1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ktrace.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/limits.h> 42 #include <sys/clock.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/sysproto.h> 46 #include <sys/eventhandler.h> 47 #include <sys/resourcevar.h> 48 #include <sys/signalvar.h> 49 #include <sys/kernel.h> 50 #include <sys/sleepqueue.h> 51 #include <sys/syscallsubr.h> 52 #include <sys/sysctl.h> 53 #include <sys/sysent.h> 54 #include <sys/priv.h> 55 #include <sys/proc.h> 56 #include <sys/posix4.h> 57 #include <sys/time.h> 58 #include <sys/timers.h> 59 #include <sys/timetc.h> 60 #include <sys/vnode.h> 61 #ifdef KTRACE 62 #include <sys/ktrace.h> 63 #endif 64 65 #include <vm/vm.h> 66 #include <vm/vm_extern.h> 67 68 #define MAX_CLOCKS (CLOCK_MONOTONIC+1) 69 #define CPUCLOCK_BIT 0x80000000 70 #define CPUCLOCK_PROCESS_BIT 0x40000000 71 #define CPUCLOCK_ID_MASK (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT)) 72 #define MAKE_THREAD_CPUCLOCK(tid) (CPUCLOCK_BIT|(tid)) 73 #define MAKE_PROCESS_CPUCLOCK(pid) \ 74 (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid)) 75 76 static struct kclock posix_clocks[MAX_CLOCKS]; 77 static uma_zone_t itimer_zone = NULL; 78 79 /* 80 * Time of day and interval timer support. 81 * 82 * These routines provide the kernel entry points to get and set 83 * the time-of-day and per-process interval timers. Subroutines 84 * here provide support for adding and subtracting timeval structures 85 * and decrementing interval timers, optionally reloading the interval 86 * timers when they expire. 87 */ 88 89 static int settime(struct thread *, struct timeval *); 90 static void timevalfix(struct timeval *); 91 static int user_clock_nanosleep(struct thread *td, clockid_t clock_id, 92 int flags, const struct timespec *ua_rqtp, 93 struct timespec *ua_rmtp); 94 95 static void itimer_start(void); 96 static int itimer_init(void *, int, int); 97 static void itimer_fini(void *, int); 98 static void itimer_enter(struct itimer *); 99 static void itimer_leave(struct itimer *); 100 static struct itimer *itimer_find(struct proc *, int); 101 static void itimers_alloc(struct proc *); 102 static void itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp); 103 static void itimers_event_hook_exit(void *arg, struct proc *p); 104 static int realtimer_create(struct itimer *); 105 static int realtimer_gettime(struct itimer *, struct itimerspec *); 106 static int realtimer_settime(struct itimer *, int, 107 struct itimerspec *, struct itimerspec *); 108 static int realtimer_delete(struct itimer *); 109 static void realtimer_clocktime(clockid_t, struct timespec *); 110 static void realtimer_expire(void *); 111 112 int register_posix_clock(int, struct kclock *); 113 void itimer_fire(struct itimer *it); 114 int itimespecfix(struct timespec *ts); 115 116 #define CLOCK_CALL(clock, call, arglist) \ 117 ((*posix_clocks[clock].call) arglist) 118 119 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL); 120 121 static int 122 settime(struct thread *td, struct timeval *tv) 123 { 124 struct timeval delta, tv1, tv2; 125 static struct timeval maxtime, laststep; 126 struct timespec ts; 127 128 microtime(&tv1); 129 delta = *tv; 130 timevalsub(&delta, &tv1); 131 132 /* 133 * If the system is secure, we do not allow the time to be 134 * set to a value earlier than 1 second less than the highest 135 * time we have yet seen. The worst a miscreant can do in 136 * this circumstance is "freeze" time. He couldn't go 137 * back to the past. 138 * 139 * We similarly do not allow the clock to be stepped more 140 * than one second, nor more than once per second. This allows 141 * a miscreant to make the clock march double-time, but no worse. 142 */ 143 if (securelevel_gt(td->td_ucred, 1) != 0) { 144 if (delta.tv_sec < 0 || delta.tv_usec < 0) { 145 /* 146 * Update maxtime to latest time we've seen. 147 */ 148 if (tv1.tv_sec > maxtime.tv_sec) 149 maxtime = tv1; 150 tv2 = *tv; 151 timevalsub(&tv2, &maxtime); 152 if (tv2.tv_sec < -1) { 153 tv->tv_sec = maxtime.tv_sec - 1; 154 printf("Time adjustment clamped to -1 second\n"); 155 } 156 } else { 157 if (tv1.tv_sec == laststep.tv_sec) 158 return (EPERM); 159 if (delta.tv_sec > 1) { 160 tv->tv_sec = tv1.tv_sec + 1; 161 printf("Time adjustment clamped to +1 second\n"); 162 } 163 laststep = *tv; 164 } 165 } 166 167 ts.tv_sec = tv->tv_sec; 168 ts.tv_nsec = tv->tv_usec * 1000; 169 tc_setclock(&ts); 170 resettodr(); 171 return (0); 172 } 173 174 #ifndef _SYS_SYSPROTO_H_ 175 struct clock_getcpuclockid2_args { 176 id_t id; 177 int which, 178 clockid_t *clock_id; 179 }; 180 #endif 181 /* ARGSUSED */ 182 int 183 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap) 184 { 185 clockid_t clk_id; 186 int error; 187 188 error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id); 189 if (error == 0) 190 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 191 return (error); 192 } 193 194 int 195 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which, 196 clockid_t *clk_id) 197 { 198 struct proc *p; 199 pid_t pid; 200 lwpid_t tid; 201 int error; 202 203 switch (which) { 204 case CPUCLOCK_WHICH_PID: 205 if (id != 0) { 206 error = pget(id, PGET_CANSEE | PGET_NOTID, &p); 207 if (error != 0) 208 return (error); 209 PROC_UNLOCK(p); 210 pid = id; 211 } else { 212 pid = td->td_proc->p_pid; 213 } 214 *clk_id = MAKE_PROCESS_CPUCLOCK(pid); 215 return (0); 216 case CPUCLOCK_WHICH_TID: 217 tid = id == 0 ? td->td_tid : id; 218 *clk_id = MAKE_THREAD_CPUCLOCK(tid); 219 return (0); 220 default: 221 return (EINVAL); 222 } 223 } 224 225 #ifndef _SYS_SYSPROTO_H_ 226 struct clock_gettime_args { 227 clockid_t clock_id; 228 struct timespec *tp; 229 }; 230 #endif 231 /* ARGSUSED */ 232 int 233 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap) 234 { 235 struct timespec ats; 236 int error; 237 238 error = kern_clock_gettime(td, uap->clock_id, &ats); 239 if (error == 0) 240 error = copyout(&ats, uap->tp, sizeof(ats)); 241 242 return (error); 243 } 244 245 static inline void 246 cputick2timespec(uint64_t runtime, struct timespec *ats) 247 { 248 runtime = cputick2usec(runtime); 249 ats->tv_sec = runtime / 1000000; 250 ats->tv_nsec = runtime % 1000000 * 1000; 251 } 252 253 void 254 kern_thread_cputime(struct thread *targettd, struct timespec *ats) 255 { 256 uint64_t runtime, curtime, switchtime; 257 258 if (targettd == NULL) { /* current thread */ 259 critical_enter(); 260 switchtime = PCPU_GET(switchtime); 261 curtime = cpu_ticks(); 262 runtime = curthread->td_runtime; 263 critical_exit(); 264 runtime += curtime - switchtime; 265 } else { 266 PROC_LOCK_ASSERT(targettd->td_proc, MA_OWNED); 267 thread_lock(targettd); 268 runtime = targettd->td_runtime; 269 thread_unlock(targettd); 270 } 271 cputick2timespec(runtime, ats); 272 } 273 274 void 275 kern_process_cputime(struct proc *targetp, struct timespec *ats) 276 { 277 uint64_t runtime; 278 struct rusage ru; 279 280 PROC_LOCK_ASSERT(targetp, MA_OWNED); 281 PROC_STATLOCK(targetp); 282 rufetch(targetp, &ru); 283 runtime = targetp->p_rux.rux_runtime; 284 if (curthread->td_proc == targetp) 285 runtime += cpu_ticks() - PCPU_GET(switchtime); 286 PROC_STATUNLOCK(targetp); 287 cputick2timespec(runtime, ats); 288 } 289 290 static int 291 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats) 292 { 293 struct proc *p, *p2; 294 struct thread *td2; 295 lwpid_t tid; 296 pid_t pid; 297 int error; 298 299 p = td->td_proc; 300 if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) { 301 tid = clock_id & CPUCLOCK_ID_MASK; 302 td2 = tdfind(tid, p->p_pid); 303 if (td2 == NULL) 304 return (EINVAL); 305 kern_thread_cputime(td2, ats); 306 PROC_UNLOCK(td2->td_proc); 307 } else { 308 pid = clock_id & CPUCLOCK_ID_MASK; 309 error = pget(pid, PGET_CANSEE, &p2); 310 if (error != 0) 311 return (EINVAL); 312 kern_process_cputime(p2, ats); 313 PROC_UNLOCK(p2); 314 } 315 return (0); 316 } 317 318 int 319 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats) 320 { 321 struct timeval sys, user; 322 struct proc *p; 323 324 p = td->td_proc; 325 switch (clock_id) { 326 case CLOCK_REALTIME: /* Default to precise. */ 327 case CLOCK_REALTIME_PRECISE: 328 nanotime(ats); 329 break; 330 case CLOCK_REALTIME_FAST: 331 getnanotime(ats); 332 break; 333 case CLOCK_VIRTUAL: 334 PROC_LOCK(p); 335 PROC_STATLOCK(p); 336 calcru(p, &user, &sys); 337 PROC_STATUNLOCK(p); 338 PROC_UNLOCK(p); 339 TIMEVAL_TO_TIMESPEC(&user, ats); 340 break; 341 case CLOCK_PROF: 342 PROC_LOCK(p); 343 PROC_STATLOCK(p); 344 calcru(p, &user, &sys); 345 PROC_STATUNLOCK(p); 346 PROC_UNLOCK(p); 347 timevaladd(&user, &sys); 348 TIMEVAL_TO_TIMESPEC(&user, ats); 349 break; 350 case CLOCK_MONOTONIC: /* Default to precise. */ 351 case CLOCK_MONOTONIC_PRECISE: 352 case CLOCK_UPTIME: 353 case CLOCK_UPTIME_PRECISE: 354 nanouptime(ats); 355 break; 356 case CLOCK_UPTIME_FAST: 357 case CLOCK_MONOTONIC_FAST: 358 getnanouptime(ats); 359 break; 360 case CLOCK_SECOND: 361 ats->tv_sec = time_second; 362 ats->tv_nsec = 0; 363 break; 364 case CLOCK_THREAD_CPUTIME_ID: 365 kern_thread_cputime(NULL, ats); 366 break; 367 case CLOCK_PROCESS_CPUTIME_ID: 368 PROC_LOCK(p); 369 kern_process_cputime(p, ats); 370 PROC_UNLOCK(p); 371 break; 372 default: 373 if ((int)clock_id >= 0) 374 return (EINVAL); 375 return (get_cputime(td, clock_id, ats)); 376 } 377 return (0); 378 } 379 380 #ifndef _SYS_SYSPROTO_H_ 381 struct clock_settime_args { 382 clockid_t clock_id; 383 const struct timespec *tp; 384 }; 385 #endif 386 /* ARGSUSED */ 387 int 388 sys_clock_settime(struct thread *td, struct clock_settime_args *uap) 389 { 390 struct timespec ats; 391 int error; 392 393 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0) 394 return (error); 395 return (kern_clock_settime(td, uap->clock_id, &ats)); 396 } 397 398 static int allow_insane_settime = 0; 399 SYSCTL_INT(_debug, OID_AUTO, allow_insane_settime, CTLFLAG_RWTUN, 400 &allow_insane_settime, 0, 401 "do not perform possibly restrictive checks on settime(2) args"); 402 403 int 404 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats) 405 { 406 struct timeval atv; 407 int error; 408 409 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 410 return (error); 411 if (clock_id != CLOCK_REALTIME) 412 return (EINVAL); 413 if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000 || 414 ats->tv_sec < 0) 415 return (EINVAL); 416 if (!allow_insane_settime && 417 (ats->tv_sec > 8000ULL * 365 * 24 * 60 * 60 || 418 ats->tv_sec < utc_offset())) 419 return (EINVAL); 420 /* XXX Don't convert nsec->usec and back */ 421 TIMESPEC_TO_TIMEVAL(&atv, ats); 422 error = settime(td, &atv); 423 return (error); 424 } 425 426 #ifndef _SYS_SYSPROTO_H_ 427 struct clock_getres_args { 428 clockid_t clock_id; 429 struct timespec *tp; 430 }; 431 #endif 432 int 433 sys_clock_getres(struct thread *td, struct clock_getres_args *uap) 434 { 435 struct timespec ts; 436 int error; 437 438 if (uap->tp == NULL) 439 return (0); 440 441 error = kern_clock_getres(td, uap->clock_id, &ts); 442 if (error == 0) 443 error = copyout(&ts, uap->tp, sizeof(ts)); 444 return (error); 445 } 446 447 int 448 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts) 449 { 450 451 ts->tv_sec = 0; 452 switch (clock_id) { 453 case CLOCK_REALTIME: 454 case CLOCK_REALTIME_FAST: 455 case CLOCK_REALTIME_PRECISE: 456 case CLOCK_MONOTONIC: 457 case CLOCK_MONOTONIC_FAST: 458 case CLOCK_MONOTONIC_PRECISE: 459 case CLOCK_UPTIME: 460 case CLOCK_UPTIME_FAST: 461 case CLOCK_UPTIME_PRECISE: 462 /* 463 * Round up the result of the division cheaply by adding 1. 464 * Rounding up is especially important if rounding down 465 * would give 0. Perfect rounding is unimportant. 466 */ 467 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1; 468 break; 469 case CLOCK_VIRTUAL: 470 case CLOCK_PROF: 471 /* Accurately round up here because we can do so cheaply. */ 472 ts->tv_nsec = howmany(1000000000, hz); 473 break; 474 case CLOCK_SECOND: 475 ts->tv_sec = 1; 476 ts->tv_nsec = 0; 477 break; 478 case CLOCK_THREAD_CPUTIME_ID: 479 case CLOCK_PROCESS_CPUTIME_ID: 480 cputime: 481 /* sync with cputick2usec */ 482 ts->tv_nsec = 1000000 / cpu_tickrate(); 483 if (ts->tv_nsec == 0) 484 ts->tv_nsec = 1000; 485 break; 486 default: 487 if ((int)clock_id < 0) 488 goto cputime; 489 return (EINVAL); 490 } 491 return (0); 492 } 493 494 int 495 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt) 496 { 497 498 return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt, 499 rmt)); 500 } 501 502 static uint8_t nanowait[MAXCPU]; 503 504 int 505 kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 506 const struct timespec *rqt, struct timespec *rmt) 507 { 508 struct timespec ts, now; 509 sbintime_t sbt, sbtt, prec, tmp; 510 time_t over; 511 int error; 512 bool is_abs_real; 513 514 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000) 515 return (EINVAL); 516 if ((flags & ~TIMER_ABSTIME) != 0) 517 return (EINVAL); 518 switch (clock_id) { 519 case CLOCK_REALTIME: 520 case CLOCK_REALTIME_PRECISE: 521 case CLOCK_REALTIME_FAST: 522 case CLOCK_SECOND: 523 is_abs_real = (flags & TIMER_ABSTIME) != 0; 524 break; 525 case CLOCK_MONOTONIC: 526 case CLOCK_MONOTONIC_PRECISE: 527 case CLOCK_MONOTONIC_FAST: 528 case CLOCK_UPTIME: 529 case CLOCK_UPTIME_PRECISE: 530 case CLOCK_UPTIME_FAST: 531 is_abs_real = false; 532 break; 533 case CLOCK_VIRTUAL: 534 case CLOCK_PROF: 535 case CLOCK_PROCESS_CPUTIME_ID: 536 return (ENOTSUP); 537 case CLOCK_THREAD_CPUTIME_ID: 538 default: 539 return (EINVAL); 540 } 541 do { 542 ts = *rqt; 543 if ((flags & TIMER_ABSTIME) != 0) { 544 if (is_abs_real) 545 td->td_rtcgen = 546 atomic_load_acq_int(&rtc_generation); 547 error = kern_clock_gettime(td, clock_id, &now); 548 KASSERT(error == 0, ("kern_clock_gettime: %d", error)); 549 timespecsub(&ts, &now, &ts); 550 } 551 if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) { 552 error = EWOULDBLOCK; 553 break; 554 } 555 if (ts.tv_sec > INT32_MAX / 2) { 556 over = ts.tv_sec - INT32_MAX / 2; 557 ts.tv_sec -= over; 558 } else 559 over = 0; 560 tmp = tstosbt(ts); 561 prec = tmp; 562 prec >>= tc_precexp; 563 if (TIMESEL(&sbt, tmp)) 564 sbt += tc_tick_sbt; 565 sbt += tmp; 566 error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp", 567 sbt, prec, C_ABSOLUTE); 568 } while (error == 0 && is_abs_real && td->td_rtcgen == 0); 569 td->td_rtcgen = 0; 570 if (error != EWOULDBLOCK) { 571 if (TIMESEL(&sbtt, tmp)) 572 sbtt += tc_tick_sbt; 573 if (sbtt >= sbt) 574 return (0); 575 if (error == ERESTART) 576 error = EINTR; 577 if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) { 578 ts = sbttots(sbt - sbtt); 579 ts.tv_sec += over; 580 if (ts.tv_sec < 0) 581 timespecclear(&ts); 582 *rmt = ts; 583 } 584 return (error); 585 } 586 return (0); 587 } 588 589 #ifndef _SYS_SYSPROTO_H_ 590 struct nanosleep_args { 591 struct timespec *rqtp; 592 struct timespec *rmtp; 593 }; 594 #endif 595 /* ARGSUSED */ 596 int 597 sys_nanosleep(struct thread *td, struct nanosleep_args *uap) 598 { 599 600 return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, 601 uap->rqtp, uap->rmtp)); 602 } 603 604 #ifndef _SYS_SYSPROTO_H_ 605 struct clock_nanosleep_args { 606 clockid_t clock_id; 607 int flags; 608 struct timespec *rqtp; 609 struct timespec *rmtp; 610 }; 611 #endif 612 /* ARGSUSED */ 613 int 614 sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap) 615 { 616 int error; 617 618 error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp, 619 uap->rmtp); 620 return (kern_posix_error(td, error)); 621 } 622 623 static int 624 user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 625 const struct timespec *ua_rqtp, struct timespec *ua_rmtp) 626 { 627 struct timespec rmt, rqt; 628 int error; 629 630 error = copyin(ua_rqtp, &rqt, sizeof(rqt)); 631 if (error) 632 return (error); 633 if (ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0 && 634 !useracc(ua_rmtp, sizeof(rmt), VM_PROT_WRITE)) 635 return (EFAULT); 636 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 637 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 638 int error2; 639 640 error2 = copyout(&rmt, ua_rmtp, sizeof(rmt)); 641 if (error2) 642 error = error2; 643 } 644 return (error); 645 } 646 647 #ifndef _SYS_SYSPROTO_H_ 648 struct gettimeofday_args { 649 struct timeval *tp; 650 struct timezone *tzp; 651 }; 652 #endif 653 /* ARGSUSED */ 654 int 655 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap) 656 { 657 struct timeval atv; 658 struct timezone rtz; 659 int error = 0; 660 661 if (uap->tp) { 662 microtime(&atv); 663 error = copyout(&atv, uap->tp, sizeof (atv)); 664 } 665 if (error == 0 && uap->tzp != NULL) { 666 rtz.tz_minuteswest = 0; 667 rtz.tz_dsttime = 0; 668 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 669 } 670 return (error); 671 } 672 673 #ifndef _SYS_SYSPROTO_H_ 674 struct settimeofday_args { 675 struct timeval *tv; 676 struct timezone *tzp; 677 }; 678 #endif 679 /* ARGSUSED */ 680 int 681 sys_settimeofday(struct thread *td, struct settimeofday_args *uap) 682 { 683 struct timeval atv, *tvp; 684 struct timezone atz, *tzp; 685 int error; 686 687 if (uap->tv) { 688 error = copyin(uap->tv, &atv, sizeof(atv)); 689 if (error) 690 return (error); 691 tvp = &atv; 692 } else 693 tvp = NULL; 694 if (uap->tzp) { 695 error = copyin(uap->tzp, &atz, sizeof(atz)); 696 if (error) 697 return (error); 698 tzp = &atz; 699 } else 700 tzp = NULL; 701 return (kern_settimeofday(td, tvp, tzp)); 702 } 703 704 int 705 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp) 706 { 707 int error; 708 709 error = priv_check(td, PRIV_SETTIMEOFDAY); 710 if (error) 711 return (error); 712 /* Verify all parameters before changing time. */ 713 if (tv) { 714 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 || 715 tv->tv_sec < 0) 716 return (EINVAL); 717 error = settime(td, tv); 718 } 719 return (error); 720 } 721 722 /* 723 * Get value of an interval timer. The process virtual and profiling virtual 724 * time timers are kept in the p_stats area, since they can be swapped out. 725 * These are kept internally in the way they are specified externally: in 726 * time until they expire. 727 * 728 * The real time interval timer is kept in the process table slot for the 729 * process, and its value (it_value) is kept as an absolute time rather than 730 * as a delta, so that it is easy to keep periodic real-time signals from 731 * drifting. 732 * 733 * Virtual time timers are processed in the hardclock() routine of 734 * kern_clock.c. The real time timer is processed by a timeout routine, 735 * called from the softclock() routine. Since a callout may be delayed in 736 * real time due to interrupt processing in the system, it is possible for 737 * the real time timeout routine (realitexpire, given below), to be delayed 738 * in real time past when it is supposed to occur. It does not suffice, 739 * therefore, to reload the real timer .it_value from the real time timers 740 * .it_interval. Rather, we compute the next time in absolute time the timer 741 * should go off. 742 */ 743 #ifndef _SYS_SYSPROTO_H_ 744 struct getitimer_args { 745 u_int which; 746 struct itimerval *itv; 747 }; 748 #endif 749 int 750 sys_getitimer(struct thread *td, struct getitimer_args *uap) 751 { 752 struct itimerval aitv; 753 int error; 754 755 error = kern_getitimer(td, uap->which, &aitv); 756 if (error != 0) 757 return (error); 758 return (copyout(&aitv, uap->itv, sizeof (struct itimerval))); 759 } 760 761 int 762 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv) 763 { 764 struct proc *p = td->td_proc; 765 struct timeval ctv; 766 767 if (which > ITIMER_PROF) 768 return (EINVAL); 769 770 if (which == ITIMER_REAL) { 771 /* 772 * Convert from absolute to relative time in .it_value 773 * part of real time timer. If time for real time timer 774 * has passed return 0, else return difference between 775 * current time and time for the timer to go off. 776 */ 777 PROC_LOCK(p); 778 *aitv = p->p_realtimer; 779 PROC_UNLOCK(p); 780 if (timevalisset(&aitv->it_value)) { 781 microuptime(&ctv); 782 if (timevalcmp(&aitv->it_value, &ctv, <)) 783 timevalclear(&aitv->it_value); 784 else 785 timevalsub(&aitv->it_value, &ctv); 786 } 787 } else { 788 PROC_ITIMLOCK(p); 789 *aitv = p->p_stats->p_timer[which]; 790 PROC_ITIMUNLOCK(p); 791 } 792 #ifdef KTRACE 793 if (KTRPOINT(td, KTR_STRUCT)) 794 ktritimerval(aitv); 795 #endif 796 return (0); 797 } 798 799 #ifndef _SYS_SYSPROTO_H_ 800 struct setitimer_args { 801 u_int which; 802 struct itimerval *itv, *oitv; 803 }; 804 #endif 805 int 806 sys_setitimer(struct thread *td, struct setitimer_args *uap) 807 { 808 struct itimerval aitv, oitv; 809 int error; 810 811 if (uap->itv == NULL) { 812 uap->itv = uap->oitv; 813 return (sys_getitimer(td, (struct getitimer_args *)uap)); 814 } 815 816 if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval)))) 817 return (error); 818 error = kern_setitimer(td, uap->which, &aitv, &oitv); 819 if (error != 0 || uap->oitv == NULL) 820 return (error); 821 return (copyout(&oitv, uap->oitv, sizeof(struct itimerval))); 822 } 823 824 int 825 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv, 826 struct itimerval *oitv) 827 { 828 struct proc *p = td->td_proc; 829 struct timeval ctv; 830 sbintime_t sbt, pr; 831 832 if (aitv == NULL) 833 return (kern_getitimer(td, which, oitv)); 834 835 if (which > ITIMER_PROF) 836 return (EINVAL); 837 #ifdef KTRACE 838 if (KTRPOINT(td, KTR_STRUCT)) 839 ktritimerval(aitv); 840 #endif 841 if (itimerfix(&aitv->it_value) || 842 aitv->it_value.tv_sec > INT32_MAX / 2) 843 return (EINVAL); 844 if (!timevalisset(&aitv->it_value)) 845 timevalclear(&aitv->it_interval); 846 else if (itimerfix(&aitv->it_interval) || 847 aitv->it_interval.tv_sec > INT32_MAX / 2) 848 return (EINVAL); 849 850 if (which == ITIMER_REAL) { 851 PROC_LOCK(p); 852 if (timevalisset(&p->p_realtimer.it_value)) 853 callout_stop(&p->p_itcallout); 854 microuptime(&ctv); 855 if (timevalisset(&aitv->it_value)) { 856 pr = tvtosbt(aitv->it_value) >> tc_precexp; 857 timevaladd(&aitv->it_value, &ctv); 858 sbt = tvtosbt(aitv->it_value); 859 callout_reset_sbt(&p->p_itcallout, sbt, pr, 860 realitexpire, p, C_ABSOLUTE); 861 } 862 *oitv = p->p_realtimer; 863 p->p_realtimer = *aitv; 864 PROC_UNLOCK(p); 865 if (timevalisset(&oitv->it_value)) { 866 if (timevalcmp(&oitv->it_value, &ctv, <)) 867 timevalclear(&oitv->it_value); 868 else 869 timevalsub(&oitv->it_value, &ctv); 870 } 871 } else { 872 if (aitv->it_interval.tv_sec == 0 && 873 aitv->it_interval.tv_usec != 0 && 874 aitv->it_interval.tv_usec < tick) 875 aitv->it_interval.tv_usec = tick; 876 if (aitv->it_value.tv_sec == 0 && 877 aitv->it_value.tv_usec != 0 && 878 aitv->it_value.tv_usec < tick) 879 aitv->it_value.tv_usec = tick; 880 PROC_ITIMLOCK(p); 881 *oitv = p->p_stats->p_timer[which]; 882 p->p_stats->p_timer[which] = *aitv; 883 PROC_ITIMUNLOCK(p); 884 } 885 #ifdef KTRACE 886 if (KTRPOINT(td, KTR_STRUCT)) 887 ktritimerval(oitv); 888 #endif 889 return (0); 890 } 891 892 /* 893 * Real interval timer expired: 894 * send process whose timer expired an alarm signal. 895 * If time is not set up to reload, then just return. 896 * Else compute next time timer should go off which is > current time. 897 * This is where delay in processing this timeout causes multiple 898 * SIGALRM calls to be compressed into one. 899 * tvtohz() always adds 1 to allow for the time until the next clock 900 * interrupt being strictly less than 1 clock tick, but we don't want 901 * that here since we want to appear to be in sync with the clock 902 * interrupt even when we're delayed. 903 */ 904 void 905 realitexpire(void *arg) 906 { 907 struct proc *p; 908 struct timeval ctv; 909 sbintime_t isbt; 910 911 p = (struct proc *)arg; 912 kern_psignal(p, SIGALRM); 913 if (!timevalisset(&p->p_realtimer.it_interval)) { 914 timevalclear(&p->p_realtimer.it_value); 915 if (p->p_flag & P_WEXIT) 916 wakeup(&p->p_itcallout); 917 return; 918 } 919 isbt = tvtosbt(p->p_realtimer.it_interval); 920 if (isbt >= sbt_timethreshold) 921 getmicrouptime(&ctv); 922 else 923 microuptime(&ctv); 924 do { 925 timevaladd(&p->p_realtimer.it_value, 926 &p->p_realtimer.it_interval); 927 } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=)); 928 callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value), 929 isbt >> tc_precexp, realitexpire, p, C_ABSOLUTE); 930 } 931 932 /* 933 * Check that a proposed value to load into the .it_value or 934 * .it_interval part of an interval timer is acceptable, and 935 * fix it to have at least minimal value (i.e. if it is less 936 * than the resolution of the clock, round it up.) 937 */ 938 int 939 itimerfix(struct timeval *tv) 940 { 941 942 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000) 943 return (EINVAL); 944 if (tv->tv_sec == 0 && tv->tv_usec != 0 && 945 tv->tv_usec < (u_int)tick / 16) 946 tv->tv_usec = (u_int)tick / 16; 947 return (0); 948 } 949 950 /* 951 * Decrement an interval timer by a specified number 952 * of microseconds, which must be less than a second, 953 * i.e. < 1000000. If the timer expires, then reload 954 * it. In this case, carry over (usec - old value) to 955 * reduce the value reloaded into the timer so that 956 * the timer does not drift. This routine assumes 957 * that it is called in a context where the timers 958 * on which it is operating cannot change in value. 959 */ 960 int 961 itimerdecr(struct itimerval *itp, int usec) 962 { 963 964 if (itp->it_value.tv_usec < usec) { 965 if (itp->it_value.tv_sec == 0) { 966 /* expired, and already in next interval */ 967 usec -= itp->it_value.tv_usec; 968 goto expire; 969 } 970 itp->it_value.tv_usec += 1000000; 971 itp->it_value.tv_sec--; 972 } 973 itp->it_value.tv_usec -= usec; 974 usec = 0; 975 if (timevalisset(&itp->it_value)) 976 return (1); 977 /* expired, exactly at end of interval */ 978 expire: 979 if (timevalisset(&itp->it_interval)) { 980 itp->it_value = itp->it_interval; 981 itp->it_value.tv_usec -= usec; 982 if (itp->it_value.tv_usec < 0) { 983 itp->it_value.tv_usec += 1000000; 984 itp->it_value.tv_sec--; 985 } 986 } else 987 itp->it_value.tv_usec = 0; /* sec is already 0 */ 988 return (0); 989 } 990 991 /* 992 * Add and subtract routines for timevals. 993 * N.B.: subtract routine doesn't deal with 994 * results which are before the beginning, 995 * it just gets very confused in this case. 996 * Caveat emptor. 997 */ 998 void 999 timevaladd(struct timeval *t1, const struct timeval *t2) 1000 { 1001 1002 t1->tv_sec += t2->tv_sec; 1003 t1->tv_usec += t2->tv_usec; 1004 timevalfix(t1); 1005 } 1006 1007 void 1008 timevalsub(struct timeval *t1, const struct timeval *t2) 1009 { 1010 1011 t1->tv_sec -= t2->tv_sec; 1012 t1->tv_usec -= t2->tv_usec; 1013 timevalfix(t1); 1014 } 1015 1016 static void 1017 timevalfix(struct timeval *t1) 1018 { 1019 1020 if (t1->tv_usec < 0) { 1021 t1->tv_sec--; 1022 t1->tv_usec += 1000000; 1023 } 1024 if (t1->tv_usec >= 1000000) { 1025 t1->tv_sec++; 1026 t1->tv_usec -= 1000000; 1027 } 1028 } 1029 1030 /* 1031 * ratecheck(): simple time-based rate-limit checking. 1032 */ 1033 int 1034 ratecheck(struct timeval *lasttime, const struct timeval *mininterval) 1035 { 1036 struct timeval tv, delta; 1037 int rv = 0; 1038 1039 getmicrouptime(&tv); /* NB: 10ms precision */ 1040 delta = tv; 1041 timevalsub(&delta, lasttime); 1042 1043 /* 1044 * check for 0,0 is so that the message will be seen at least once, 1045 * even if interval is huge. 1046 */ 1047 if (timevalcmp(&delta, mininterval, >=) || 1048 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { 1049 *lasttime = tv; 1050 rv = 1; 1051 } 1052 1053 return (rv); 1054 } 1055 1056 /* 1057 * ppsratecheck(): packets (or events) per second limitation. 1058 * 1059 * Return 0 if the limit is to be enforced (e.g. the caller 1060 * should drop a packet because of the rate limitation). 1061 * 1062 * maxpps of 0 always causes zero to be returned. maxpps of -1 1063 * always causes 1 to be returned; this effectively defeats rate 1064 * limiting. 1065 * 1066 * Note that we maintain the struct timeval for compatibility 1067 * with other bsd systems. We reuse the storage and just monitor 1068 * clock ticks for minimal overhead. 1069 */ 1070 int 1071 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) 1072 { 1073 int now; 1074 1075 /* 1076 * Reset the last time and counter if this is the first call 1077 * or more than a second has passed since the last update of 1078 * lasttime. 1079 */ 1080 now = ticks; 1081 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) { 1082 lasttime->tv_sec = now; 1083 *curpps = 1; 1084 return (maxpps != 0); 1085 } else { 1086 (*curpps)++; /* NB: ignore potential overflow */ 1087 return (maxpps < 0 || *curpps <= maxpps); 1088 } 1089 } 1090 1091 static void 1092 itimer_start(void) 1093 { 1094 struct kclock rt_clock = { 1095 .timer_create = realtimer_create, 1096 .timer_delete = realtimer_delete, 1097 .timer_settime = realtimer_settime, 1098 .timer_gettime = realtimer_gettime, 1099 .event_hook = NULL 1100 }; 1101 1102 itimer_zone = uma_zcreate("itimer", sizeof(struct itimer), 1103 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0); 1104 register_posix_clock(CLOCK_REALTIME, &rt_clock); 1105 register_posix_clock(CLOCK_MONOTONIC, &rt_clock); 1106 p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L); 1107 p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX); 1108 p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX); 1109 EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit, 1110 (void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY); 1111 EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec, 1112 (void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY); 1113 } 1114 1115 int 1116 register_posix_clock(int clockid, struct kclock *clk) 1117 { 1118 if ((unsigned)clockid >= MAX_CLOCKS) { 1119 printf("%s: invalid clockid\n", __func__); 1120 return (0); 1121 } 1122 posix_clocks[clockid] = *clk; 1123 return (1); 1124 } 1125 1126 static int 1127 itimer_init(void *mem, int size, int flags) 1128 { 1129 struct itimer *it; 1130 1131 it = (struct itimer *)mem; 1132 mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF); 1133 return (0); 1134 } 1135 1136 static void 1137 itimer_fini(void *mem, int size) 1138 { 1139 struct itimer *it; 1140 1141 it = (struct itimer *)mem; 1142 mtx_destroy(&it->it_mtx); 1143 } 1144 1145 static void 1146 itimer_enter(struct itimer *it) 1147 { 1148 1149 mtx_assert(&it->it_mtx, MA_OWNED); 1150 it->it_usecount++; 1151 } 1152 1153 static void 1154 itimer_leave(struct itimer *it) 1155 { 1156 1157 mtx_assert(&it->it_mtx, MA_OWNED); 1158 KASSERT(it->it_usecount > 0, ("invalid it_usecount")); 1159 1160 if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0) 1161 wakeup(it); 1162 } 1163 1164 #ifndef _SYS_SYSPROTO_H_ 1165 struct ktimer_create_args { 1166 clockid_t clock_id; 1167 struct sigevent * evp; 1168 int * timerid; 1169 }; 1170 #endif 1171 int 1172 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap) 1173 { 1174 struct sigevent *evp, ev; 1175 int id; 1176 int error; 1177 1178 if (uap->evp == NULL) { 1179 evp = NULL; 1180 } else { 1181 error = copyin(uap->evp, &ev, sizeof(ev)); 1182 if (error != 0) 1183 return (error); 1184 evp = &ev; 1185 } 1186 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 1187 if (error == 0) { 1188 error = copyout(&id, uap->timerid, sizeof(int)); 1189 if (error != 0) 1190 kern_ktimer_delete(td, id); 1191 } 1192 return (error); 1193 } 1194 1195 int 1196 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp, 1197 int *timerid, int preset_id) 1198 { 1199 struct proc *p = td->td_proc; 1200 struct itimer *it; 1201 int id; 1202 int error; 1203 1204 if (clock_id < 0 || clock_id >= MAX_CLOCKS) 1205 return (EINVAL); 1206 1207 if (posix_clocks[clock_id].timer_create == NULL) 1208 return (EINVAL); 1209 1210 if (evp != NULL) { 1211 if (evp->sigev_notify != SIGEV_NONE && 1212 evp->sigev_notify != SIGEV_SIGNAL && 1213 evp->sigev_notify != SIGEV_THREAD_ID) 1214 return (EINVAL); 1215 if ((evp->sigev_notify == SIGEV_SIGNAL || 1216 evp->sigev_notify == SIGEV_THREAD_ID) && 1217 !_SIG_VALID(evp->sigev_signo)) 1218 return (EINVAL); 1219 } 1220 1221 if (p->p_itimers == NULL) 1222 itimers_alloc(p); 1223 1224 it = uma_zalloc(itimer_zone, M_WAITOK); 1225 it->it_flags = 0; 1226 it->it_usecount = 0; 1227 it->it_active = 0; 1228 timespecclear(&it->it_time.it_value); 1229 timespecclear(&it->it_time.it_interval); 1230 it->it_overrun = 0; 1231 it->it_overrun_last = 0; 1232 it->it_clockid = clock_id; 1233 it->it_timerid = -1; 1234 it->it_proc = p; 1235 ksiginfo_init(&it->it_ksi); 1236 it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT; 1237 error = CLOCK_CALL(clock_id, timer_create, (it)); 1238 if (error != 0) 1239 goto out; 1240 1241 PROC_LOCK(p); 1242 if (preset_id != -1) { 1243 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id")); 1244 id = preset_id; 1245 if (p->p_itimers->its_timers[id] != NULL) { 1246 PROC_UNLOCK(p); 1247 error = 0; 1248 goto out; 1249 } 1250 } else { 1251 /* 1252 * Find a free timer slot, skipping those reserved 1253 * for setitimer(). 1254 */ 1255 for (id = 3; id < TIMER_MAX; id++) 1256 if (p->p_itimers->its_timers[id] == NULL) 1257 break; 1258 if (id == TIMER_MAX) { 1259 PROC_UNLOCK(p); 1260 error = EAGAIN; 1261 goto out; 1262 } 1263 } 1264 it->it_timerid = id; 1265 p->p_itimers->its_timers[id] = it; 1266 if (evp != NULL) 1267 it->it_sigev = *evp; 1268 else { 1269 it->it_sigev.sigev_notify = SIGEV_SIGNAL; 1270 switch (clock_id) { 1271 default: 1272 case CLOCK_REALTIME: 1273 it->it_sigev.sigev_signo = SIGALRM; 1274 break; 1275 case CLOCK_VIRTUAL: 1276 it->it_sigev.sigev_signo = SIGVTALRM; 1277 break; 1278 case CLOCK_PROF: 1279 it->it_sigev.sigev_signo = SIGPROF; 1280 break; 1281 } 1282 it->it_sigev.sigev_value.sival_int = id; 1283 } 1284 1285 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1286 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1287 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo; 1288 it->it_ksi.ksi_code = SI_TIMER; 1289 it->it_ksi.ksi_value = it->it_sigev.sigev_value; 1290 it->it_ksi.ksi_timerid = id; 1291 } 1292 PROC_UNLOCK(p); 1293 *timerid = id; 1294 return (0); 1295 1296 out: 1297 ITIMER_LOCK(it); 1298 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1299 ITIMER_UNLOCK(it); 1300 uma_zfree(itimer_zone, it); 1301 return (error); 1302 } 1303 1304 #ifndef _SYS_SYSPROTO_H_ 1305 struct ktimer_delete_args { 1306 int timerid; 1307 }; 1308 #endif 1309 int 1310 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap) 1311 { 1312 1313 return (kern_ktimer_delete(td, uap->timerid)); 1314 } 1315 1316 static struct itimer * 1317 itimer_find(struct proc *p, int timerid) 1318 { 1319 struct itimer *it; 1320 1321 PROC_LOCK_ASSERT(p, MA_OWNED); 1322 if ((p->p_itimers == NULL) || 1323 (timerid < 0) || (timerid >= TIMER_MAX) || 1324 (it = p->p_itimers->its_timers[timerid]) == NULL) { 1325 return (NULL); 1326 } 1327 ITIMER_LOCK(it); 1328 if ((it->it_flags & ITF_DELETING) != 0) { 1329 ITIMER_UNLOCK(it); 1330 it = NULL; 1331 } 1332 return (it); 1333 } 1334 1335 int 1336 kern_ktimer_delete(struct thread *td, int timerid) 1337 { 1338 struct proc *p = td->td_proc; 1339 struct itimer *it; 1340 1341 PROC_LOCK(p); 1342 it = itimer_find(p, timerid); 1343 if (it == NULL) { 1344 PROC_UNLOCK(p); 1345 return (EINVAL); 1346 } 1347 PROC_UNLOCK(p); 1348 1349 it->it_flags |= ITF_DELETING; 1350 while (it->it_usecount > 0) { 1351 it->it_flags |= ITF_WANTED; 1352 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0); 1353 } 1354 it->it_flags &= ~ITF_WANTED; 1355 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1356 ITIMER_UNLOCK(it); 1357 1358 PROC_LOCK(p); 1359 if (KSI_ONQ(&it->it_ksi)) 1360 sigqueue_take(&it->it_ksi); 1361 p->p_itimers->its_timers[timerid] = NULL; 1362 PROC_UNLOCK(p); 1363 uma_zfree(itimer_zone, it); 1364 return (0); 1365 } 1366 1367 #ifndef _SYS_SYSPROTO_H_ 1368 struct ktimer_settime_args { 1369 int timerid; 1370 int flags; 1371 const struct itimerspec * value; 1372 struct itimerspec * ovalue; 1373 }; 1374 #endif 1375 int 1376 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap) 1377 { 1378 struct itimerspec val, oval, *ovalp; 1379 int error; 1380 1381 error = copyin(uap->value, &val, sizeof(val)); 1382 if (error != 0) 1383 return (error); 1384 ovalp = uap->ovalue != NULL ? &oval : NULL; 1385 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 1386 if (error == 0 && uap->ovalue != NULL) 1387 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp)); 1388 return (error); 1389 } 1390 1391 int 1392 kern_ktimer_settime(struct thread *td, int timer_id, int flags, 1393 struct itimerspec *val, struct itimerspec *oval) 1394 { 1395 struct proc *p; 1396 struct itimer *it; 1397 int error; 1398 1399 p = td->td_proc; 1400 PROC_LOCK(p); 1401 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1402 PROC_UNLOCK(p); 1403 error = EINVAL; 1404 } else { 1405 PROC_UNLOCK(p); 1406 itimer_enter(it); 1407 error = CLOCK_CALL(it->it_clockid, timer_settime, (it, 1408 flags, val, oval)); 1409 itimer_leave(it); 1410 ITIMER_UNLOCK(it); 1411 } 1412 return (error); 1413 } 1414 1415 #ifndef _SYS_SYSPROTO_H_ 1416 struct ktimer_gettime_args { 1417 int timerid; 1418 struct itimerspec * value; 1419 }; 1420 #endif 1421 int 1422 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap) 1423 { 1424 struct itimerspec val; 1425 int error; 1426 1427 error = kern_ktimer_gettime(td, uap->timerid, &val); 1428 if (error == 0) 1429 error = copyout(&val, uap->value, sizeof(val)); 1430 return (error); 1431 } 1432 1433 int 1434 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val) 1435 { 1436 struct proc *p; 1437 struct itimer *it; 1438 int error; 1439 1440 p = td->td_proc; 1441 PROC_LOCK(p); 1442 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1443 PROC_UNLOCK(p); 1444 error = EINVAL; 1445 } else { 1446 PROC_UNLOCK(p); 1447 itimer_enter(it); 1448 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val)); 1449 itimer_leave(it); 1450 ITIMER_UNLOCK(it); 1451 } 1452 return (error); 1453 } 1454 1455 #ifndef _SYS_SYSPROTO_H_ 1456 struct timer_getoverrun_args { 1457 int timerid; 1458 }; 1459 #endif 1460 int 1461 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap) 1462 { 1463 1464 return (kern_ktimer_getoverrun(td, uap->timerid)); 1465 } 1466 1467 int 1468 kern_ktimer_getoverrun(struct thread *td, int timer_id) 1469 { 1470 struct proc *p = td->td_proc; 1471 struct itimer *it; 1472 int error ; 1473 1474 PROC_LOCK(p); 1475 if (timer_id < 3 || 1476 (it = itimer_find(p, timer_id)) == NULL) { 1477 PROC_UNLOCK(p); 1478 error = EINVAL; 1479 } else { 1480 td->td_retval[0] = it->it_overrun_last; 1481 ITIMER_UNLOCK(it); 1482 PROC_UNLOCK(p); 1483 error = 0; 1484 } 1485 return (error); 1486 } 1487 1488 static int 1489 realtimer_create(struct itimer *it) 1490 { 1491 callout_init_mtx(&it->it_callout, &it->it_mtx, 0); 1492 return (0); 1493 } 1494 1495 static int 1496 realtimer_delete(struct itimer *it) 1497 { 1498 mtx_assert(&it->it_mtx, MA_OWNED); 1499 1500 /* 1501 * clear timer's value and interval to tell realtimer_expire 1502 * to not rearm the timer. 1503 */ 1504 timespecclear(&it->it_time.it_value); 1505 timespecclear(&it->it_time.it_interval); 1506 ITIMER_UNLOCK(it); 1507 callout_drain(&it->it_callout); 1508 ITIMER_LOCK(it); 1509 return (0); 1510 } 1511 1512 static int 1513 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue) 1514 { 1515 struct timespec cts; 1516 1517 mtx_assert(&it->it_mtx, MA_OWNED); 1518 1519 realtimer_clocktime(it->it_clockid, &cts); 1520 *ovalue = it->it_time; 1521 if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) { 1522 timespecsub(&ovalue->it_value, &cts, &ovalue->it_value); 1523 if (ovalue->it_value.tv_sec < 0 || 1524 (ovalue->it_value.tv_sec == 0 && 1525 ovalue->it_value.tv_nsec == 0)) { 1526 ovalue->it_value.tv_sec = 0; 1527 ovalue->it_value.tv_nsec = 1; 1528 } 1529 } 1530 return (0); 1531 } 1532 1533 static int 1534 realtimer_settime(struct itimer *it, int flags, 1535 struct itimerspec *value, struct itimerspec *ovalue) 1536 { 1537 struct timespec cts, ts; 1538 struct timeval tv; 1539 struct itimerspec val; 1540 1541 mtx_assert(&it->it_mtx, MA_OWNED); 1542 1543 val = *value; 1544 if (itimespecfix(&val.it_value)) 1545 return (EINVAL); 1546 1547 if (timespecisset(&val.it_value)) { 1548 if (itimespecfix(&val.it_interval)) 1549 return (EINVAL); 1550 } else { 1551 timespecclear(&val.it_interval); 1552 } 1553 1554 if (ovalue != NULL) 1555 realtimer_gettime(it, ovalue); 1556 1557 it->it_time = val; 1558 if (timespecisset(&val.it_value)) { 1559 realtimer_clocktime(it->it_clockid, &cts); 1560 ts = val.it_value; 1561 if ((flags & TIMER_ABSTIME) == 0) { 1562 /* Convert to absolute time. */ 1563 timespecadd(&it->it_time.it_value, &cts, 1564 &it->it_time.it_value); 1565 } else { 1566 timespecsub(&ts, &cts, &ts); 1567 /* 1568 * We don't care if ts is negative, tztohz will 1569 * fix it. 1570 */ 1571 } 1572 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1573 callout_reset(&it->it_callout, tvtohz(&tv), 1574 realtimer_expire, it); 1575 } else { 1576 callout_stop(&it->it_callout); 1577 } 1578 1579 return (0); 1580 } 1581 1582 static void 1583 realtimer_clocktime(clockid_t id, struct timespec *ts) 1584 { 1585 if (id == CLOCK_REALTIME) 1586 getnanotime(ts); 1587 else /* CLOCK_MONOTONIC */ 1588 getnanouptime(ts); 1589 } 1590 1591 int 1592 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi) 1593 { 1594 struct itimer *it; 1595 1596 PROC_LOCK_ASSERT(p, MA_OWNED); 1597 it = itimer_find(p, timerid); 1598 if (it != NULL) { 1599 ksi->ksi_overrun = it->it_overrun; 1600 it->it_overrun_last = it->it_overrun; 1601 it->it_overrun = 0; 1602 ITIMER_UNLOCK(it); 1603 return (0); 1604 } 1605 return (EINVAL); 1606 } 1607 1608 int 1609 itimespecfix(struct timespec *ts) 1610 { 1611 1612 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1613 return (EINVAL); 1614 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000) 1615 ts->tv_nsec = tick * 1000; 1616 return (0); 1617 } 1618 1619 /* Timeout callback for realtime timer */ 1620 static void 1621 realtimer_expire(void *arg) 1622 { 1623 struct timespec cts, ts; 1624 struct timeval tv; 1625 struct itimer *it; 1626 1627 it = (struct itimer *)arg; 1628 1629 realtimer_clocktime(it->it_clockid, &cts); 1630 /* Only fire if time is reached. */ 1631 if (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1632 if (timespecisset(&it->it_time.it_interval)) { 1633 timespecadd(&it->it_time.it_value, 1634 &it->it_time.it_interval, 1635 &it->it_time.it_value); 1636 while (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1637 if (it->it_overrun < INT_MAX) 1638 it->it_overrun++; 1639 else 1640 it->it_ksi.ksi_errno = ERANGE; 1641 timespecadd(&it->it_time.it_value, 1642 &it->it_time.it_interval, 1643 &it->it_time.it_value); 1644 } 1645 } else { 1646 /* single shot timer ? */ 1647 timespecclear(&it->it_time.it_value); 1648 } 1649 if (timespecisset(&it->it_time.it_value)) { 1650 timespecsub(&it->it_time.it_value, &cts, &ts); 1651 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1652 callout_reset(&it->it_callout, tvtohz(&tv), 1653 realtimer_expire, it); 1654 } 1655 itimer_enter(it); 1656 ITIMER_UNLOCK(it); 1657 itimer_fire(it); 1658 ITIMER_LOCK(it); 1659 itimer_leave(it); 1660 } else if (timespecisset(&it->it_time.it_value)) { 1661 ts = it->it_time.it_value; 1662 timespecsub(&ts, &cts, &ts); 1663 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1664 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire, 1665 it); 1666 } 1667 } 1668 1669 void 1670 itimer_fire(struct itimer *it) 1671 { 1672 struct proc *p = it->it_proc; 1673 struct thread *td; 1674 1675 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1676 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1677 if (sigev_findtd(p, &it->it_sigev, &td) != 0) { 1678 ITIMER_LOCK(it); 1679 timespecclear(&it->it_time.it_value); 1680 timespecclear(&it->it_time.it_interval); 1681 callout_stop(&it->it_callout); 1682 ITIMER_UNLOCK(it); 1683 return; 1684 } 1685 if (!KSI_ONQ(&it->it_ksi)) { 1686 it->it_ksi.ksi_errno = 0; 1687 ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev); 1688 tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi); 1689 } else { 1690 if (it->it_overrun < INT_MAX) 1691 it->it_overrun++; 1692 else 1693 it->it_ksi.ksi_errno = ERANGE; 1694 } 1695 PROC_UNLOCK(p); 1696 } 1697 } 1698 1699 static void 1700 itimers_alloc(struct proc *p) 1701 { 1702 struct itimers *its; 1703 int i; 1704 1705 its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO); 1706 LIST_INIT(&its->its_virtual); 1707 LIST_INIT(&its->its_prof); 1708 TAILQ_INIT(&its->its_worklist); 1709 for (i = 0; i < TIMER_MAX; i++) 1710 its->its_timers[i] = NULL; 1711 PROC_LOCK(p); 1712 if (p->p_itimers == NULL) { 1713 p->p_itimers = its; 1714 PROC_UNLOCK(p); 1715 } 1716 else { 1717 PROC_UNLOCK(p); 1718 free(its, M_SUBPROC); 1719 } 1720 } 1721 1722 static void 1723 itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused) 1724 { 1725 itimers_event_hook_exit(arg, p); 1726 } 1727 1728 /* Clean up timers when some process events are being triggered. */ 1729 static void 1730 itimers_event_hook_exit(void *arg, struct proc *p) 1731 { 1732 struct itimers *its; 1733 struct itimer *it; 1734 int event = (int)(intptr_t)arg; 1735 int i; 1736 1737 if (p->p_itimers != NULL) { 1738 its = p->p_itimers; 1739 for (i = 0; i < MAX_CLOCKS; ++i) { 1740 if (posix_clocks[i].event_hook != NULL) 1741 CLOCK_CALL(i, event_hook, (p, i, event)); 1742 } 1743 /* 1744 * According to susv3, XSI interval timers should be inherited 1745 * by new image. 1746 */ 1747 if (event == ITIMER_EV_EXEC) 1748 i = 3; 1749 else if (event == ITIMER_EV_EXIT) 1750 i = 0; 1751 else 1752 panic("unhandled event"); 1753 for (; i < TIMER_MAX; ++i) { 1754 if ((it = its->its_timers[i]) != NULL) 1755 kern_ktimer_delete(curthread, i); 1756 } 1757 if (its->its_timers[0] == NULL && 1758 its->its_timers[1] == NULL && 1759 its->its_timers[2] == NULL) { 1760 free(its, M_SUBPROC); 1761 p->p_itimers = NULL; 1762 } 1763 } 1764 } 1765