1 /* 2 * Copyright (c) 1982, 1986, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93 34 * $FreeBSD$ 35 */ 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/buf.h> 40 #include <sys/sysproto.h> 41 #include <sys/resourcevar.h> 42 #include <sys/signalvar.h> 43 #include <sys/kernel.h> 44 #include <sys/systm.h> 45 #include <sys/sysent.h> 46 #include <sys/proc.h> 47 #include <sys/time.h> 48 #include <sys/vnode.h> 49 #include <vm/vm.h> 50 #include <vm/vm_extern.h> 51 52 struct timezone tz; 53 54 /* 55 * Time of day and interval timer support. 56 * 57 * These routines provide the kernel entry points to get and set 58 * the time-of-day and per-process interval timers. Subroutines 59 * here provide support for adding and subtracting timeval structures 60 * and decrementing interval timers, optionally reloading the interval 61 * timers when they expire. 62 */ 63 64 static int nanosleep1 __P((struct proc *p, struct timespec *rqt, 65 struct timespec *rmt)); 66 static int settime __P((struct timeval *)); 67 static void timevalfix __P((struct timeval *)); 68 static void no_lease_updatetime __P((int)); 69 70 static void 71 no_lease_updatetime(deltat) 72 int deltat; 73 { 74 } 75 76 void (*lease_updatetime) __P((int)) = no_lease_updatetime; 77 78 static int 79 settime(tv) 80 struct timeval *tv; 81 { 82 struct timeval delta, tv1, tv2; 83 static struct timeval maxtime, laststep; 84 struct timespec ts; 85 int s; 86 87 s = splclock(); 88 microtime(&tv1); 89 delta = *tv; 90 timevalsub(&delta, &tv1); 91 92 /* 93 * If the system is secure, we do not allow the time to be 94 * set to a value earlier than 1 second less than the highest 95 * time we have yet seen. The worst a miscreant can do in 96 * this circumstance is "freeze" time. He couldn't go 97 * back to the past. 98 * 99 * We similarly do not allow the clock to be stepped more 100 * than one second, nor more than once per second. This allows 101 * a miscreant to make the clock march double-time, but no worse. 102 */ 103 if (securelevel > 1) { 104 if (delta.tv_sec < 0 || delta.tv_usec < 0) { 105 /* 106 * Update maxtime to latest time we've seen. 107 */ 108 if (tv1.tv_sec > maxtime.tv_sec) 109 maxtime = tv1; 110 tv2 = *tv; 111 timevalsub(&tv2, &maxtime); 112 if (tv2.tv_sec < -1) { 113 tv->tv_sec = maxtime.tv_sec - 1; 114 printf("Time adjustment clamped to -1 second\n"); 115 } 116 } else { 117 if (tv1.tv_sec == laststep.tv_sec) { 118 splx(s); 119 return (EPERM); 120 } 121 if (delta.tv_sec > 1) { 122 tv->tv_sec = tv1.tv_sec + 1; 123 printf("Time adjustment clamped to +1 second\n"); 124 } 125 laststep = *tv; 126 } 127 } 128 129 ts.tv_sec = tv->tv_sec; 130 ts.tv_nsec = tv->tv_usec * 1000; 131 set_timecounter(&ts); 132 (void) splsoftclock(); 133 lease_updatetime(delta.tv_sec); 134 splx(s); 135 resettodr(); 136 return (0); 137 } 138 139 #ifndef _SYS_SYSPROTO_H_ 140 struct clock_gettime_args { 141 clockid_t clock_id; 142 struct timespec *tp; 143 }; 144 #endif 145 146 /* ARGSUSED */ 147 int 148 clock_gettime(p, uap) 149 struct proc *p; 150 struct clock_gettime_args *uap; 151 { 152 struct timespec ats; 153 154 if (SCARG(uap, clock_id) != CLOCK_REALTIME) 155 return (EINVAL); 156 nanotime(&ats); 157 return (copyout(&ats, SCARG(uap, tp), sizeof(ats))); 158 } 159 160 #ifndef _SYS_SYSPROTO_H_ 161 struct clock_settime_args { 162 clockid_t clock_id; 163 const struct timespec *tp; 164 }; 165 #endif 166 167 /* ARGSUSED */ 168 int 169 clock_settime(p, uap) 170 struct proc *p; 171 struct clock_settime_args *uap; 172 { 173 struct timeval atv; 174 struct timespec ats; 175 int error; 176 177 if ((error = suser(p)) != 0) 178 return (error); 179 if (SCARG(uap, clock_id) != CLOCK_REALTIME) 180 return (EINVAL); 181 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0) 182 return (error); 183 if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000) 184 return (EINVAL); 185 /* XXX Don't convert nsec->usec and back */ 186 TIMESPEC_TO_TIMEVAL(&atv, &ats); 187 if ((error = settime(&atv))) 188 return (error); 189 return (0); 190 } 191 192 #ifndef _SYS_SYSPROTO_H_ 193 struct clock_getres_args { 194 clockid_t clock_id; 195 struct timespec *tp; 196 }; 197 #endif 198 199 int 200 clock_getres(p, uap) 201 struct proc *p; 202 struct clock_getres_args *uap; 203 { 204 struct timespec ts; 205 int error; 206 207 if (SCARG(uap, clock_id) != CLOCK_REALTIME) 208 return (EINVAL); 209 error = 0; 210 if (SCARG(uap, tp)) { 211 ts.tv_sec = 0; 212 ts.tv_nsec = 1000000000 / timecounter->tc_frequency; 213 error = copyout(&ts, SCARG(uap, tp), sizeof(ts)); 214 } 215 return (error); 216 } 217 218 static int nanowait; 219 220 static int 221 nanosleep1(p, rqt, rmt) 222 struct proc *p; 223 struct timespec *rqt, *rmt; 224 { 225 struct timespec ts, ts2, ts3; 226 struct timeval tv; 227 int error; 228 229 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000) 230 return (EINVAL); 231 if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0)) 232 return (0); 233 getnanouptime(&ts); 234 timespecadd(&ts, rqt); 235 TIMESPEC_TO_TIMEVAL(&tv, rqt); 236 for (;;) { 237 error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp", 238 tvtohz(&tv)); 239 getnanouptime(&ts2); 240 if (error != EWOULDBLOCK) { 241 if (error == ERESTART) 242 error = EINTR; 243 if (rmt != NULL) { 244 timespecsub(&ts, &ts2); 245 if (ts.tv_sec < 0) 246 timespecclear(&ts); 247 *rmt = ts; 248 } 249 return (error); 250 } 251 if (timespeccmp(&ts2, &ts, >=)) 252 return (0); 253 ts3 = ts; 254 timespecsub(&ts3, &ts2); 255 TIMESPEC_TO_TIMEVAL(&tv, &ts3); 256 } 257 } 258 259 #ifndef _SYS_SYSPROTO_H_ 260 struct nanosleep_args { 261 struct timespec *rqtp; 262 struct timespec *rmtp; 263 }; 264 #endif 265 266 /* ARGSUSED */ 267 int 268 nanosleep(p, uap) 269 struct proc *p; 270 struct nanosleep_args *uap; 271 { 272 struct timespec rmt, rqt; 273 int error, error2; 274 275 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(rqt)); 276 if (error) 277 return (error); 278 if (SCARG(uap, rmtp)) 279 if (!useracc((caddr_t)SCARG(uap, rmtp), sizeof(rmt), 280 VM_PROT_WRITE)) 281 return (EFAULT); 282 error = nanosleep1(p, &rqt, &rmt); 283 if (error && SCARG(uap, rmtp)) { 284 error2 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt)); 285 if (error2) /* XXX shouldn't happen, did useracc() above */ 286 return (error2); 287 } 288 return (error); 289 } 290 291 #ifndef _SYS_SYSPROTO_H_ 292 struct gettimeofday_args { 293 struct timeval *tp; 294 struct timezone *tzp; 295 }; 296 #endif 297 /* ARGSUSED */ 298 int 299 gettimeofday(p, uap) 300 struct proc *p; 301 register struct gettimeofday_args *uap; 302 { 303 struct timeval atv; 304 int error = 0; 305 306 if (uap->tp) { 307 microtime(&atv); 308 if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp, 309 sizeof (atv)))) 310 return (error); 311 } 312 if (uap->tzp) 313 error = copyout((caddr_t)&tz, (caddr_t)uap->tzp, 314 sizeof (tz)); 315 return (error); 316 } 317 318 #ifndef _SYS_SYSPROTO_H_ 319 struct settimeofday_args { 320 struct timeval *tv; 321 struct timezone *tzp; 322 }; 323 #endif 324 /* ARGSUSED */ 325 int 326 settimeofday(p, uap) 327 struct proc *p; 328 struct settimeofday_args *uap; 329 { 330 struct timeval atv; 331 struct timezone atz; 332 int error; 333 334 if ((error = suser(p))) 335 return (error); 336 /* Verify all parameters before changing time. */ 337 if (uap->tv) { 338 if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv, 339 sizeof(atv)))) 340 return (error); 341 if (atv.tv_usec < 0 || atv.tv_usec >= 1000000) 342 return (EINVAL); 343 } 344 if (uap->tzp && 345 (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz)))) 346 return (error); 347 if (uap->tv && (error = settime(&atv))) 348 return (error); 349 if (uap->tzp) 350 tz = atz; 351 return (0); 352 } 353 354 int tickdelta; /* current clock skew, us. per tick */ 355 long timedelta; /* unapplied time correction, us. */ 356 static long bigadj = 1000000; /* use 10x skew above bigadj us. */ 357 358 #ifndef _SYS_SYSPROTO_H_ 359 struct adjtime_args { 360 struct timeval *delta; 361 struct timeval *olddelta; 362 }; 363 #endif 364 /* ARGSUSED */ 365 int 366 adjtime(p, uap) 367 struct proc *p; 368 register struct adjtime_args *uap; 369 { 370 struct timeval atv; 371 register long ndelta, ntickdelta, odelta; 372 int s, error; 373 374 if ((error = suser(p))) 375 return (error); 376 if ((error = 377 copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval)))) 378 return (error); 379 380 /* 381 * Compute the total correction and the rate at which to apply it. 382 * Round the adjustment down to a whole multiple of the per-tick 383 * delta, so that after some number of incremental changes in 384 * hardclock(), tickdelta will become zero, lest the correction 385 * overshoot and start taking us away from the desired final time. 386 */ 387 ndelta = atv.tv_sec * 1000000 + atv.tv_usec; 388 if (ndelta > bigadj || ndelta < -bigadj) 389 ntickdelta = 10 * tickadj; 390 else 391 ntickdelta = tickadj; 392 if (ndelta % ntickdelta) 393 ndelta = ndelta / ntickdelta * ntickdelta; 394 395 /* 396 * To make hardclock()'s job easier, make the per-tick delta negative 397 * if we want time to run slower; then hardclock can simply compute 398 * tick + tickdelta, and subtract tickdelta from timedelta. 399 */ 400 if (ndelta < 0) 401 ntickdelta = -ntickdelta; 402 s = splclock(); 403 odelta = timedelta; 404 timedelta = ndelta; 405 tickdelta = ntickdelta; 406 splx(s); 407 408 if (uap->olddelta) { 409 atv.tv_sec = odelta / 1000000; 410 atv.tv_usec = odelta % 1000000; 411 (void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta, 412 sizeof(struct timeval)); 413 } 414 return (0); 415 } 416 417 /* 418 * Get value of an interval timer. The process virtual and 419 * profiling virtual time timers are kept in the p_stats area, since 420 * they can be swapped out. These are kept internally in the 421 * way they are specified externally: in time until they expire. 422 * 423 * The real time interval timer is kept in the process table slot 424 * for the process, and its value (it_value) is kept as an 425 * absolute time rather than as a delta, so that it is easy to keep 426 * periodic real-time signals from drifting. 427 * 428 * Virtual time timers are processed in the hardclock() routine of 429 * kern_clock.c. The real time timer is processed by a timeout 430 * routine, called from the softclock() routine. Since a callout 431 * may be delayed in real time due to interrupt processing in the system, 432 * it is possible for the real time timeout routine (realitexpire, given below), 433 * to be delayed in real time past when it is supposed to occur. It 434 * does not suffice, therefore, to reload the real timer .it_value from the 435 * real time timers .it_interval. Rather, we compute the next time in 436 * absolute time the timer should go off. 437 */ 438 #ifndef _SYS_SYSPROTO_H_ 439 struct getitimer_args { 440 u_int which; 441 struct itimerval *itv; 442 }; 443 #endif 444 /* ARGSUSED */ 445 int 446 getitimer(p, uap) 447 struct proc *p; 448 register struct getitimer_args *uap; 449 { 450 struct timeval ctv; 451 struct itimerval aitv; 452 int s; 453 454 if (uap->which > ITIMER_PROF) 455 return (EINVAL); 456 s = splclock(); /* XXX still needed ? */ 457 if (uap->which == ITIMER_REAL) { 458 /* 459 * Convert from absolute to relative time in .it_value 460 * part of real time timer. If time for real time timer 461 * has passed return 0, else return difference between 462 * current time and time for the timer to go off. 463 */ 464 aitv = p->p_realtimer; 465 if (timevalisset(&aitv.it_value)) { 466 getmicrouptime(&ctv); 467 if (timevalcmp(&aitv.it_value, &ctv, <)) 468 timevalclear(&aitv.it_value); 469 else 470 timevalsub(&aitv.it_value, &ctv); 471 } 472 } else 473 aitv = p->p_stats->p_timer[uap->which]; 474 splx(s); 475 return (copyout((caddr_t)&aitv, (caddr_t)uap->itv, 476 sizeof (struct itimerval))); 477 } 478 479 #ifndef _SYS_SYSPROTO_H_ 480 struct setitimer_args { 481 u_int which; 482 struct itimerval *itv, *oitv; 483 }; 484 #endif 485 /* ARGSUSED */ 486 int 487 setitimer(p, uap) 488 struct proc *p; 489 register struct setitimer_args *uap; 490 { 491 struct itimerval aitv; 492 struct timeval ctv; 493 register struct itimerval *itvp; 494 int s, error; 495 496 if (uap->which > ITIMER_PROF) 497 return (EINVAL); 498 itvp = uap->itv; 499 if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv, 500 sizeof(struct itimerval)))) 501 return (error); 502 if ((uap->itv = uap->oitv) && 503 (error = getitimer(p, (struct getitimer_args *)uap))) 504 return (error); 505 if (itvp == 0) 506 return (0); 507 if (itimerfix(&aitv.it_value)) 508 return (EINVAL); 509 if (!timevalisset(&aitv.it_value)) 510 timevalclear(&aitv.it_interval); 511 else if (itimerfix(&aitv.it_interval)) 512 return (EINVAL); 513 s = splclock(); /* XXX: still needed ? */ 514 if (uap->which == ITIMER_REAL) { 515 if (timevalisset(&p->p_realtimer.it_value)) 516 untimeout(realitexpire, (caddr_t)p, p->p_ithandle); 517 if (timevalisset(&aitv.it_value)) 518 p->p_ithandle = timeout(realitexpire, (caddr_t)p, 519 tvtohz(&aitv.it_value)); 520 getmicrouptime(&ctv); 521 timevaladd(&aitv.it_value, &ctv); 522 p->p_realtimer = aitv; 523 } else 524 p->p_stats->p_timer[uap->which] = aitv; 525 splx(s); 526 return (0); 527 } 528 529 /* 530 * Real interval timer expired: 531 * send process whose timer expired an alarm signal. 532 * If time is not set up to reload, then just return. 533 * Else compute next time timer should go off which is > current time. 534 * This is where delay in processing this timeout causes multiple 535 * SIGALRM calls to be compressed into one. 536 * tvtohz() always adds 1 to allow for the time until the next clock 537 * interrupt being strictly less than 1 clock tick, but we don't want 538 * that here since we want to appear to be in sync with the clock 539 * interrupt even when we're delayed. 540 */ 541 void 542 realitexpire(arg) 543 void *arg; 544 { 545 register struct proc *p; 546 struct timeval ctv, ntv; 547 int s; 548 549 p = (struct proc *)arg; 550 psignal(p, SIGALRM); 551 if (!timevalisset(&p->p_realtimer.it_interval)) { 552 timevalclear(&p->p_realtimer.it_value); 553 return; 554 } 555 for (;;) { 556 s = splclock(); /* XXX: still neeeded ? */ 557 timevaladd(&p->p_realtimer.it_value, 558 &p->p_realtimer.it_interval); 559 getmicrouptime(&ctv); 560 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) { 561 ntv = p->p_realtimer.it_value; 562 timevalsub(&ntv, &ctv); 563 p->p_ithandle = timeout(realitexpire, (caddr_t)p, 564 tvtohz(&ntv) - 1); 565 splx(s); 566 return; 567 } 568 splx(s); 569 } 570 } 571 572 /* 573 * Check that a proposed value to load into the .it_value or 574 * .it_interval part of an interval timer is acceptable, and 575 * fix it to have at least minimal value (i.e. if it is less 576 * than the resolution of the clock, round it up.) 577 */ 578 int 579 itimerfix(tv) 580 struct timeval *tv; 581 { 582 583 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 || 584 tv->tv_usec < 0 || tv->tv_usec >= 1000000) 585 return (EINVAL); 586 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick) 587 tv->tv_usec = tick; 588 return (0); 589 } 590 591 /* 592 * Decrement an interval timer by a specified number 593 * of microseconds, which must be less than a second, 594 * i.e. < 1000000. If the timer expires, then reload 595 * it. In this case, carry over (usec - old value) to 596 * reduce the value reloaded into the timer so that 597 * the timer does not drift. This routine assumes 598 * that it is called in a context where the timers 599 * on which it is operating cannot change in value. 600 */ 601 int 602 itimerdecr(itp, usec) 603 register struct itimerval *itp; 604 int usec; 605 { 606 607 if (itp->it_value.tv_usec < usec) { 608 if (itp->it_value.tv_sec == 0) { 609 /* expired, and already in next interval */ 610 usec -= itp->it_value.tv_usec; 611 goto expire; 612 } 613 itp->it_value.tv_usec += 1000000; 614 itp->it_value.tv_sec--; 615 } 616 itp->it_value.tv_usec -= usec; 617 usec = 0; 618 if (timevalisset(&itp->it_value)) 619 return (1); 620 /* expired, exactly at end of interval */ 621 expire: 622 if (timevalisset(&itp->it_interval)) { 623 itp->it_value = itp->it_interval; 624 itp->it_value.tv_usec -= usec; 625 if (itp->it_value.tv_usec < 0) { 626 itp->it_value.tv_usec += 1000000; 627 itp->it_value.tv_sec--; 628 } 629 } else 630 itp->it_value.tv_usec = 0; /* sec is already 0 */ 631 return (0); 632 } 633 634 /* 635 * Add and subtract routines for timevals. 636 * N.B.: subtract routine doesn't deal with 637 * results which are before the beginning, 638 * it just gets very confused in this case. 639 * Caveat emptor. 640 */ 641 void 642 timevaladd(t1, t2) 643 struct timeval *t1, *t2; 644 { 645 646 t1->tv_sec += t2->tv_sec; 647 t1->tv_usec += t2->tv_usec; 648 timevalfix(t1); 649 } 650 651 void 652 timevalsub(t1, t2) 653 struct timeval *t1, *t2; 654 { 655 656 t1->tv_sec -= t2->tv_sec; 657 t1->tv_usec -= t2->tv_usec; 658 timevalfix(t1); 659 } 660 661 static void 662 timevalfix(t1) 663 struct timeval *t1; 664 { 665 666 if (t1->tv_usec < 0) { 667 t1->tv_sec--; 668 t1->tv_usec += 1000000; 669 } 670 if (t1->tv_usec >= 1000000) { 671 t1->tv_sec++; 672 t1->tv_usec -= 1000000; 673 } 674 } 675