ((it->it_flags & ITF_DELETING) != 0) { 1363 ITIMER_UNLOCK(it); 1364 it = NULL; 1365 } 1366 return (it); 1367 } 1368 1369 int 1370 kern_ktimer_delete(struct thread *td, int timerid) 1371 { 1372 struct proc *p = td->td_proc; 1373 struct itimer *it; 1374 1375 PROC_LOCK(p); 1376 it = itimer_find(p, timerid); 1377 if (it == NULL) { 1378 PROC_UNLOCK(p); 1379 return (EINVAL); 1380 } 1381 PROC_UNLOCK(p); 1382 1383 it->it_flags |= ITF_DELETING; 1384 while (it->it_usecount > 0) { 1385 it->it_flags |= ITF_WANTED; 1386 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0); 1387 } 1388 it->it_flags &= ~ITF_WANTED; 1389 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1390 ITIMER_UNLOCK(it); 1391 1392 PROC_LOCK(p); 1393 if (KSI_ONQ(&it->it_ksi)) 1394 sigqueue_take(&it->it_ksi); 1395 p->p_itimers->its_timers[timerid] = NULL; 1396 PROC_UNLOCK(p); 1397 uma_zfree(itimer_zone, it); 1398 return (0); 1399 } 1400 1401 #ifndef _SYS_SYSPROTO_H_ 1402 struct ktimer_settime_args { 1403 int timerid; 1404 int flags; 1405 const struct itimerspec * value; 1406 struct itimerspec * ovalue; 1407 }; 1408 #endif 1409 int 1410 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap) 1411 { 1412 struct itimerspec val, oval, *ovalp; 1413 int error; 1414 1415 error = copyin(uap->value, &val, sizeof(val)); 1416 if (error != 0) 1417 return (error); 1418 ovalp = uap->ovalue != NULL ? &oval : NULL; 1419 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 1420 if (error == 0 && uap->ovalue != NULL) 1421 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp)); 1422 return (error); 1423 } 1424 1425 int 1426 kern_ktimer_settime(struct thread *td, int timer_id, int flags, 1427 struct itimerspec *val, struct itimerspec *oval) 1428 { 1429 struct proc *p; 1430 struct itimer *it; 1431 int error; 1432 1433 p = td->td_proc; 1434 PROC_LOCK(p); 1435 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1436 PROC_UNLOCK(p); 1437 error = EINVAL; 1438 } else { 1439 PROC_UNLOCK(p); 1440 itimer_enter(it); 1441 error = CLOCK_CALL(it->it_clockid, timer_settime, (it, 1442 flags, val, oval)); 1443 itimer_leave(it); 1444 ITIMER_UNLOCK(it); 1445 } 1446 return (error); 1447 } 1448 1449 #ifndef _SYS_SYSPROTO_H_ 1450 struct ktimer_gettime_args { 1451 int timerid; 1452 struct itimerspec * value; 1453 }; 1454 #endif 1455 int 1456 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap) 1457 { 1458 struct itimerspec val; 1459 int error; 1460 1461 error = kern_ktimer_gettime(td, uap->timerid, &val); 1462 if (error == 0) 1463 error = copyout(&val, uap->value, sizeof(val)); 1464 return (error); 1465 } 1466 1467 int 1468 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val) 1469 { 1470 struct proc *p; 1471 struct itimer *it; 1472 int error; 1473 1474 p = td->td_proc; 1475 PROC_LOCK(p); 1476 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1477 PROC_UNLOCK(p); 1478 error = EINVAL; 1479 } else { 1480 PROC_UNLOCK(p); 1481 itimer_enter(it); 1482 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val)); 1483 itimer_leave(it); 1484 ITIMER_UNLOCK(it); 1485 } 1486 return (error); 1487 } 1488 1489 #ifndef _SYS_SYSPROTO_H_ 1490 struct timer_getoverrun_args { 1491 int timerid; 1492 }; 1493 #endif 1494 int 1495 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap) 1496 { 1497 1498 return (kern_ktimer_getoverrun(td, uap->timerid)); 1499 } 1500 1501 int 1502 kern_ktimer_getoverrun(struct thread *td, int timer_id) 1503 { 1504 struct proc *p = td->td_proc; 1505 struct itimer *it; 1506 int error ; 1507 1508 PROC_LOCK(p); 1509 if (timer_id < 3 || 1510 (it = itimer_find(p, timer_id)) == NULL) { 1511 PROC_UNLOCK(p); 1512 error = EINVAL; 1513 } else { 1514 td->td_retval[0] = it->it_overrun_last; 1515 ITIMER_UNLOCK(it); 1516 PROC_UNLOCK(p); 1517 error = 0; 1518 } 1519 return (error); 1520 } 1521 1522 static int 1523 realtimer_create(struct itimer *it) 1524 { 1525 callout_init_mtx(&it->it_callout, &it->it_mtx, 0); 1526 return (0); 1527 } 1528 1529 static int 1530 realtimer_delete(struct itimer *it) 1531 { 1532 mtx_assert(&it->it_mtx, MA_OWNED); 1533 1534 /* 1535 * clear timer's value and interval to tell realtimer_expire 1536 * to not rearm the timer. 1537 */ 1538 timespecclear(&it->it_time.it_value); 1539 timespecclear(&it->it_time.it_interval); 1540 ITIMER_UNLOCK(it); 1541 callout_drain(&it->it_callout); 1542 ITIMER_LOCK(it); 1543 return (0); 1544 } 1545 1546 static int 1547 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue) 1548 { 1549 struct timespec cts; 1550 1551 mtx_assert(&it->it_mtx, MA_OWNED); 1552 1553 realtimer_clocktime(it->it_clockid, &cts); 1554 *ovalue = it->it_time; 1555 if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) { 1556 timespecsub(&ovalue->it_value, &cts, &ovalue->it_value); 1557 if (ovalue->it_value.tv_sec < 0 || 1558 (ovalue->it_value.tv_sec == 0 && 1559 ovalue->it_value.tv_nsec == 0)) { 1560 ovalue->it_value.tv_sec = 0; 1561 ovalue->it_value.tv_nsec = 1; 1562 } 1563 } 1564 return (0); 1565 } 1566 1567 static int 1568 realtimer_settime(struct itimer *it, int flags, struct itimerspec *value, 1569 struct itimerspec *ovalue) 1570 { 1571 struct timespec cts, ts; 1572 struct timeval tv; 1573 struct itimerspec val; 1574 1575 mtx_assert(&it->it_mtx, MA_OWNED); 1576 1577 val = *value; 1578 if (itimespecfix(&val.it_value)) 1579 return (EINVAL); 1580 1581 if (timespecisset(&val.it_value)) { 1582 if (itimespecfix(&val.it_interval)) 1583 return (EINVAL); 1584 } else { 1585 timespecclear(&val.it_interval); 1586 } 1587 1588 if (ovalue != NULL) 1589 realtimer_gettime(it, ovalue); 1590 1591 it->it_time = val; 1592 if (timespecisset(&val.it_value)) { 1593 realtimer_clocktime(it->it_clockid, &cts); 1594 ts = val.it_value; 1595 if ((flags & TIMER_ABSTIME) == 0) { 1596 /* Convert to absolute time. */ 1597 timespecadd(&it->it_time.it_value, &cts, 1598 &it->it_time.it_value); 1599 } else { 1600 timespecsub(&ts, &cts, &ts); 1601 /* 1602 * We don't care if ts is negative, tztohz will 1603 * fix it. 1604 */ 1605 } 1606 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1607 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire, 1608 it); 1609 } else { 1610 callout_stop(&it->it_callout); 1611 } 1612 1613 return (0); 1614 } 1615 1616 static void 1617 realtimer_clocktime(clockid_t id, struct timespec *ts) 1618 { 1619 if (id == CLOCK_REALTIME) 1620 getnanotime(ts); 1621 else /* CLOCK_MONOTONIC */ 1622 getnanouptime(ts); 1623 } 1624 1625 int 1626 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi) 1627 { 1628 struct itimer *it; 1629 1630 PROC_LOCK_ASSERT(p, MA_OWNED); 1631 it = itimer_find(p, timerid); 1632 if (it != NULL) { 1633 ksi->ksi_overrun = it->it_overrun; 1634 it->it_overrun_last = it->it_overrun; 1635 it->it_overrun = 0; 1636 ITIMER_UNLOCK(it); 1637 return (0); 1638 } 1639 return (EINVAL); 1640 } 1641 1642 static int 1643 itimespecfix(struct timespec *ts) 1644 { 1645 1646 if (!timespecvalid_interval(ts)) 1647 return (EINVAL); 1648 if ((UINT64_MAX - ts->tv_nsec) / NS_PER_SEC < ts->tv_sec) 1649 return (EINVAL); 1650 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000) 1651 ts->tv_nsec = tick * 1000; 1652 return (0); 1653 } 1654 1655 #define timespectons(tsp) \ 1656 ((uint64_t)(tsp)->tv_sec * NS_PER_SEC + (tsp)->tv_nsec) 1657 #define timespecfromns(ns) (struct timespec){ \ 1658 .tv_sec = (ns) / NS_PER_SEC, \ 1659 .tv_nsec = (ns) % NS_PER_SEC \ 1660 } 1661 1662 static void 1663 realtimer_expire_l(struct itimer *it, bool proc_locked) 1664 { 1665 struct timespec cts, ts; 1666 struct timeval tv; 1667 struct proc *p; 1668 uint64_t interval, now, overruns, value; 1669 1670 realtimer_clocktime(it->it_clockid, &cts); 1671 /* Only fire if time is reached. */ 1672 if (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1673 if (timespecisset(&it->it_time.it_interval)) { 1674 timespecadd(&it->it_time.it_value, 1675 &it->it_time.it_interval, 1676 &it->it_time.it_value); 1677 1678 interval = timespectons(&it->it_time.it_interval); 1679 value = timespectons(&it->it_time.it_value); 1680 now = timespectons(&cts); 1681 1682 if (now >= value) { 1683 /* 1684 * We missed at least one period. 1685 */ 1686 overruns = howmany(now - value + 1, interval); 1687 if (it->it_overrun + overruns >= 1688 it->it_overrun && 1689 it->it_overrun + overruns <= INT_MAX) { 1690 it->it_overrun += (int)overruns; 1691 } else { 1692 it->it_overrun = INT_MAX; 1693 it->it_ksi.ksi_errno = ERANGE; 1694 } 1695 value = 1696 now + interval - (now - value) % interval; 1697 it->it_time.it_value = timespecfromns(value); 1698 } 1699 } else { 1700 /* single shot timer ? */ 1701 timespecclear(&it->it_time.it_value); 1702 } 1703 1704 p = it->it_proc; 1705 if (timespecisset(&it->it_time.it_value)) { 1706 if (P_SHOULDSTOP(p) || P_KILLED(p)) { 1707 it->it_flags |= ITF_PSTOPPED; 1708 } else { 1709 timespecsub(&it->it_time.it_value, &cts, &ts); 1710 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1711 callout_reset(&it->it_callout, tvtohz(&tv), 1712 realtimer_expire, it); 1713 } 1714 } 1715 1716 itimer_enter(it); 1717 ITIMER_UNLOCK(it); 1718 if (proc_locked) 1719 PROC_UNLOCK(p); 1720 itimer_fire(it); 1721 if (proc_locked) 1722 PROC_LOCK(p); 1723 ITIMER_LOCK(it); 1724 itimer_leave(it); 1725 } else if (timespecisset(&it->it_time.it_value)) { 1726 p = it->it_proc; 1727 if (P_SHOULDSTOP(p) || P_KILLED(p)) { 1728 it->it_flags |= ITF_PSTOPPED; 1729 } else { 1730 ts = it->it_time.it_value; 1731 timespecsub(&ts, &cts, &ts); 1732 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1733 callout_reset(&it->it_callout, tvtohz(&tv), 1734 realtimer_expire, it); 1735 } 1736 } 1737 } 1738 1739 /* Timeout callback for realtime timer */ 1740 static void 1741 realtimer_expire(void *arg) 1742 { 1743 realtimer_expire_l(arg, false); 1744 } 1745 1746 static void 1747 itimer_fire(struct itimer *it) 1748 { 1749 struct proc *p = it->it_proc; 1750 struct thread *td; 1751 1752 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1753 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1754 if (sigev_findtd(p, &it->it_sigev, &td) != 0) { 1755 ITIMER_LOCK(it); 1756 timespecclear(&it->it_time.it_value); 1757 timespecclear(&it->it_time.it_interval); 1758 callout_stop(&it->it_callout); 1759 ITIMER_UNLOCK(it); 1760 return; 1761 } 1762 if (!KSI_ONQ(&it->it_ksi)) { 1763 it->it_ksi.ksi_errno = 0; 1764 ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev); 1765 tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi); 1766 } else { 1767 if (it->it_overrun < INT_MAX) 1768 it->it_overrun++; 1769 else 1770 it->it_ksi.ksi_errno = ERANGE; 1771 } 1772 PROC_UNLOCK(p); 1773 } 1774 } 1775 1776 static void 1777 itimers_alloc(struct proc *p) 1778 { 1779 struct itimers *its; 1780 1781 its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO); 1782 PROC_LOCK(p); 1783 if (p->p_itimers == NULL) { 1784 p->p_itimers = its; 1785 PROC_UNLOCK(p); 1786 } 1787 else { 1788 PROC_UNLOCK(p); 1789 free(its, M_SUBPROC); 1790 } 1791 } 1792 1793 /* Clean up timers when some process events are being triggered. */ 1794 static void 1795 itimers_event_exit_exec(int start_idx, struct proc *p) 1796 { 1797 struct itimers *its; 1798 struct itimer *it; 1799 int i; 1800 1801 its = p->p_itimers; 1802 if (its == NULL) 1803 return; 1804 1805 for (i = start_idx; i < TIMER_MAX; ++i) { 1806 if ((it = its->its_timers[i]) != NULL) 1807 kern_ktimer_delete(curthread, i); 1808 } 1809 if (its->its_timers[0] == NULL && its->its_timers[1] == NULL && 1810 its->its_timers[2] == NULL) { 1811 /* Synchronize with itimer_proc_continue(). */ 1812 PROC_LOCK(p); 1813 p->p_itimers = NULL; 1814 PROC_UNLOCK(p); 1815 free(its, M_SUBPROC); 1816 } 1817 } 1818 1819 void 1820 itimers_exec(struct proc *p) 1821 { 1822 /* 1823 * According to susv3, XSI interval timers should be inherited 1824 * by new image. 1825 */ 1826 itimers_event_exit_exec(3, p); 1827 } 1828 1829 void 1830 itimers_exit(struct proc *p) 1831 { 1832 itimers_event_exit_exec(0, p); 1833 } 1834