xref: /freebsd/sys/kern/kern_time.c (revision d93a896ef95946b0bf1219866fcb324b78543444)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_ktrace.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/limits.h>
40 #include <sys/clock.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/sysproto.h>
44 #include <sys/eventhandler.h>
45 #include <sys/resourcevar.h>
46 #include <sys/signalvar.h>
47 #include <sys/kernel.h>
48 #include <sys/sleepqueue.h>
49 #include <sys/syscallsubr.h>
50 #include <sys/sysctl.h>
51 #include <sys/sysent.h>
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/posix4.h>
55 #include <sys/time.h>
56 #include <sys/timers.h>
57 #include <sys/timetc.h>
58 #include <sys/vnode.h>
59 #ifdef KTRACE
60 #include <sys/ktrace.h>
61 #endif
62 
63 #include <vm/vm.h>
64 #include <vm/vm_extern.h>
65 
66 #define MAX_CLOCKS 	(CLOCK_MONOTONIC+1)
67 #define CPUCLOCK_BIT		0x80000000
68 #define CPUCLOCK_PROCESS_BIT	0x40000000
69 #define CPUCLOCK_ID_MASK	(~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT))
70 #define MAKE_THREAD_CPUCLOCK(tid)	(CPUCLOCK_BIT|(tid))
71 #define MAKE_PROCESS_CPUCLOCK(pid)	\
72 	(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid))
73 
74 static struct kclock	posix_clocks[MAX_CLOCKS];
75 static uma_zone_t	itimer_zone = NULL;
76 
77 /*
78  * Time of day and interval timer support.
79  *
80  * These routines provide the kernel entry points to get and set
81  * the time-of-day and per-process interval timers.  Subroutines
82  * here provide support for adding and subtracting timeval structures
83  * and decrementing interval timers, optionally reloading the interval
84  * timers when they expire.
85  */
86 
87 static int	settime(struct thread *, struct timeval *);
88 static void	timevalfix(struct timeval *);
89 static int	user_clock_nanosleep(struct thread *td, clockid_t clock_id,
90 		    int flags, const struct timespec *ua_rqtp,
91 		    struct timespec *ua_rmtp);
92 
93 static void	itimer_start(void);
94 static int	itimer_init(void *, int, int);
95 static void	itimer_fini(void *, int);
96 static void	itimer_enter(struct itimer *);
97 static void	itimer_leave(struct itimer *);
98 static struct itimer *itimer_find(struct proc *, int);
99 static void	itimers_alloc(struct proc *);
100 static void	itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp);
101 static void	itimers_event_hook_exit(void *arg, struct proc *p);
102 static int	realtimer_create(struct itimer *);
103 static int	realtimer_gettime(struct itimer *, struct itimerspec *);
104 static int	realtimer_settime(struct itimer *, int,
105 			struct itimerspec *, struct itimerspec *);
106 static int	realtimer_delete(struct itimer *);
107 static void	realtimer_clocktime(clockid_t, struct timespec *);
108 static void	realtimer_expire(void *);
109 
110 int		register_posix_clock(int, struct kclock *);
111 void		itimer_fire(struct itimer *it);
112 int		itimespecfix(struct timespec *ts);
113 
114 #define CLOCK_CALL(clock, call, arglist)		\
115 	((*posix_clocks[clock].call) arglist)
116 
117 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
118 
119 
120 static int
121 settime(struct thread *td, struct timeval *tv)
122 {
123 	struct timeval delta, tv1, tv2;
124 	static struct timeval maxtime, laststep;
125 	struct timespec ts;
126 
127 	microtime(&tv1);
128 	delta = *tv;
129 	timevalsub(&delta, &tv1);
130 
131 	/*
132 	 * If the system is secure, we do not allow the time to be
133 	 * set to a value earlier than 1 second less than the highest
134 	 * time we have yet seen. The worst a miscreant can do in
135 	 * this circumstance is "freeze" time. He couldn't go
136 	 * back to the past.
137 	 *
138 	 * We similarly do not allow the clock to be stepped more
139 	 * than one second, nor more than once per second. This allows
140 	 * a miscreant to make the clock march double-time, but no worse.
141 	 */
142 	if (securelevel_gt(td->td_ucred, 1) != 0) {
143 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
144 			/*
145 			 * Update maxtime to latest time we've seen.
146 			 */
147 			if (tv1.tv_sec > maxtime.tv_sec)
148 				maxtime = tv1;
149 			tv2 = *tv;
150 			timevalsub(&tv2, &maxtime);
151 			if (tv2.tv_sec < -1) {
152 				tv->tv_sec = maxtime.tv_sec - 1;
153 				printf("Time adjustment clamped to -1 second\n");
154 			}
155 		} else {
156 			if (tv1.tv_sec == laststep.tv_sec)
157 				return (EPERM);
158 			if (delta.tv_sec > 1) {
159 				tv->tv_sec = tv1.tv_sec + 1;
160 				printf("Time adjustment clamped to +1 second\n");
161 			}
162 			laststep = *tv;
163 		}
164 	}
165 
166 	ts.tv_sec = tv->tv_sec;
167 	ts.tv_nsec = tv->tv_usec * 1000;
168 	tc_setclock(&ts);
169 	resettodr();
170 	return (0);
171 }
172 
173 #ifndef _SYS_SYSPROTO_H_
174 struct clock_getcpuclockid2_args {
175 	id_t id;
176 	int which,
177 	clockid_t *clock_id;
178 };
179 #endif
180 /* ARGSUSED */
181 int
182 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap)
183 {
184 	clockid_t clk_id;
185 	int error;
186 
187 	error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id);
188 	if (error == 0)
189 		error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
190 	return (error);
191 }
192 
193 int
194 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which,
195     clockid_t *clk_id)
196 {
197 	struct proc *p;
198 	pid_t pid;
199 	lwpid_t tid;
200 	int error;
201 
202 	switch (which) {
203 	case CPUCLOCK_WHICH_PID:
204 		if (id != 0) {
205 			error = pget(id, PGET_CANSEE | PGET_NOTID, &p);
206 			if (error != 0)
207 				return (error);
208 			PROC_UNLOCK(p);
209 			pid = id;
210 		} else {
211 			pid = td->td_proc->p_pid;
212 		}
213 		*clk_id = MAKE_PROCESS_CPUCLOCK(pid);
214 		return (0);
215 	case CPUCLOCK_WHICH_TID:
216 		tid = id == 0 ? td->td_tid : id;
217 		*clk_id = MAKE_THREAD_CPUCLOCK(tid);
218 		return (0);
219 	default:
220 		return (EINVAL);
221 	}
222 }
223 
224 #ifndef _SYS_SYSPROTO_H_
225 struct clock_gettime_args {
226 	clockid_t clock_id;
227 	struct	timespec *tp;
228 };
229 #endif
230 /* ARGSUSED */
231 int
232 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
233 {
234 	struct timespec ats;
235 	int error;
236 
237 	error = kern_clock_gettime(td, uap->clock_id, &ats);
238 	if (error == 0)
239 		error = copyout(&ats, uap->tp, sizeof(ats));
240 
241 	return (error);
242 }
243 
244 static inline void
245 cputick2timespec(uint64_t runtime, struct timespec *ats)
246 {
247 	runtime = cputick2usec(runtime);
248 	ats->tv_sec = runtime / 1000000;
249 	ats->tv_nsec = runtime % 1000000 * 1000;
250 }
251 
252 static void
253 get_thread_cputime(struct thread *targettd, struct timespec *ats)
254 {
255 	uint64_t runtime, curtime, switchtime;
256 
257 	if (targettd == NULL) { /* current thread */
258 		critical_enter();
259 		switchtime = PCPU_GET(switchtime);
260 		curtime = cpu_ticks();
261 		runtime = curthread->td_runtime;
262 		critical_exit();
263 		runtime += curtime - switchtime;
264 	} else {
265 		thread_lock(targettd);
266 		runtime = targettd->td_runtime;
267 		thread_unlock(targettd);
268 	}
269 	cputick2timespec(runtime, ats);
270 }
271 
272 static void
273 get_process_cputime(struct proc *targetp, struct timespec *ats)
274 {
275 	uint64_t runtime;
276 	struct rusage ru;
277 
278 	PROC_STATLOCK(targetp);
279 	rufetch(targetp, &ru);
280 	runtime = targetp->p_rux.rux_runtime;
281 	PROC_STATUNLOCK(targetp);
282 	cputick2timespec(runtime, ats);
283 }
284 
285 static int
286 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats)
287 {
288 	struct proc *p, *p2;
289 	struct thread *td2;
290 	lwpid_t tid;
291 	pid_t pid;
292 	int error;
293 
294 	p = td->td_proc;
295 	if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) {
296 		tid = clock_id & CPUCLOCK_ID_MASK;
297 		td2 = tdfind(tid, p->p_pid);
298 		if (td2 == NULL)
299 			return (EINVAL);
300 		get_thread_cputime(td2, ats);
301 		PROC_UNLOCK(td2->td_proc);
302 	} else {
303 		pid = clock_id & CPUCLOCK_ID_MASK;
304 		error = pget(pid, PGET_CANSEE, &p2);
305 		if (error != 0)
306 			return (EINVAL);
307 		get_process_cputime(p2, ats);
308 		PROC_UNLOCK(p2);
309 	}
310 	return (0);
311 }
312 
313 int
314 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
315 {
316 	struct timeval sys, user;
317 	struct proc *p;
318 
319 	p = td->td_proc;
320 	switch (clock_id) {
321 	case CLOCK_REALTIME:		/* Default to precise. */
322 	case CLOCK_REALTIME_PRECISE:
323 		nanotime(ats);
324 		break;
325 	case CLOCK_REALTIME_FAST:
326 		getnanotime(ats);
327 		break;
328 	case CLOCK_VIRTUAL:
329 		PROC_LOCK(p);
330 		PROC_STATLOCK(p);
331 		calcru(p, &user, &sys);
332 		PROC_STATUNLOCK(p);
333 		PROC_UNLOCK(p);
334 		TIMEVAL_TO_TIMESPEC(&user, ats);
335 		break;
336 	case CLOCK_PROF:
337 		PROC_LOCK(p);
338 		PROC_STATLOCK(p);
339 		calcru(p, &user, &sys);
340 		PROC_STATUNLOCK(p);
341 		PROC_UNLOCK(p);
342 		timevaladd(&user, &sys);
343 		TIMEVAL_TO_TIMESPEC(&user, ats);
344 		break;
345 	case CLOCK_MONOTONIC:		/* Default to precise. */
346 	case CLOCK_MONOTONIC_PRECISE:
347 	case CLOCK_UPTIME:
348 	case CLOCK_UPTIME_PRECISE:
349 		nanouptime(ats);
350 		break;
351 	case CLOCK_UPTIME_FAST:
352 	case CLOCK_MONOTONIC_FAST:
353 		getnanouptime(ats);
354 		break;
355 	case CLOCK_SECOND:
356 		ats->tv_sec = time_second;
357 		ats->tv_nsec = 0;
358 		break;
359 	case CLOCK_THREAD_CPUTIME_ID:
360 		get_thread_cputime(NULL, ats);
361 		break;
362 	case CLOCK_PROCESS_CPUTIME_ID:
363 		PROC_LOCK(p);
364 		get_process_cputime(p, ats);
365 		PROC_UNLOCK(p);
366 		break;
367 	default:
368 		if ((int)clock_id >= 0)
369 			return (EINVAL);
370 		return (get_cputime(td, clock_id, ats));
371 	}
372 	return (0);
373 }
374 
375 #ifndef _SYS_SYSPROTO_H_
376 struct clock_settime_args {
377 	clockid_t clock_id;
378 	const struct	timespec *tp;
379 };
380 #endif
381 /* ARGSUSED */
382 int
383 sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
384 {
385 	struct timespec ats;
386 	int error;
387 
388 	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
389 		return (error);
390 	return (kern_clock_settime(td, uap->clock_id, &ats));
391 }
392 
393 static int allow_insane_settime = 0;
394 SYSCTL_INT(_debug, OID_AUTO, allow_insane_settime, CTLFLAG_RWTUN,
395     &allow_insane_settime, 0,
396     "do not perform possibly restrictive checks on settime(2) args");
397 
398 int
399 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
400 {
401 	struct timeval atv;
402 	int error;
403 
404 	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
405 		return (error);
406 	if (clock_id != CLOCK_REALTIME)
407 		return (EINVAL);
408 	if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000 ||
409 	    ats->tv_sec < 0)
410 		return (EINVAL);
411 	if (!allow_insane_settime && ats->tv_sec > 9999ULL * 366 * 24 * 60 * 60)
412 		return (EINVAL);
413 	/* XXX Don't convert nsec->usec and back */
414 	TIMESPEC_TO_TIMEVAL(&atv, ats);
415 	error = settime(td, &atv);
416 	return (error);
417 }
418 
419 #ifndef _SYS_SYSPROTO_H_
420 struct clock_getres_args {
421 	clockid_t clock_id;
422 	struct	timespec *tp;
423 };
424 #endif
425 int
426 sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
427 {
428 	struct timespec ts;
429 	int error;
430 
431 	if (uap->tp == NULL)
432 		return (0);
433 
434 	error = kern_clock_getres(td, uap->clock_id, &ts);
435 	if (error == 0)
436 		error = copyout(&ts, uap->tp, sizeof(ts));
437 	return (error);
438 }
439 
440 int
441 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
442 {
443 
444 	ts->tv_sec = 0;
445 	switch (clock_id) {
446 	case CLOCK_REALTIME:
447 	case CLOCK_REALTIME_FAST:
448 	case CLOCK_REALTIME_PRECISE:
449 	case CLOCK_MONOTONIC:
450 	case CLOCK_MONOTONIC_FAST:
451 	case CLOCK_MONOTONIC_PRECISE:
452 	case CLOCK_UPTIME:
453 	case CLOCK_UPTIME_FAST:
454 	case CLOCK_UPTIME_PRECISE:
455 		/*
456 		 * Round up the result of the division cheaply by adding 1.
457 		 * Rounding up is especially important if rounding down
458 		 * would give 0.  Perfect rounding is unimportant.
459 		 */
460 		ts->tv_nsec = 1000000000 / tc_getfrequency() + 1;
461 		break;
462 	case CLOCK_VIRTUAL:
463 	case CLOCK_PROF:
464 		/* Accurately round up here because we can do so cheaply. */
465 		ts->tv_nsec = howmany(1000000000, hz);
466 		break;
467 	case CLOCK_SECOND:
468 		ts->tv_sec = 1;
469 		ts->tv_nsec = 0;
470 		break;
471 	case CLOCK_THREAD_CPUTIME_ID:
472 	case CLOCK_PROCESS_CPUTIME_ID:
473 	cputime:
474 		/* sync with cputick2usec */
475 		ts->tv_nsec = 1000000 / cpu_tickrate();
476 		if (ts->tv_nsec == 0)
477 			ts->tv_nsec = 1000;
478 		break;
479 	default:
480 		if ((int)clock_id < 0)
481 			goto cputime;
482 		return (EINVAL);
483 	}
484 	return (0);
485 }
486 
487 int
488 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
489 {
490 
491 	return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt,
492 	    rmt));
493 }
494 
495 static uint8_t nanowait[MAXCPU];
496 
497 int
498 kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags,
499     const struct timespec *rqt, struct timespec *rmt)
500 {
501 	struct timespec ts, now;
502 	sbintime_t sbt, sbtt, prec, tmp;
503 	time_t over;
504 	int error;
505 	bool is_abs_real;
506 
507 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
508 		return (EINVAL);
509 	if ((flags & ~TIMER_ABSTIME) != 0)
510 		return (EINVAL);
511 	switch (clock_id) {
512 	case CLOCK_REALTIME:
513 	case CLOCK_REALTIME_PRECISE:
514 	case CLOCK_REALTIME_FAST:
515 	case CLOCK_SECOND:
516 		is_abs_real = (flags & TIMER_ABSTIME) != 0;
517 		break;
518 	case CLOCK_MONOTONIC:
519 	case CLOCK_MONOTONIC_PRECISE:
520 	case CLOCK_MONOTONIC_FAST:
521 	case CLOCK_UPTIME:
522 	case CLOCK_UPTIME_PRECISE:
523 	case CLOCK_UPTIME_FAST:
524 		is_abs_real = false;
525 		break;
526 	case CLOCK_VIRTUAL:
527 	case CLOCK_PROF:
528 	case CLOCK_PROCESS_CPUTIME_ID:
529 		return (ENOTSUP);
530 	case CLOCK_THREAD_CPUTIME_ID:
531 	default:
532 		return (EINVAL);
533 	}
534 	do {
535 		ts = *rqt;
536 		if ((flags & TIMER_ABSTIME) != 0) {
537 			if (is_abs_real)
538 				td->td_rtcgen =
539 				    atomic_load_acq_int(&rtc_generation);
540 			error = kern_clock_gettime(td, clock_id, &now);
541 			KASSERT(error == 0, ("kern_clock_gettime: %d", error));
542 			timespecsub(&ts, &now);
543 		}
544 		if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) {
545 			error = EWOULDBLOCK;
546 			break;
547 		}
548 		if (ts.tv_sec > INT32_MAX / 2) {
549 			over = ts.tv_sec - INT32_MAX / 2;
550 			ts.tv_sec -= over;
551 		} else
552 			over = 0;
553 		tmp = tstosbt(ts);
554 		prec = tmp;
555 		prec >>= tc_precexp;
556 		if (TIMESEL(&sbt, tmp))
557 			sbt += tc_tick_sbt;
558 		sbt += tmp;
559 		error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp",
560 		    sbt, prec, C_ABSOLUTE);
561 	} while (error == 0 && is_abs_real && td->td_rtcgen == 0);
562 	td->td_rtcgen = 0;
563 	if (error != EWOULDBLOCK) {
564 		TIMESEL(&sbtt, tmp);
565 		if (sbtt >= sbt)
566 			return (0);
567 		if (error == ERESTART)
568 			error = EINTR;
569 		if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) {
570 			ts = sbttots(sbt - sbtt);
571 			ts.tv_sec += over;
572 			if (ts.tv_sec < 0)
573 				timespecclear(&ts);
574 			*rmt = ts;
575 		}
576 		return (error);
577 	}
578 	return (0);
579 }
580 
581 #ifndef _SYS_SYSPROTO_H_
582 struct nanosleep_args {
583 	struct	timespec *rqtp;
584 	struct	timespec *rmtp;
585 };
586 #endif
587 /* ARGSUSED */
588 int
589 sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
590 {
591 
592 	return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME,
593 	    uap->rqtp, uap->rmtp));
594 }
595 
596 #ifndef _SYS_SYSPROTO_H_
597 struct clock_nanosleep_args {
598 	clockid_t clock_id;
599 	int 	  flags;
600 	struct	timespec *rqtp;
601 	struct	timespec *rmtp;
602 };
603 #endif
604 /* ARGSUSED */
605 int
606 sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap)
607 {
608 	int error;
609 
610 	error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp,
611 	    uap->rmtp);
612 	return (kern_posix_error(td, error));
613 }
614 
615 static int
616 user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags,
617     const struct timespec *ua_rqtp, struct timespec *ua_rmtp)
618 {
619 	struct timespec rmt, rqt;
620 	int error;
621 
622 	error = copyin(ua_rqtp, &rqt, sizeof(rqt));
623 	if (error)
624 		return (error);
625 	if (ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0 &&
626 	    !useracc(ua_rmtp, sizeof(rmt), VM_PROT_WRITE))
627 		return (EFAULT);
628 	error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
629 	if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
630 		int error2;
631 
632 		error2 = copyout(&rmt, ua_rmtp, sizeof(rmt));
633 		if (error2)
634 			error = error2;
635 	}
636 	return (error);
637 }
638 
639 #ifndef _SYS_SYSPROTO_H_
640 struct gettimeofday_args {
641 	struct	timeval *tp;
642 	struct	timezone *tzp;
643 };
644 #endif
645 /* ARGSUSED */
646 int
647 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
648 {
649 	struct timeval atv;
650 	struct timezone rtz;
651 	int error = 0;
652 
653 	if (uap->tp) {
654 		microtime(&atv);
655 		error = copyout(&atv, uap->tp, sizeof (atv));
656 	}
657 	if (error == 0 && uap->tzp != NULL) {
658 		rtz.tz_minuteswest = tz_minuteswest;
659 		rtz.tz_dsttime = tz_dsttime;
660 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
661 	}
662 	return (error);
663 }
664 
665 #ifndef _SYS_SYSPROTO_H_
666 struct settimeofday_args {
667 	struct	timeval *tv;
668 	struct	timezone *tzp;
669 };
670 #endif
671 /* ARGSUSED */
672 int
673 sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
674 {
675 	struct timeval atv, *tvp;
676 	struct timezone atz, *tzp;
677 	int error;
678 
679 	if (uap->tv) {
680 		error = copyin(uap->tv, &atv, sizeof(atv));
681 		if (error)
682 			return (error);
683 		tvp = &atv;
684 	} else
685 		tvp = NULL;
686 	if (uap->tzp) {
687 		error = copyin(uap->tzp, &atz, sizeof(atz));
688 		if (error)
689 			return (error);
690 		tzp = &atz;
691 	} else
692 		tzp = NULL;
693 	return (kern_settimeofday(td, tvp, tzp));
694 }
695 
696 int
697 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
698 {
699 	int error;
700 
701 	error = priv_check(td, PRIV_SETTIMEOFDAY);
702 	if (error)
703 		return (error);
704 	/* Verify all parameters before changing time. */
705 	if (tv) {
706 		if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 ||
707 		    tv->tv_sec < 0)
708 			return (EINVAL);
709 		error = settime(td, tv);
710 	}
711 	if (tzp && error == 0) {
712 		tz_minuteswest = tzp->tz_minuteswest;
713 		tz_dsttime = tzp->tz_dsttime;
714 	}
715 	return (error);
716 }
717 
718 /*
719  * Get value of an interval timer.  The process virtual and profiling virtual
720  * time timers are kept in the p_stats area, since they can be swapped out.
721  * These are kept internally in the way they are specified externally: in
722  * time until they expire.
723  *
724  * The real time interval timer is kept in the process table slot for the
725  * process, and its value (it_value) is kept as an absolute time rather than
726  * as a delta, so that it is easy to keep periodic real-time signals from
727  * drifting.
728  *
729  * Virtual time timers are processed in the hardclock() routine of
730  * kern_clock.c.  The real time timer is processed by a timeout routine,
731  * called from the softclock() routine.  Since a callout may be delayed in
732  * real time due to interrupt processing in the system, it is possible for
733  * the real time timeout routine (realitexpire, given below), to be delayed
734  * in real time past when it is supposed to occur.  It does not suffice,
735  * therefore, to reload the real timer .it_value from the real time timers
736  * .it_interval.  Rather, we compute the next time in absolute time the timer
737  * should go off.
738  */
739 #ifndef _SYS_SYSPROTO_H_
740 struct getitimer_args {
741 	u_int	which;
742 	struct	itimerval *itv;
743 };
744 #endif
745 int
746 sys_getitimer(struct thread *td, struct getitimer_args *uap)
747 {
748 	struct itimerval aitv;
749 	int error;
750 
751 	error = kern_getitimer(td, uap->which, &aitv);
752 	if (error != 0)
753 		return (error);
754 	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
755 }
756 
757 int
758 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
759 {
760 	struct proc *p = td->td_proc;
761 	struct timeval ctv;
762 
763 	if (which > ITIMER_PROF)
764 		return (EINVAL);
765 
766 	if (which == ITIMER_REAL) {
767 		/*
768 		 * Convert from absolute to relative time in .it_value
769 		 * part of real time timer.  If time for real time timer
770 		 * has passed return 0, else return difference between
771 		 * current time and time for the timer to go off.
772 		 */
773 		PROC_LOCK(p);
774 		*aitv = p->p_realtimer;
775 		PROC_UNLOCK(p);
776 		if (timevalisset(&aitv->it_value)) {
777 			microuptime(&ctv);
778 			if (timevalcmp(&aitv->it_value, &ctv, <))
779 				timevalclear(&aitv->it_value);
780 			else
781 				timevalsub(&aitv->it_value, &ctv);
782 		}
783 	} else {
784 		PROC_ITIMLOCK(p);
785 		*aitv = p->p_stats->p_timer[which];
786 		PROC_ITIMUNLOCK(p);
787 	}
788 #ifdef KTRACE
789 	if (KTRPOINT(td, KTR_STRUCT))
790 		ktritimerval(aitv);
791 #endif
792 	return (0);
793 }
794 
795 #ifndef _SYS_SYSPROTO_H_
796 struct setitimer_args {
797 	u_int	which;
798 	struct	itimerval *itv, *oitv;
799 };
800 #endif
801 int
802 sys_setitimer(struct thread *td, struct setitimer_args *uap)
803 {
804 	struct itimerval aitv, oitv;
805 	int error;
806 
807 	if (uap->itv == NULL) {
808 		uap->itv = uap->oitv;
809 		return (sys_getitimer(td, (struct getitimer_args *)uap));
810 	}
811 
812 	if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
813 		return (error);
814 	error = kern_setitimer(td, uap->which, &aitv, &oitv);
815 	if (error != 0 || uap->oitv == NULL)
816 		return (error);
817 	return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
818 }
819 
820 int
821 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
822     struct itimerval *oitv)
823 {
824 	struct proc *p = td->td_proc;
825 	struct timeval ctv;
826 	sbintime_t sbt, pr;
827 
828 	if (aitv == NULL)
829 		return (kern_getitimer(td, which, oitv));
830 
831 	if (which > ITIMER_PROF)
832 		return (EINVAL);
833 #ifdef KTRACE
834 	if (KTRPOINT(td, KTR_STRUCT))
835 		ktritimerval(aitv);
836 #endif
837 	if (itimerfix(&aitv->it_value) ||
838 	    aitv->it_value.tv_sec > INT32_MAX / 2)
839 		return (EINVAL);
840 	if (!timevalisset(&aitv->it_value))
841 		timevalclear(&aitv->it_interval);
842 	else if (itimerfix(&aitv->it_interval) ||
843 	    aitv->it_interval.tv_sec > INT32_MAX / 2)
844 		return (EINVAL);
845 
846 	if (which == ITIMER_REAL) {
847 		PROC_LOCK(p);
848 		if (timevalisset(&p->p_realtimer.it_value))
849 			callout_stop(&p->p_itcallout);
850 		microuptime(&ctv);
851 		if (timevalisset(&aitv->it_value)) {
852 			pr = tvtosbt(aitv->it_value) >> tc_precexp;
853 			timevaladd(&aitv->it_value, &ctv);
854 			sbt = tvtosbt(aitv->it_value);
855 			callout_reset_sbt(&p->p_itcallout, sbt, pr,
856 			    realitexpire, p, C_ABSOLUTE);
857 		}
858 		*oitv = p->p_realtimer;
859 		p->p_realtimer = *aitv;
860 		PROC_UNLOCK(p);
861 		if (timevalisset(&oitv->it_value)) {
862 			if (timevalcmp(&oitv->it_value, &ctv, <))
863 				timevalclear(&oitv->it_value);
864 			else
865 				timevalsub(&oitv->it_value, &ctv);
866 		}
867 	} else {
868 		if (aitv->it_interval.tv_sec == 0 &&
869 		    aitv->it_interval.tv_usec != 0 &&
870 		    aitv->it_interval.tv_usec < tick)
871 			aitv->it_interval.tv_usec = tick;
872 		if (aitv->it_value.tv_sec == 0 &&
873 		    aitv->it_value.tv_usec != 0 &&
874 		    aitv->it_value.tv_usec < tick)
875 			aitv->it_value.tv_usec = tick;
876 		PROC_ITIMLOCK(p);
877 		*oitv = p->p_stats->p_timer[which];
878 		p->p_stats->p_timer[which] = *aitv;
879 		PROC_ITIMUNLOCK(p);
880 	}
881 #ifdef KTRACE
882 	if (KTRPOINT(td, KTR_STRUCT))
883 		ktritimerval(oitv);
884 #endif
885 	return (0);
886 }
887 
888 /*
889  * Real interval timer expired:
890  * send process whose timer expired an alarm signal.
891  * If time is not set up to reload, then just return.
892  * Else compute next time timer should go off which is > current time.
893  * This is where delay in processing this timeout causes multiple
894  * SIGALRM calls to be compressed into one.
895  * tvtohz() always adds 1 to allow for the time until the next clock
896  * interrupt being strictly less than 1 clock tick, but we don't want
897  * that here since we want to appear to be in sync with the clock
898  * interrupt even when we're delayed.
899  */
900 void
901 realitexpire(void *arg)
902 {
903 	struct proc *p;
904 	struct timeval ctv;
905 	sbintime_t isbt;
906 
907 	p = (struct proc *)arg;
908 	kern_psignal(p, SIGALRM);
909 	if (!timevalisset(&p->p_realtimer.it_interval)) {
910 		timevalclear(&p->p_realtimer.it_value);
911 		if (p->p_flag & P_WEXIT)
912 			wakeup(&p->p_itcallout);
913 		return;
914 	}
915 	isbt = tvtosbt(p->p_realtimer.it_interval);
916 	if (isbt >= sbt_timethreshold)
917 		getmicrouptime(&ctv);
918 	else
919 		microuptime(&ctv);
920 	do {
921 		timevaladd(&p->p_realtimer.it_value,
922 		    &p->p_realtimer.it_interval);
923 	} while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=));
924 	callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value),
925 	    isbt >> tc_precexp, realitexpire, p, C_ABSOLUTE);
926 }
927 
928 /*
929  * Check that a proposed value to load into the .it_value or
930  * .it_interval part of an interval timer is acceptable, and
931  * fix it to have at least minimal value (i.e. if it is less
932  * than the resolution of the clock, round it up.)
933  */
934 int
935 itimerfix(struct timeval *tv)
936 {
937 
938 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
939 		return (EINVAL);
940 	if (tv->tv_sec == 0 && tv->tv_usec != 0 &&
941 	    tv->tv_usec < (u_int)tick / 16)
942 		tv->tv_usec = (u_int)tick / 16;
943 	return (0);
944 }
945 
946 /*
947  * Decrement an interval timer by a specified number
948  * of microseconds, which must be less than a second,
949  * i.e. < 1000000.  If the timer expires, then reload
950  * it.  In this case, carry over (usec - old value) to
951  * reduce the value reloaded into the timer so that
952  * the timer does not drift.  This routine assumes
953  * that it is called in a context where the timers
954  * on which it is operating cannot change in value.
955  */
956 int
957 itimerdecr(struct itimerval *itp, int usec)
958 {
959 
960 	if (itp->it_value.tv_usec < usec) {
961 		if (itp->it_value.tv_sec == 0) {
962 			/* expired, and already in next interval */
963 			usec -= itp->it_value.tv_usec;
964 			goto expire;
965 		}
966 		itp->it_value.tv_usec += 1000000;
967 		itp->it_value.tv_sec--;
968 	}
969 	itp->it_value.tv_usec -= usec;
970 	usec = 0;
971 	if (timevalisset(&itp->it_value))
972 		return (1);
973 	/* expired, exactly at end of interval */
974 expire:
975 	if (timevalisset(&itp->it_interval)) {
976 		itp->it_value = itp->it_interval;
977 		itp->it_value.tv_usec -= usec;
978 		if (itp->it_value.tv_usec < 0) {
979 			itp->it_value.tv_usec += 1000000;
980 			itp->it_value.tv_sec--;
981 		}
982 	} else
983 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
984 	return (0);
985 }
986 
987 /*
988  * Add and subtract routines for timevals.
989  * N.B.: subtract routine doesn't deal with
990  * results which are before the beginning,
991  * it just gets very confused in this case.
992  * Caveat emptor.
993  */
994 void
995 timevaladd(struct timeval *t1, const struct timeval *t2)
996 {
997 
998 	t1->tv_sec += t2->tv_sec;
999 	t1->tv_usec += t2->tv_usec;
1000 	timevalfix(t1);
1001 }
1002 
1003 void
1004 timevalsub(struct timeval *t1, const struct timeval *t2)
1005 {
1006 
1007 	t1->tv_sec -= t2->tv_sec;
1008 	t1->tv_usec -= t2->tv_usec;
1009 	timevalfix(t1);
1010 }
1011 
1012 static void
1013 timevalfix(struct timeval *t1)
1014 {
1015 
1016 	if (t1->tv_usec < 0) {
1017 		t1->tv_sec--;
1018 		t1->tv_usec += 1000000;
1019 	}
1020 	if (t1->tv_usec >= 1000000) {
1021 		t1->tv_sec++;
1022 		t1->tv_usec -= 1000000;
1023 	}
1024 }
1025 
1026 /*
1027  * ratecheck(): simple time-based rate-limit checking.
1028  */
1029 int
1030 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1031 {
1032 	struct timeval tv, delta;
1033 	int rv = 0;
1034 
1035 	getmicrouptime(&tv);		/* NB: 10ms precision */
1036 	delta = tv;
1037 	timevalsub(&delta, lasttime);
1038 
1039 	/*
1040 	 * check for 0,0 is so that the message will be seen at least once,
1041 	 * even if interval is huge.
1042 	 */
1043 	if (timevalcmp(&delta, mininterval, >=) ||
1044 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1045 		*lasttime = tv;
1046 		rv = 1;
1047 	}
1048 
1049 	return (rv);
1050 }
1051 
1052 /*
1053  * ppsratecheck(): packets (or events) per second limitation.
1054  *
1055  * Return 0 if the limit is to be enforced (e.g. the caller
1056  * should drop a packet because of the rate limitation).
1057  *
1058  * maxpps of 0 always causes zero to be returned.  maxpps of -1
1059  * always causes 1 to be returned; this effectively defeats rate
1060  * limiting.
1061  *
1062  * Note that we maintain the struct timeval for compatibility
1063  * with other bsd systems.  We reuse the storage and just monitor
1064  * clock ticks for minimal overhead.
1065  */
1066 int
1067 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1068 {
1069 	int now;
1070 
1071 	/*
1072 	 * Reset the last time and counter if this is the first call
1073 	 * or more than a second has passed since the last update of
1074 	 * lasttime.
1075 	 */
1076 	now = ticks;
1077 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
1078 		lasttime->tv_sec = now;
1079 		*curpps = 1;
1080 		return (maxpps != 0);
1081 	} else {
1082 		(*curpps)++;		/* NB: ignore potential overflow */
1083 		return (maxpps < 0 || *curpps <= maxpps);
1084 	}
1085 }
1086 
1087 static void
1088 itimer_start(void)
1089 {
1090 	struct kclock rt_clock = {
1091 		.timer_create  = realtimer_create,
1092 		.timer_delete  = realtimer_delete,
1093 		.timer_settime = realtimer_settime,
1094 		.timer_gettime = realtimer_gettime,
1095 		.event_hook    = NULL
1096 	};
1097 
1098 	itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
1099 		NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
1100 	register_posix_clock(CLOCK_REALTIME,  &rt_clock);
1101 	register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
1102 	p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
1103 	p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
1104 	p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
1105 	EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit,
1106 		(void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY);
1107 	EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec,
1108 		(void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY);
1109 }
1110 
1111 int
1112 register_posix_clock(int clockid, struct kclock *clk)
1113 {
1114 	if ((unsigned)clockid >= MAX_CLOCKS) {
1115 		printf("%s: invalid clockid\n", __func__);
1116 		return (0);
1117 	}
1118 	posix_clocks[clockid] = *clk;
1119 	return (1);
1120 }
1121 
1122 static int
1123 itimer_init(void *mem, int size, int flags)
1124 {
1125 	struct itimer *it;
1126 
1127 	it = (struct itimer *)mem;
1128 	mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
1129 	return (0);
1130 }
1131 
1132 static void
1133 itimer_fini(void *mem, int size)
1134 {
1135 	struct itimer *it;
1136 
1137 	it = (struct itimer *)mem;
1138 	mtx_destroy(&it->it_mtx);
1139 }
1140 
1141 static void
1142 itimer_enter(struct itimer *it)
1143 {
1144 
1145 	mtx_assert(&it->it_mtx, MA_OWNED);
1146 	it->it_usecount++;
1147 }
1148 
1149 static void
1150 itimer_leave(struct itimer *it)
1151 {
1152 
1153 	mtx_assert(&it->it_mtx, MA_OWNED);
1154 	KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
1155 
1156 	if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
1157 		wakeup(it);
1158 }
1159 
1160 #ifndef _SYS_SYSPROTO_H_
1161 struct ktimer_create_args {
1162 	clockid_t clock_id;
1163 	struct sigevent * evp;
1164 	int * timerid;
1165 };
1166 #endif
1167 int
1168 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
1169 {
1170 	struct sigevent *evp, ev;
1171 	int id;
1172 	int error;
1173 
1174 	if (uap->evp == NULL) {
1175 		evp = NULL;
1176 	} else {
1177 		error = copyin(uap->evp, &ev, sizeof(ev));
1178 		if (error != 0)
1179 			return (error);
1180 		evp = &ev;
1181 	}
1182 	error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
1183 	if (error == 0) {
1184 		error = copyout(&id, uap->timerid, sizeof(int));
1185 		if (error != 0)
1186 			kern_ktimer_delete(td, id);
1187 	}
1188 	return (error);
1189 }
1190 
1191 int
1192 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp,
1193     int *timerid, int preset_id)
1194 {
1195 	struct proc *p = td->td_proc;
1196 	struct itimer *it;
1197 	int id;
1198 	int error;
1199 
1200 	if (clock_id < 0 || clock_id >= MAX_CLOCKS)
1201 		return (EINVAL);
1202 
1203 	if (posix_clocks[clock_id].timer_create == NULL)
1204 		return (EINVAL);
1205 
1206 	if (evp != NULL) {
1207 		if (evp->sigev_notify != SIGEV_NONE &&
1208 		    evp->sigev_notify != SIGEV_SIGNAL &&
1209 		    evp->sigev_notify != SIGEV_THREAD_ID)
1210 			return (EINVAL);
1211 		if ((evp->sigev_notify == SIGEV_SIGNAL ||
1212 		     evp->sigev_notify == SIGEV_THREAD_ID) &&
1213 			!_SIG_VALID(evp->sigev_signo))
1214 			return (EINVAL);
1215 	}
1216 
1217 	if (p->p_itimers == NULL)
1218 		itimers_alloc(p);
1219 
1220 	it = uma_zalloc(itimer_zone, M_WAITOK);
1221 	it->it_flags = 0;
1222 	it->it_usecount = 0;
1223 	it->it_active = 0;
1224 	timespecclear(&it->it_time.it_value);
1225 	timespecclear(&it->it_time.it_interval);
1226 	it->it_overrun = 0;
1227 	it->it_overrun_last = 0;
1228 	it->it_clockid = clock_id;
1229 	it->it_timerid = -1;
1230 	it->it_proc = p;
1231 	ksiginfo_init(&it->it_ksi);
1232 	it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
1233 	error = CLOCK_CALL(clock_id, timer_create, (it));
1234 	if (error != 0)
1235 		goto out;
1236 
1237 	PROC_LOCK(p);
1238 	if (preset_id != -1) {
1239 		KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
1240 		id = preset_id;
1241 		if (p->p_itimers->its_timers[id] != NULL) {
1242 			PROC_UNLOCK(p);
1243 			error = 0;
1244 			goto out;
1245 		}
1246 	} else {
1247 		/*
1248 		 * Find a free timer slot, skipping those reserved
1249 		 * for setitimer().
1250 		 */
1251 		for (id = 3; id < TIMER_MAX; id++)
1252 			if (p->p_itimers->its_timers[id] == NULL)
1253 				break;
1254 		if (id == TIMER_MAX) {
1255 			PROC_UNLOCK(p);
1256 			error = EAGAIN;
1257 			goto out;
1258 		}
1259 	}
1260 	it->it_timerid = id;
1261 	p->p_itimers->its_timers[id] = it;
1262 	if (evp != NULL)
1263 		it->it_sigev = *evp;
1264 	else {
1265 		it->it_sigev.sigev_notify = SIGEV_SIGNAL;
1266 		switch (clock_id) {
1267 		default:
1268 		case CLOCK_REALTIME:
1269 			it->it_sigev.sigev_signo = SIGALRM;
1270 			break;
1271 		case CLOCK_VIRTUAL:
1272  			it->it_sigev.sigev_signo = SIGVTALRM;
1273 			break;
1274 		case CLOCK_PROF:
1275 			it->it_sigev.sigev_signo = SIGPROF;
1276 			break;
1277 		}
1278 		it->it_sigev.sigev_value.sival_int = id;
1279 	}
1280 
1281 	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1282 	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1283 		it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
1284 		it->it_ksi.ksi_code = SI_TIMER;
1285 		it->it_ksi.ksi_value = it->it_sigev.sigev_value;
1286 		it->it_ksi.ksi_timerid = id;
1287 	}
1288 	PROC_UNLOCK(p);
1289 	*timerid = id;
1290 	return (0);
1291 
1292 out:
1293 	ITIMER_LOCK(it);
1294 	CLOCK_CALL(it->it_clockid, timer_delete, (it));
1295 	ITIMER_UNLOCK(it);
1296 	uma_zfree(itimer_zone, it);
1297 	return (error);
1298 }
1299 
1300 #ifndef _SYS_SYSPROTO_H_
1301 struct ktimer_delete_args {
1302 	int timerid;
1303 };
1304 #endif
1305 int
1306 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
1307 {
1308 
1309 	return (kern_ktimer_delete(td, uap->timerid));
1310 }
1311 
1312 static struct itimer *
1313 itimer_find(struct proc *p, int timerid)
1314 {
1315 	struct itimer *it;
1316 
1317 	PROC_LOCK_ASSERT(p, MA_OWNED);
1318 	if ((p->p_itimers == NULL) ||
1319 	    (timerid < 0) || (timerid >= TIMER_MAX) ||
1320 	    (it = p->p_itimers->its_timers[timerid]) == NULL) {
1321 		return (NULL);
1322 	}
1323 	ITIMER_LOCK(it);
1324 	if ((it->it_flags & ITF_DELETING) != 0) {
1325 		ITIMER_UNLOCK(it);
1326 		it = NULL;
1327 	}
1328 	return (it);
1329 }
1330 
1331 int
1332 kern_ktimer_delete(struct thread *td, int timerid)
1333 {
1334 	struct proc *p = td->td_proc;
1335 	struct itimer *it;
1336 
1337 	PROC_LOCK(p);
1338 	it = itimer_find(p, timerid);
1339 	if (it == NULL) {
1340 		PROC_UNLOCK(p);
1341 		return (EINVAL);
1342 	}
1343 	PROC_UNLOCK(p);
1344 
1345 	it->it_flags |= ITF_DELETING;
1346 	while (it->it_usecount > 0) {
1347 		it->it_flags |= ITF_WANTED;
1348 		msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
1349 	}
1350 	it->it_flags &= ~ITF_WANTED;
1351 	CLOCK_CALL(it->it_clockid, timer_delete, (it));
1352 	ITIMER_UNLOCK(it);
1353 
1354 	PROC_LOCK(p);
1355 	if (KSI_ONQ(&it->it_ksi))
1356 		sigqueue_take(&it->it_ksi);
1357 	p->p_itimers->its_timers[timerid] = NULL;
1358 	PROC_UNLOCK(p);
1359 	uma_zfree(itimer_zone, it);
1360 	return (0);
1361 }
1362 
1363 #ifndef _SYS_SYSPROTO_H_
1364 struct ktimer_settime_args {
1365 	int timerid;
1366 	int flags;
1367 	const struct itimerspec * value;
1368 	struct itimerspec * ovalue;
1369 };
1370 #endif
1371 int
1372 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
1373 {
1374 	struct itimerspec val, oval, *ovalp;
1375 	int error;
1376 
1377 	error = copyin(uap->value, &val, sizeof(val));
1378 	if (error != 0)
1379 		return (error);
1380 	ovalp = uap->ovalue != NULL ? &oval : NULL;
1381 	error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
1382 	if (error == 0 && uap->ovalue != NULL)
1383 		error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
1384 	return (error);
1385 }
1386 
1387 int
1388 kern_ktimer_settime(struct thread *td, int timer_id, int flags,
1389     struct itimerspec *val, struct itimerspec *oval)
1390 {
1391 	struct proc *p;
1392 	struct itimer *it;
1393 	int error;
1394 
1395 	p = td->td_proc;
1396 	PROC_LOCK(p);
1397 	if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
1398 		PROC_UNLOCK(p);
1399 		error = EINVAL;
1400 	} else {
1401 		PROC_UNLOCK(p);
1402 		itimer_enter(it);
1403 		error = CLOCK_CALL(it->it_clockid, timer_settime, (it,
1404 		    flags, val, oval));
1405 		itimer_leave(it);
1406 		ITIMER_UNLOCK(it);
1407 	}
1408 	return (error);
1409 }
1410 
1411 #ifndef _SYS_SYSPROTO_H_
1412 struct ktimer_gettime_args {
1413 	int timerid;
1414 	struct itimerspec * value;
1415 };
1416 #endif
1417 int
1418 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
1419 {
1420 	struct itimerspec val;
1421 	int error;
1422 
1423 	error = kern_ktimer_gettime(td, uap->timerid, &val);
1424 	if (error == 0)
1425 		error = copyout(&val, uap->value, sizeof(val));
1426 	return (error);
1427 }
1428 
1429 int
1430 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val)
1431 {
1432 	struct proc *p;
1433 	struct itimer *it;
1434 	int error;
1435 
1436 	p = td->td_proc;
1437 	PROC_LOCK(p);
1438 	if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
1439 		PROC_UNLOCK(p);
1440 		error = EINVAL;
1441 	} else {
1442 		PROC_UNLOCK(p);
1443 		itimer_enter(it);
1444 		error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val));
1445 		itimer_leave(it);
1446 		ITIMER_UNLOCK(it);
1447 	}
1448 	return (error);
1449 }
1450 
1451 #ifndef _SYS_SYSPROTO_H_
1452 struct timer_getoverrun_args {
1453 	int timerid;
1454 };
1455 #endif
1456 int
1457 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
1458 {
1459 
1460 	return (kern_ktimer_getoverrun(td, uap->timerid));
1461 }
1462 
1463 int
1464 kern_ktimer_getoverrun(struct thread *td, int timer_id)
1465 {
1466 	struct proc *p = td->td_proc;
1467 	struct itimer *it;
1468 	int error ;
1469 
1470 	PROC_LOCK(p);
1471 	if (timer_id < 3 ||
1472 	    (it = itimer_find(p, timer_id)) == NULL) {
1473 		PROC_UNLOCK(p);
1474 		error = EINVAL;
1475 	} else {
1476 		td->td_retval[0] = it->it_overrun_last;
1477 		ITIMER_UNLOCK(it);
1478 		PROC_UNLOCK(p);
1479 		error = 0;
1480 	}
1481 	return (error);
1482 }
1483 
1484 static int
1485 realtimer_create(struct itimer *it)
1486 {
1487 	callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
1488 	return (0);
1489 }
1490 
1491 static int
1492 realtimer_delete(struct itimer *it)
1493 {
1494 	mtx_assert(&it->it_mtx, MA_OWNED);
1495 
1496 	/*
1497 	 * clear timer's value and interval to tell realtimer_expire
1498 	 * to not rearm the timer.
1499 	 */
1500 	timespecclear(&it->it_time.it_value);
1501 	timespecclear(&it->it_time.it_interval);
1502 	ITIMER_UNLOCK(it);
1503 	callout_drain(&it->it_callout);
1504 	ITIMER_LOCK(it);
1505 	return (0);
1506 }
1507 
1508 static int
1509 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
1510 {
1511 	struct timespec cts;
1512 
1513 	mtx_assert(&it->it_mtx, MA_OWNED);
1514 
1515 	realtimer_clocktime(it->it_clockid, &cts);
1516 	*ovalue = it->it_time;
1517 	if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
1518 		timespecsub(&ovalue->it_value, &cts);
1519 		if (ovalue->it_value.tv_sec < 0 ||
1520 		    (ovalue->it_value.tv_sec == 0 &&
1521 		     ovalue->it_value.tv_nsec == 0)) {
1522 			ovalue->it_value.tv_sec  = 0;
1523 			ovalue->it_value.tv_nsec = 1;
1524 		}
1525 	}
1526 	return (0);
1527 }
1528 
1529 static int
1530 realtimer_settime(struct itimer *it, int flags,
1531 	struct itimerspec *value, struct itimerspec *ovalue)
1532 {
1533 	struct timespec cts, ts;
1534 	struct timeval tv;
1535 	struct itimerspec val;
1536 
1537 	mtx_assert(&it->it_mtx, MA_OWNED);
1538 
1539 	val = *value;
1540 	if (itimespecfix(&val.it_value))
1541 		return (EINVAL);
1542 
1543 	if (timespecisset(&val.it_value)) {
1544 		if (itimespecfix(&val.it_interval))
1545 			return (EINVAL);
1546 	} else {
1547 		timespecclear(&val.it_interval);
1548 	}
1549 
1550 	if (ovalue != NULL)
1551 		realtimer_gettime(it, ovalue);
1552 
1553 	it->it_time = val;
1554 	if (timespecisset(&val.it_value)) {
1555 		realtimer_clocktime(it->it_clockid, &cts);
1556 		ts = val.it_value;
1557 		if ((flags & TIMER_ABSTIME) == 0) {
1558 			/* Convert to absolute time. */
1559 			timespecadd(&it->it_time.it_value, &cts);
1560 		} else {
1561 			timespecsub(&ts, &cts);
1562 			/*
1563 			 * We don't care if ts is negative, tztohz will
1564 			 * fix it.
1565 			 */
1566 		}
1567 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1568 		callout_reset(&it->it_callout, tvtohz(&tv),
1569 			realtimer_expire, it);
1570 	} else {
1571 		callout_stop(&it->it_callout);
1572 	}
1573 
1574 	return (0);
1575 }
1576 
1577 static void
1578 realtimer_clocktime(clockid_t id, struct timespec *ts)
1579 {
1580 	if (id == CLOCK_REALTIME)
1581 		getnanotime(ts);
1582 	else	/* CLOCK_MONOTONIC */
1583 		getnanouptime(ts);
1584 }
1585 
1586 int
1587 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
1588 {
1589 	struct itimer *it;
1590 
1591 	PROC_LOCK_ASSERT(p, MA_OWNED);
1592 	it = itimer_find(p, timerid);
1593 	if (it != NULL) {
1594 		ksi->ksi_overrun = it->it_overrun;
1595 		it->it_overrun_last = it->it_overrun;
1596 		it->it_overrun = 0;
1597 		ITIMER_UNLOCK(it);
1598 		return (0);
1599 	}
1600 	return (EINVAL);
1601 }
1602 
1603 int
1604 itimespecfix(struct timespec *ts)
1605 {
1606 
1607 	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
1608 		return (EINVAL);
1609 	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1610 		ts->tv_nsec = tick * 1000;
1611 	return (0);
1612 }
1613 
1614 /* Timeout callback for realtime timer */
1615 static void
1616 realtimer_expire(void *arg)
1617 {
1618 	struct timespec cts, ts;
1619 	struct timeval tv;
1620 	struct itimer *it;
1621 
1622 	it = (struct itimer *)arg;
1623 
1624 	realtimer_clocktime(it->it_clockid, &cts);
1625 	/* Only fire if time is reached. */
1626 	if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1627 		if (timespecisset(&it->it_time.it_interval)) {
1628 			timespecadd(&it->it_time.it_value,
1629 				    &it->it_time.it_interval);
1630 			while (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1631 				if (it->it_overrun < INT_MAX)
1632 					it->it_overrun++;
1633 				else
1634 					it->it_ksi.ksi_errno = ERANGE;
1635 				timespecadd(&it->it_time.it_value,
1636 					    &it->it_time.it_interval);
1637 			}
1638 		} else {
1639 			/* single shot timer ? */
1640 			timespecclear(&it->it_time.it_value);
1641 		}
1642 		if (timespecisset(&it->it_time.it_value)) {
1643 			ts = it->it_time.it_value;
1644 			timespecsub(&ts, &cts);
1645 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1646 			callout_reset(&it->it_callout, tvtohz(&tv),
1647 				 realtimer_expire, it);
1648 		}
1649 		itimer_enter(it);
1650 		ITIMER_UNLOCK(it);
1651 		itimer_fire(it);
1652 		ITIMER_LOCK(it);
1653 		itimer_leave(it);
1654 	} else if (timespecisset(&it->it_time.it_value)) {
1655 		ts = it->it_time.it_value;
1656 		timespecsub(&ts, &cts);
1657 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1658 		callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
1659  			it);
1660 	}
1661 }
1662 
1663 void
1664 itimer_fire(struct itimer *it)
1665 {
1666 	struct proc *p = it->it_proc;
1667 	struct thread *td;
1668 
1669 	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1670 	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1671 		if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
1672 			ITIMER_LOCK(it);
1673 			timespecclear(&it->it_time.it_value);
1674 			timespecclear(&it->it_time.it_interval);
1675 			callout_stop(&it->it_callout);
1676 			ITIMER_UNLOCK(it);
1677 			return;
1678 		}
1679 		if (!KSI_ONQ(&it->it_ksi)) {
1680 			it->it_ksi.ksi_errno = 0;
1681 			ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
1682 			tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
1683 		} else {
1684 			if (it->it_overrun < INT_MAX)
1685 				it->it_overrun++;
1686 			else
1687 				it->it_ksi.ksi_errno = ERANGE;
1688 		}
1689 		PROC_UNLOCK(p);
1690 	}
1691 }
1692 
1693 static void
1694 itimers_alloc(struct proc *p)
1695 {
1696 	struct itimers *its;
1697 	int i;
1698 
1699 	its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
1700 	LIST_INIT(&its->its_virtual);
1701 	LIST_INIT(&its->its_prof);
1702 	TAILQ_INIT(&its->its_worklist);
1703 	for (i = 0; i < TIMER_MAX; i++)
1704 		its->its_timers[i] = NULL;
1705 	PROC_LOCK(p);
1706 	if (p->p_itimers == NULL) {
1707 		p->p_itimers = its;
1708 		PROC_UNLOCK(p);
1709 	}
1710 	else {
1711 		PROC_UNLOCK(p);
1712 		free(its, M_SUBPROC);
1713 	}
1714 }
1715 
1716 static void
1717 itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused)
1718 {
1719 	itimers_event_hook_exit(arg, p);
1720 }
1721 
1722 /* Clean up timers when some process events are being triggered. */
1723 static void
1724 itimers_event_hook_exit(void *arg, struct proc *p)
1725 {
1726 	struct itimers *its;
1727 	struct itimer *it;
1728 	int event = (int)(intptr_t)arg;
1729 	int i;
1730 
1731 	if (p->p_itimers != NULL) {
1732 		its = p->p_itimers;
1733 		for (i = 0; i < MAX_CLOCKS; ++i) {
1734 			if (posix_clocks[i].event_hook != NULL)
1735 				CLOCK_CALL(i, event_hook, (p, i, event));
1736 		}
1737 		/*
1738 		 * According to susv3, XSI interval timers should be inherited
1739 		 * by new image.
1740 		 */
1741 		if (event == ITIMER_EV_EXEC)
1742 			i = 3;
1743 		else if (event == ITIMER_EV_EXIT)
1744 			i = 0;
1745 		else
1746 			panic("unhandled event");
1747 		for (; i < TIMER_MAX; ++i) {
1748 			if ((it = its->its_timers[i]) != NULL)
1749 				kern_ktimer_delete(curthread, i);
1750 		}
1751 		if (its->its_timers[0] == NULL &&
1752 		    its->its_timers[1] == NULL &&
1753 		    its->its_timers[2] == NULL) {
1754 			free(its, M_SUBPROC);
1755 			p->p_itimers = NULL;
1756 		}
1757 	}
1758 }
1759