xref: /freebsd/sys/kern/kern_time.c (revision daf1cffce2e07931f27c6c6998652e90df6ba87e)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD$
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/buf.h>
40 #include <sys/sysproto.h>
41 #include <sys/resourcevar.h>
42 #include <sys/signalvar.h>
43 #include <sys/kernel.h>
44 #include <sys/systm.h>
45 #include <sys/sysent.h>
46 #include <sys/proc.h>
47 #include <sys/time.h>
48 #include <sys/vnode.h>
49 #include <vm/vm.h>
50 #include <vm/vm_extern.h>
51 
52 struct timezone tz;
53 
54 /*
55  * Time of day and interval timer support.
56  *
57  * These routines provide the kernel entry points to get and set
58  * the time-of-day and per-process interval timers.  Subroutines
59  * here provide support for adding and subtracting timeval structures
60  * and decrementing interval timers, optionally reloading the interval
61  * timers when they expire.
62  */
63 
64 static int	nanosleep1 __P((struct proc *p, struct timespec *rqt,
65 		    struct timespec *rmt));
66 static int	settime __P((struct timeval *));
67 static void	timevalfix __P((struct timeval *));
68 static void	no_lease_updatetime __P((int));
69 
70 static void
71 no_lease_updatetime(deltat)
72 	int deltat;
73 {
74 }
75 
76 void (*lease_updatetime) __P((int))  = no_lease_updatetime;
77 
78 static int
79 settime(tv)
80 	struct timeval *tv;
81 {
82 	struct timeval delta, tv1, tv2;
83 	static struct timeval maxtime, laststep;
84 	struct timespec ts;
85 	int s;
86 
87 	s = splclock();
88 	microtime(&tv1);
89 	delta = *tv;
90 	timevalsub(&delta, &tv1);
91 
92 	/*
93 	 * If the system is secure, we do not allow the time to be
94 	 * set to a value earlier than 1 second less than the highest
95 	 * time we have yet seen. The worst a miscreant can do in
96 	 * this circumstance is "freeze" time. He couldn't go
97 	 * back to the past.
98 	 *
99 	 * We similarly do not allow the clock to be stepped more
100 	 * than one second, nor more than once per second. This allows
101 	 * a miscreant to make the clock march double-time, but no worse.
102 	 */
103 	if (securelevel > 1) {
104 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
105 			/*
106 			 * Update maxtime to latest time we've seen.
107 			 */
108 			if (tv1.tv_sec > maxtime.tv_sec)
109 				maxtime = tv1;
110 			tv2 = *tv;
111 			timevalsub(&tv2, &maxtime);
112 			if (tv2.tv_sec < -1) {
113 				tv->tv_sec = maxtime.tv_sec - 1;
114 				printf("Time adjustment clamped to -1 second\n");
115 			}
116 		} else {
117 			if (tv1.tv_sec == laststep.tv_sec) {
118 				splx(s);
119 				return (EPERM);
120 			}
121 			if (delta.tv_sec > 1) {
122 				tv->tv_sec = tv1.tv_sec + 1;
123 				printf("Time adjustment clamped to +1 second\n");
124 			}
125 			laststep = *tv;
126 		}
127 	}
128 
129 	ts.tv_sec = tv->tv_sec;
130 	ts.tv_nsec = tv->tv_usec * 1000;
131 	set_timecounter(&ts);
132 	(void) splsoftclock();
133 	lease_updatetime(delta.tv_sec);
134 	splx(s);
135 	resettodr();
136 	return (0);
137 }
138 
139 #ifndef _SYS_SYSPROTO_H_
140 struct clock_gettime_args {
141 	clockid_t clock_id;
142 	struct	timespec *tp;
143 };
144 #endif
145 
146 /* ARGSUSED */
147 int
148 clock_gettime(p, uap)
149 	struct proc *p;
150 	struct clock_gettime_args *uap;
151 {
152 	struct timespec ats;
153 
154 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
155 		return (EINVAL);
156 	nanotime(&ats);
157 	return (copyout(&ats, SCARG(uap, tp), sizeof(ats)));
158 }
159 
160 #ifndef _SYS_SYSPROTO_H_
161 struct clock_settime_args {
162 	clockid_t clock_id;
163 	const struct	timespec *tp;
164 };
165 #endif
166 
167 /* ARGSUSED */
168 int
169 clock_settime(p, uap)
170 	struct proc *p;
171 	struct clock_settime_args *uap;
172 {
173 	struct timeval atv;
174 	struct timespec ats;
175 	int error;
176 
177 	if ((error = suser(p)) != 0)
178 		return (error);
179 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
180 		return (EINVAL);
181 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
182 		return (error);
183 	if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
184 		return (EINVAL);
185 	/* XXX Don't convert nsec->usec and back */
186 	TIMESPEC_TO_TIMEVAL(&atv, &ats);
187 	if ((error = settime(&atv)))
188 		return (error);
189 	return (0);
190 }
191 
192 #ifndef _SYS_SYSPROTO_H_
193 struct clock_getres_args {
194 	clockid_t clock_id;
195 	struct	timespec *tp;
196 };
197 #endif
198 
199 int
200 clock_getres(p, uap)
201 	struct proc *p;
202 	struct clock_getres_args *uap;
203 {
204 	struct timespec ts;
205 	int error;
206 
207 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
208 		return (EINVAL);
209 	error = 0;
210 	if (SCARG(uap, tp)) {
211 		ts.tv_sec = 0;
212 		ts.tv_nsec = 1000000000 / timecounter->tc_frequency;
213 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
214 	}
215 	return (error);
216 }
217 
218 static int nanowait;
219 
220 static int
221 nanosleep1(p, rqt, rmt)
222 	struct proc *p;
223 	struct timespec *rqt, *rmt;
224 {
225 	struct timespec ts, ts2, ts3;
226 	struct timeval tv;
227 	int error;
228 
229 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
230 		return (EINVAL);
231 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
232 		return (0);
233 	getnanouptime(&ts);
234 	timespecadd(&ts, rqt);
235 	TIMESPEC_TO_TIMEVAL(&tv, rqt);
236 	for (;;) {
237 		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
238 		    tvtohz(&tv));
239 		getnanouptime(&ts2);
240 		if (error != EWOULDBLOCK) {
241 			if (error == ERESTART)
242 				error = EINTR;
243 			if (rmt != NULL) {
244 				timespecsub(&ts, &ts2);
245 				if (ts.tv_sec < 0)
246 					timespecclear(&ts);
247 				*rmt = ts;
248 			}
249 			return (error);
250 		}
251 		if (timespeccmp(&ts2, &ts, >=))
252 			return (0);
253 		ts3 = ts;
254 		timespecsub(&ts3, &ts2);
255 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
256 	}
257 }
258 
259 #ifndef _SYS_SYSPROTO_H_
260 struct nanosleep_args {
261 	struct	timespec *rqtp;
262 	struct	timespec *rmtp;
263 };
264 #endif
265 
266 /* ARGSUSED */
267 int
268 nanosleep(p, uap)
269 	struct proc *p;
270 	struct nanosleep_args *uap;
271 {
272 	struct timespec rmt, rqt;
273 	int error, error2;
274 
275 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(rqt));
276 	if (error)
277 		return (error);
278 	if (SCARG(uap, rmtp))
279 		if (!useracc((caddr_t)SCARG(uap, rmtp), sizeof(rmt),
280 		    VM_PROT_WRITE))
281 			return (EFAULT);
282 	error = nanosleep1(p, &rqt, &rmt);
283 	if (error && SCARG(uap, rmtp)) {
284 		error2 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
285 		if (error2)	/* XXX shouldn't happen, did useracc() above */
286 			return (error2);
287 	}
288 	return (error);
289 }
290 
291 #ifndef _SYS_SYSPROTO_H_
292 struct gettimeofday_args {
293 	struct	timeval *tp;
294 	struct	timezone *tzp;
295 };
296 #endif
297 /* ARGSUSED */
298 int
299 gettimeofday(p, uap)
300 	struct proc *p;
301 	register struct gettimeofday_args *uap;
302 {
303 	struct timeval atv;
304 	int error = 0;
305 
306 	if (uap->tp) {
307 		microtime(&atv);
308 		if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
309 		    sizeof (atv))))
310 			return (error);
311 	}
312 	if (uap->tzp)
313 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
314 		    sizeof (tz));
315 	return (error);
316 }
317 
318 #ifndef _SYS_SYSPROTO_H_
319 struct settimeofday_args {
320 	struct	timeval *tv;
321 	struct	timezone *tzp;
322 };
323 #endif
324 /* ARGSUSED */
325 int
326 settimeofday(p, uap)
327 	struct proc *p;
328 	struct settimeofday_args *uap;
329 {
330 	struct timeval atv;
331 	struct timezone atz;
332 	int error;
333 
334 	if ((error = suser(p)))
335 		return (error);
336 	/* Verify all parameters before changing time. */
337 	if (uap->tv) {
338 		if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
339 		    sizeof(atv))))
340 			return (error);
341 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
342 			return (EINVAL);
343 	}
344 	if (uap->tzp &&
345 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
346 		return (error);
347 	if (uap->tv && (error = settime(&atv)))
348 		return (error);
349 	if (uap->tzp)
350 		tz = atz;
351 	return (0);
352 }
353 
354 int	tickdelta;			/* current clock skew, us. per tick */
355 long	timedelta;			/* unapplied time correction, us. */
356 static long	bigadj = 1000000;	/* use 10x skew above bigadj us. */
357 
358 #ifndef _SYS_SYSPROTO_H_
359 struct adjtime_args {
360 	struct timeval *delta;
361 	struct timeval *olddelta;
362 };
363 #endif
364 /* ARGSUSED */
365 int
366 adjtime(p, uap)
367 	struct proc *p;
368 	register struct adjtime_args *uap;
369 {
370 	struct timeval atv;
371 	register long ndelta, ntickdelta, odelta;
372 	int s, error;
373 
374 	if ((error = suser(p)))
375 		return (error);
376 	if ((error =
377 	    copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval))))
378 		return (error);
379 
380 	/*
381 	 * Compute the total correction and the rate at which to apply it.
382 	 * Round the adjustment down to a whole multiple of the per-tick
383 	 * delta, so that after some number of incremental changes in
384 	 * hardclock(), tickdelta will become zero, lest the correction
385 	 * overshoot and start taking us away from the desired final time.
386 	 */
387 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
388 	if (ndelta > bigadj || ndelta < -bigadj)
389 		ntickdelta = 10 * tickadj;
390 	else
391 		ntickdelta = tickadj;
392 	if (ndelta % ntickdelta)
393 		ndelta = ndelta / ntickdelta * ntickdelta;
394 
395 	/*
396 	 * To make hardclock()'s job easier, make the per-tick delta negative
397 	 * if we want time to run slower; then hardclock can simply compute
398 	 * tick + tickdelta, and subtract tickdelta from timedelta.
399 	 */
400 	if (ndelta < 0)
401 		ntickdelta = -ntickdelta;
402 	s = splclock();
403 	odelta = timedelta;
404 	timedelta = ndelta;
405 	tickdelta = ntickdelta;
406 	splx(s);
407 
408 	if (uap->olddelta) {
409 		atv.tv_sec = odelta / 1000000;
410 		atv.tv_usec = odelta % 1000000;
411 		(void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
412 		    sizeof(struct timeval));
413 	}
414 	return (0);
415 }
416 
417 /*
418  * Get value of an interval timer.  The process virtual and
419  * profiling virtual time timers are kept in the p_stats area, since
420  * they can be swapped out.  These are kept internally in the
421  * way they are specified externally: in time until they expire.
422  *
423  * The real time interval timer is kept in the process table slot
424  * for the process, and its value (it_value) is kept as an
425  * absolute time rather than as a delta, so that it is easy to keep
426  * periodic real-time signals from drifting.
427  *
428  * Virtual time timers are processed in the hardclock() routine of
429  * kern_clock.c.  The real time timer is processed by a timeout
430  * routine, called from the softclock() routine.  Since a callout
431  * may be delayed in real time due to interrupt processing in the system,
432  * it is possible for the real time timeout routine (realitexpire, given below),
433  * to be delayed in real time past when it is supposed to occur.  It
434  * does not suffice, therefore, to reload the real timer .it_value from the
435  * real time timers .it_interval.  Rather, we compute the next time in
436  * absolute time the timer should go off.
437  */
438 #ifndef _SYS_SYSPROTO_H_
439 struct getitimer_args {
440 	u_int	which;
441 	struct	itimerval *itv;
442 };
443 #endif
444 /* ARGSUSED */
445 int
446 getitimer(p, uap)
447 	struct proc *p;
448 	register struct getitimer_args *uap;
449 {
450 	struct timeval ctv;
451 	struct itimerval aitv;
452 	int s;
453 
454 	if (uap->which > ITIMER_PROF)
455 		return (EINVAL);
456 	s = splclock(); /* XXX still needed ? */
457 	if (uap->which == ITIMER_REAL) {
458 		/*
459 		 * Convert from absolute to relative time in .it_value
460 		 * part of real time timer.  If time for real time timer
461 		 * has passed return 0, else return difference between
462 		 * current time and time for the timer to go off.
463 		 */
464 		aitv = p->p_realtimer;
465 		if (timevalisset(&aitv.it_value)) {
466 			getmicrouptime(&ctv);
467 			if (timevalcmp(&aitv.it_value, &ctv, <))
468 				timevalclear(&aitv.it_value);
469 			else
470 				timevalsub(&aitv.it_value, &ctv);
471 		}
472 	} else
473 		aitv = p->p_stats->p_timer[uap->which];
474 	splx(s);
475 	return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
476 	    sizeof (struct itimerval)));
477 }
478 
479 #ifndef _SYS_SYSPROTO_H_
480 struct setitimer_args {
481 	u_int	which;
482 	struct	itimerval *itv, *oitv;
483 };
484 #endif
485 /* ARGSUSED */
486 int
487 setitimer(p, uap)
488 	struct proc *p;
489 	register struct setitimer_args *uap;
490 {
491 	struct itimerval aitv;
492 	struct timeval ctv;
493 	register struct itimerval *itvp;
494 	int s, error;
495 
496 	if (uap->which > ITIMER_PROF)
497 		return (EINVAL);
498 	itvp = uap->itv;
499 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
500 	    sizeof(struct itimerval))))
501 		return (error);
502 	if ((uap->itv = uap->oitv) &&
503 	    (error = getitimer(p, (struct getitimer_args *)uap)))
504 		return (error);
505 	if (itvp == 0)
506 		return (0);
507 	if (itimerfix(&aitv.it_value))
508 		return (EINVAL);
509 	if (!timevalisset(&aitv.it_value))
510 		timevalclear(&aitv.it_interval);
511 	else if (itimerfix(&aitv.it_interval))
512 		return (EINVAL);
513 	s = splclock(); /* XXX: still needed ? */
514 	if (uap->which == ITIMER_REAL) {
515 		if (timevalisset(&p->p_realtimer.it_value))
516 			untimeout(realitexpire, (caddr_t)p, p->p_ithandle);
517 		if (timevalisset(&aitv.it_value))
518 			p->p_ithandle = timeout(realitexpire, (caddr_t)p,
519 						tvtohz(&aitv.it_value));
520 		getmicrouptime(&ctv);
521 		timevaladd(&aitv.it_value, &ctv);
522 		p->p_realtimer = aitv;
523 	} else
524 		p->p_stats->p_timer[uap->which] = aitv;
525 	splx(s);
526 	return (0);
527 }
528 
529 /*
530  * Real interval timer expired:
531  * send process whose timer expired an alarm signal.
532  * If time is not set up to reload, then just return.
533  * Else compute next time timer should go off which is > current time.
534  * This is where delay in processing this timeout causes multiple
535  * SIGALRM calls to be compressed into one.
536  * tvtohz() always adds 1 to allow for the time until the next clock
537  * interrupt being strictly less than 1 clock tick, but we don't want
538  * that here since we want to appear to be in sync with the clock
539  * interrupt even when we're delayed.
540  */
541 void
542 realitexpire(arg)
543 	void *arg;
544 {
545 	register struct proc *p;
546 	struct timeval ctv, ntv;
547 	int s;
548 
549 	p = (struct proc *)arg;
550 	psignal(p, SIGALRM);
551 	if (!timevalisset(&p->p_realtimer.it_interval)) {
552 		timevalclear(&p->p_realtimer.it_value);
553 		return;
554 	}
555 	for (;;) {
556 		s = splclock(); /* XXX: still neeeded ? */
557 		timevaladd(&p->p_realtimer.it_value,
558 		    &p->p_realtimer.it_interval);
559 		getmicrouptime(&ctv);
560 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
561 			ntv = p->p_realtimer.it_value;
562 			timevalsub(&ntv, &ctv);
563 			p->p_ithandle = timeout(realitexpire, (caddr_t)p,
564 			    tvtohz(&ntv) - 1);
565 			splx(s);
566 			return;
567 		}
568 		splx(s);
569 	}
570 }
571 
572 /*
573  * Check that a proposed value to load into the .it_value or
574  * .it_interval part of an interval timer is acceptable, and
575  * fix it to have at least minimal value (i.e. if it is less
576  * than the resolution of the clock, round it up.)
577  */
578 int
579 itimerfix(tv)
580 	struct timeval *tv;
581 {
582 
583 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
584 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
585 		return (EINVAL);
586 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
587 		tv->tv_usec = tick;
588 	return (0);
589 }
590 
591 /*
592  * Decrement an interval timer by a specified number
593  * of microseconds, which must be less than a second,
594  * i.e. < 1000000.  If the timer expires, then reload
595  * it.  In this case, carry over (usec - old value) to
596  * reduce the value reloaded into the timer so that
597  * the timer does not drift.  This routine assumes
598  * that it is called in a context where the timers
599  * on which it is operating cannot change in value.
600  */
601 int
602 itimerdecr(itp, usec)
603 	register struct itimerval *itp;
604 	int usec;
605 {
606 
607 	if (itp->it_value.tv_usec < usec) {
608 		if (itp->it_value.tv_sec == 0) {
609 			/* expired, and already in next interval */
610 			usec -= itp->it_value.tv_usec;
611 			goto expire;
612 		}
613 		itp->it_value.tv_usec += 1000000;
614 		itp->it_value.tv_sec--;
615 	}
616 	itp->it_value.tv_usec -= usec;
617 	usec = 0;
618 	if (timevalisset(&itp->it_value))
619 		return (1);
620 	/* expired, exactly at end of interval */
621 expire:
622 	if (timevalisset(&itp->it_interval)) {
623 		itp->it_value = itp->it_interval;
624 		itp->it_value.tv_usec -= usec;
625 		if (itp->it_value.tv_usec < 0) {
626 			itp->it_value.tv_usec += 1000000;
627 			itp->it_value.tv_sec--;
628 		}
629 	} else
630 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
631 	return (0);
632 }
633 
634 /*
635  * Add and subtract routines for timevals.
636  * N.B.: subtract routine doesn't deal with
637  * results which are before the beginning,
638  * it just gets very confused in this case.
639  * Caveat emptor.
640  */
641 void
642 timevaladd(t1, t2)
643 	struct timeval *t1, *t2;
644 {
645 
646 	t1->tv_sec += t2->tv_sec;
647 	t1->tv_usec += t2->tv_usec;
648 	timevalfix(t1);
649 }
650 
651 void
652 timevalsub(t1, t2)
653 	struct timeval *t1, *t2;
654 {
655 
656 	t1->tv_sec -= t2->tv_sec;
657 	t1->tv_usec -= t2->tv_usec;
658 	timevalfix(t1);
659 }
660 
661 static void
662 timevalfix(t1)
663 	struct timeval *t1;
664 {
665 
666 	if (t1->tv_usec < 0) {
667 		t1->tv_sec--;
668 		t1->tv_usec += 1000000;
669 	}
670 	if (t1->tv_usec >= 1000000) {
671 		t1->tv_sec++;
672 		t1->tv_usec -= 1000000;
673 	}
674 }
675