xref: /freebsd/sys/kern/kern_time.c (revision c4f6a2a9e1b1879b618c436ab4f56ff75c73a0f5)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD$
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/systm.h>
46 #include <sys/sysent.h>
47 #include <sys/proc.h>
48 #include <sys/time.h>
49 #include <sys/timetc.h>
50 #include <sys/vnode.h>
51 
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 
55 struct timezone tz;
56 
57 /*
58  * Time of day and interval timer support.
59  *
60  * These routines provide the kernel entry points to get and set
61  * the time-of-day and per-process interval timers.  Subroutines
62  * here provide support for adding and subtracting timeval structures
63  * and decrementing interval timers, optionally reloading the interval
64  * timers when they expire.
65  */
66 
67 static int	nanosleep1(struct thread *td, struct timespec *rqt,
68 		    struct timespec *rmt);
69 static int	settime(struct thread *, struct timeval *);
70 static void	timevalfix(struct timeval *);
71 static void	no_lease_updatetime(int);
72 
73 static void
74 no_lease_updatetime(deltat)
75 	int deltat;
76 {
77 }
78 
79 void (*lease_updatetime)(int)  = no_lease_updatetime;
80 
81 static int
82 settime(struct thread *td, struct timeval *tv)
83 {
84 	struct timeval delta, tv1, tv2;
85 	static struct timeval maxtime, laststep;
86 	struct timespec ts;
87 	int s;
88 
89 	s = splclock();
90 	microtime(&tv1);
91 	delta = *tv;
92 	timevalsub(&delta, &tv1);
93 
94 	/*
95 	 * If the system is secure, we do not allow the time to be
96 	 * set to a value earlier than 1 second less than the highest
97 	 * time we have yet seen. The worst a miscreant can do in
98 	 * this circumstance is "freeze" time. He couldn't go
99 	 * back to the past.
100 	 *
101 	 * We similarly do not allow the clock to be stepped more
102 	 * than one second, nor more than once per second. This allows
103 	 * a miscreant to make the clock march double-time, but no worse.
104 	 */
105 	if (securelevel_gt(td->td_ucred, 1) != 0) {
106 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
107 			/*
108 			 * Update maxtime to latest time we've seen.
109 			 */
110 			if (tv1.tv_sec > maxtime.tv_sec)
111 				maxtime = tv1;
112 			tv2 = *tv;
113 			timevalsub(&tv2, &maxtime);
114 			if (tv2.tv_sec < -1) {
115 				tv->tv_sec = maxtime.tv_sec - 1;
116 				printf("Time adjustment clamped to -1 second\n");
117 			}
118 		} else {
119 			if (tv1.tv_sec == laststep.tv_sec) {
120 				splx(s);
121 				return (EPERM);
122 			}
123 			if (delta.tv_sec > 1) {
124 				tv->tv_sec = tv1.tv_sec + 1;
125 				printf("Time adjustment clamped to +1 second\n");
126 			}
127 			laststep = *tv;
128 		}
129 	}
130 
131 	ts.tv_sec = tv->tv_sec;
132 	ts.tv_nsec = tv->tv_usec * 1000;
133 	mtx_lock(&Giant);
134 	tc_setclock(&ts);
135 	(void) splsoftclock();
136 	lease_updatetime(delta.tv_sec);
137 	splx(s);
138 	resettodr();
139 	mtx_unlock(&Giant);
140 	return (0);
141 }
142 
143 #ifndef _SYS_SYSPROTO_H_
144 struct clock_gettime_args {
145 	clockid_t clock_id;
146 	struct	timespec *tp;
147 };
148 #endif
149 
150 /*
151  * MPSAFE
152  */
153 /* ARGSUSED */
154 int
155 clock_gettime(struct thread *td, struct clock_gettime_args *uap)
156 {
157 	struct timespec ats;
158 
159 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
160 		return (EINVAL);
161 	mtx_lock(&Giant);
162 	nanotime(&ats);
163 	mtx_unlock(&Giant);
164 	return (copyout(&ats, SCARG(uap, tp), sizeof(ats)));
165 }
166 
167 #ifndef _SYS_SYSPROTO_H_
168 struct clock_settime_args {
169 	clockid_t clock_id;
170 	const struct	timespec *tp;
171 };
172 #endif
173 
174 /*
175  * MPSAFE
176  */
177 /* ARGSUSED */
178 int
179 clock_settime(struct thread *td, struct clock_settime_args *uap)
180 {
181 	struct timeval atv;
182 	struct timespec ats;
183 	int error;
184 
185 	if ((error = suser(td)) != 0)
186 		return (error);
187 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
188 		return (EINVAL);
189 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
190 		return (error);
191 	if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
192 		return (EINVAL);
193 	/* XXX Don't convert nsec->usec and back */
194 	TIMESPEC_TO_TIMEVAL(&atv, &ats);
195 	error = settime(td, &atv);
196 	return (error);
197 }
198 
199 #ifndef _SYS_SYSPROTO_H_
200 struct clock_getres_args {
201 	clockid_t clock_id;
202 	struct	timespec *tp;
203 };
204 #endif
205 
206 int
207 clock_getres(struct thread *td, struct clock_getres_args *uap)
208 {
209 	struct timespec ts;
210 	int error;
211 
212 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
213 		return (EINVAL);
214 	error = 0;
215 	if (SCARG(uap, tp)) {
216 		ts.tv_sec = 0;
217 		ts.tv_nsec = 1000000000 / tc_getfrequency();
218 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
219 	}
220 	return (error);
221 }
222 
223 static int nanowait;
224 
225 static int
226 nanosleep1(struct thread *td, struct timespec *rqt, struct timespec *rmt)
227 {
228 	struct timespec ts, ts2, ts3;
229 	struct timeval tv;
230 	int error;
231 
232 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
233 		return (EINVAL);
234 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
235 		return (0);
236 	getnanouptime(&ts);
237 	timespecadd(&ts, rqt);
238 	TIMESPEC_TO_TIMEVAL(&tv, rqt);
239 	for (;;) {
240 		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
241 		    tvtohz(&tv));
242 		getnanouptime(&ts2);
243 		if (error != EWOULDBLOCK) {
244 			if (error == ERESTART)
245 				error = EINTR;
246 			if (rmt != NULL) {
247 				timespecsub(&ts, &ts2);
248 				if (ts.tv_sec < 0)
249 					timespecclear(&ts);
250 				*rmt = ts;
251 			}
252 			return (error);
253 		}
254 		if (timespeccmp(&ts2, &ts, >=))
255 			return (0);
256 		ts3 = ts;
257 		timespecsub(&ts3, &ts2);
258 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
259 	}
260 }
261 
262 #ifndef _SYS_SYSPROTO_H_
263 struct nanosleep_args {
264 	struct	timespec *rqtp;
265 	struct	timespec *rmtp;
266 };
267 #endif
268 
269 /*
270  * MPSAFE
271  */
272 /* ARGSUSED */
273 int
274 nanosleep(struct thread *td, struct nanosleep_args *uap)
275 {
276 	struct timespec rmt, rqt;
277 	int error;
278 
279 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(rqt));
280 	if (error)
281 		return (error);
282 
283 	mtx_lock(&Giant);
284 	if (SCARG(uap, rmtp)) {
285 		if (!useracc((caddr_t)SCARG(uap, rmtp), sizeof(rmt),
286 		    VM_PROT_WRITE)) {
287 			error = EFAULT;
288 			goto done2;
289 		}
290 	}
291 	error = nanosleep1(td, &rqt, &rmt);
292 	if (error && SCARG(uap, rmtp)) {
293 		int error2;
294 
295 		error2 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
296 		if (error2)	/* XXX shouldn't happen, did useracc() above */
297 			error = error2;
298 	}
299 done2:
300 	mtx_unlock(&Giant);
301 	return (error);
302 }
303 
304 #ifndef _SYS_SYSPROTO_H_
305 struct gettimeofday_args {
306 	struct	timeval *tp;
307 	struct	timezone *tzp;
308 };
309 #endif
310 /*
311  * MPSAFE
312  */
313 /* ARGSUSED */
314 int
315 gettimeofday(struct thread *td, struct gettimeofday_args *uap)
316 {
317 	struct timeval atv;
318 	int error = 0;
319 
320 	if (uap->tp) {
321 		microtime(&atv);
322 		error = copyout(&atv, uap->tp, sizeof (atv));
323 	}
324 	if (error == 0 && uap->tzp != NULL) {
325 		mtx_lock(&Giant);
326 		error = copyout(&tz, uap->tzp, sizeof (tz));
327 		mtx_unlock(&Giant);
328 	}
329 	return (error);
330 }
331 
332 #ifndef _SYS_SYSPROTO_H_
333 struct settimeofday_args {
334 	struct	timeval *tv;
335 	struct	timezone *tzp;
336 };
337 #endif
338 /*
339  * MPSAFE
340  */
341 /* ARGSUSED */
342 int
343 settimeofday(struct thread *td, struct settimeofday_args *uap)
344 {
345 	struct timeval atv;
346 	struct timezone atz;
347 	int error = 0;
348 
349 	if ((error = suser(td)))
350 		return (error);
351 	/* Verify all parameters before changing time. */
352 	if (uap->tv) {
353 		if ((error = copyin(uap->tv, &atv, sizeof(atv))))
354 			return (error);
355 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
356 			return (EINVAL);
357 	}
358 	if (uap->tzp &&
359 	    (error = copyin(uap->tzp, &atz, sizeof(atz))))
360 		return (error);
361 
362 	if (uap->tv && (error = settime(td, &atv)))
363 		return (error);
364 	if (uap->tzp) {
365 		mtx_lock(&Giant);
366 		tz = atz;
367 		mtx_unlock(&Giant);
368 	}
369 	return (error);
370 }
371 /*
372  * Get value of an interval timer.  The process virtual and
373  * profiling virtual time timers are kept in the p_stats area, since
374  * they can be swapped out.  These are kept internally in the
375  * way they are specified externally: in time until they expire.
376  *
377  * The real time interval timer is kept in the process table slot
378  * for the process, and its value (it_value) is kept as an
379  * absolute time rather than as a delta, so that it is easy to keep
380  * periodic real-time signals from drifting.
381  *
382  * Virtual time timers are processed in the hardclock() routine of
383  * kern_clock.c.  The real time timer is processed by a timeout
384  * routine, called from the softclock() routine.  Since a callout
385  * may be delayed in real time due to interrupt processing in the system,
386  * it is possible for the real time timeout routine (realitexpire, given below),
387  * to be delayed in real time past when it is supposed to occur.  It
388  * does not suffice, therefore, to reload the real timer .it_value from the
389  * real time timers .it_interval.  Rather, we compute the next time in
390  * absolute time the timer should go off.
391  */
392 #ifndef _SYS_SYSPROTO_H_
393 struct getitimer_args {
394 	u_int	which;
395 	struct	itimerval *itv;
396 };
397 #endif
398 /*
399  * MPSAFE
400  */
401 /* ARGSUSED */
402 int
403 getitimer(struct thread *td, struct getitimer_args *uap)
404 {
405 	struct proc *p = td->td_proc;
406 	struct timeval ctv;
407 	struct itimerval aitv;
408 	int s;
409 	int error;
410 
411 	if (uap->which > ITIMER_PROF)
412 		return (EINVAL);
413 
414 	mtx_lock(&Giant);
415 
416 	s = splclock(); /* XXX still needed ? */
417 	if (uap->which == ITIMER_REAL) {
418 		/*
419 		 * Convert from absolute to relative time in .it_value
420 		 * part of real time timer.  If time for real time timer
421 		 * has passed return 0, else return difference between
422 		 * current time and time for the timer to go off.
423 		 */
424 		aitv = p->p_realtimer;
425 		if (timevalisset(&aitv.it_value)) {
426 			getmicrouptime(&ctv);
427 			if (timevalcmp(&aitv.it_value, &ctv, <))
428 				timevalclear(&aitv.it_value);
429 			else
430 				timevalsub(&aitv.it_value, &ctv);
431 		}
432 	} else {
433 		aitv = p->p_stats->p_timer[uap->which];
434 	}
435 	splx(s);
436 	error = copyout(&aitv, uap->itv, sizeof (struct itimerval));
437 	mtx_unlock(&Giant);
438 	return(error);
439 }
440 
441 #ifndef _SYS_SYSPROTO_H_
442 struct setitimer_args {
443 	u_int	which;
444 	struct	itimerval *itv, *oitv;
445 };
446 #endif
447 /*
448  * MPSAFE
449  */
450 /* ARGSUSED */
451 int
452 setitimer(struct thread *td, struct setitimer_args *uap)
453 {
454 	struct proc *p = td->td_proc;
455 	struct itimerval aitv;
456 	struct timeval ctv;
457 	struct itimerval *itvp;
458 	int s, error = 0;
459 
460 	if (uap->which > ITIMER_PROF)
461 		return (EINVAL);
462 	itvp = uap->itv;
463 	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
464 		return (error);
465 
466 	mtx_lock(&Giant);
467 
468 	if ((uap->itv = uap->oitv) &&
469 	    (error = getitimer(td, (struct getitimer_args *)uap))) {
470 		goto done2;
471 	}
472 	if (itvp == 0) {
473 		error = 0;
474 		goto done2;
475 	}
476 	if (itimerfix(&aitv.it_value)) {
477 		error = EINVAL;
478 		goto done2;
479 	}
480 	if (!timevalisset(&aitv.it_value)) {
481 		timevalclear(&aitv.it_interval);
482 	} else if (itimerfix(&aitv.it_interval)) {
483 		error = EINVAL;
484 		goto done2;
485 	}
486 	s = splclock(); /* XXX: still needed ? */
487 	if (uap->which == ITIMER_REAL) {
488 		if (timevalisset(&p->p_realtimer.it_value))
489 			callout_stop(&p->p_itcallout);
490 		if (timevalisset(&aitv.it_value))
491 			callout_reset(&p->p_itcallout, tvtohz(&aitv.it_value),
492 			    realitexpire, p);
493 		getmicrouptime(&ctv);
494 		timevaladd(&aitv.it_value, &ctv);
495 		p->p_realtimer = aitv;
496 	} else {
497 		p->p_stats->p_timer[uap->which] = aitv;
498 	}
499 	splx(s);
500 done2:
501 	mtx_unlock(&Giant);
502 	return (error);
503 }
504 
505 /*
506  * Real interval timer expired:
507  * send process whose timer expired an alarm signal.
508  * If time is not set up to reload, then just return.
509  * Else compute next time timer should go off which is > current time.
510  * This is where delay in processing this timeout causes multiple
511  * SIGALRM calls to be compressed into one.
512  * tvtohz() always adds 1 to allow for the time until the next clock
513  * interrupt being strictly less than 1 clock tick, but we don't want
514  * that here since we want to appear to be in sync with the clock
515  * interrupt even when we're delayed.
516  */
517 void
518 realitexpire(void *arg)
519 {
520 	struct proc *p;
521 	struct timeval ctv, ntv;
522 	int s;
523 
524 	p = (struct proc *)arg;
525 	PROC_LOCK(p);
526 	psignal(p, SIGALRM);
527 	if (!timevalisset(&p->p_realtimer.it_interval)) {
528 		timevalclear(&p->p_realtimer.it_value);
529 		PROC_UNLOCK(p);
530 		return;
531 	}
532 	for (;;) {
533 		s = splclock(); /* XXX: still neeeded ? */
534 		timevaladd(&p->p_realtimer.it_value,
535 		    &p->p_realtimer.it_interval);
536 		getmicrouptime(&ctv);
537 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
538 			ntv = p->p_realtimer.it_value;
539 			timevalsub(&ntv, &ctv);
540 			callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
541 			    realitexpire, p);
542 			splx(s);
543 			PROC_UNLOCK(p);
544 			return;
545 		}
546 		splx(s);
547 	}
548 	/*NOTREACHED*/
549 }
550 
551 /*
552  * Check that a proposed value to load into the .it_value or
553  * .it_interval part of an interval timer is acceptable, and
554  * fix it to have at least minimal value (i.e. if it is less
555  * than the resolution of the clock, round it up.)
556  */
557 int
558 itimerfix(struct timeval *tv)
559 {
560 
561 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
562 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
563 		return (EINVAL);
564 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
565 		tv->tv_usec = tick;
566 	return (0);
567 }
568 
569 /*
570  * Decrement an interval timer by a specified number
571  * of microseconds, which must be less than a second,
572  * i.e. < 1000000.  If the timer expires, then reload
573  * it.  In this case, carry over (usec - old value) to
574  * reduce the value reloaded into the timer so that
575  * the timer does not drift.  This routine assumes
576  * that it is called in a context where the timers
577  * on which it is operating cannot change in value.
578  */
579 int
580 itimerdecr(struct itimerval *itp, int usec)
581 {
582 
583 	if (itp->it_value.tv_usec < usec) {
584 		if (itp->it_value.tv_sec == 0) {
585 			/* expired, and already in next interval */
586 			usec -= itp->it_value.tv_usec;
587 			goto expire;
588 		}
589 		itp->it_value.tv_usec += 1000000;
590 		itp->it_value.tv_sec--;
591 	}
592 	itp->it_value.tv_usec -= usec;
593 	usec = 0;
594 	if (timevalisset(&itp->it_value))
595 		return (1);
596 	/* expired, exactly at end of interval */
597 expire:
598 	if (timevalisset(&itp->it_interval)) {
599 		itp->it_value = itp->it_interval;
600 		itp->it_value.tv_usec -= usec;
601 		if (itp->it_value.tv_usec < 0) {
602 			itp->it_value.tv_usec += 1000000;
603 			itp->it_value.tv_sec--;
604 		}
605 	} else
606 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
607 	return (0);
608 }
609 
610 /*
611  * Add and subtract routines for timevals.
612  * N.B.: subtract routine doesn't deal with
613  * results which are before the beginning,
614  * it just gets very confused in this case.
615  * Caveat emptor.
616  */
617 void
618 timevaladd(struct timeval *t1, struct timeval *t2)
619 {
620 
621 	t1->tv_sec += t2->tv_sec;
622 	t1->tv_usec += t2->tv_usec;
623 	timevalfix(t1);
624 }
625 
626 void
627 timevalsub(struct timeval *t1, struct timeval *t2)
628 {
629 
630 	t1->tv_sec -= t2->tv_sec;
631 	t1->tv_usec -= t2->tv_usec;
632 	timevalfix(t1);
633 }
634 
635 static void
636 timevalfix(struct timeval *t1)
637 {
638 
639 	if (t1->tv_usec < 0) {
640 		t1->tv_sec--;
641 		t1->tv_usec += 1000000;
642 	}
643 	if (t1->tv_usec >= 1000000) {
644 		t1->tv_sec++;
645 		t1->tv_usec -= 1000000;
646 	}
647 }
648