xref: /freebsd/sys/kern/kern_time.c (revision b52b9d56d4e96089873a75f9e29062eec19fabba)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD$
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/systm.h>
46 #include <sys/sysent.h>
47 #include <sys/proc.h>
48 #include <sys/time.h>
49 #include <sys/timetc.h>
50 #include <sys/vnode.h>
51 
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 
55 struct timezone tz;
56 
57 /*
58  * Time of day and interval timer support.
59  *
60  * These routines provide the kernel entry points to get and set
61  * the time-of-day and per-process interval timers.  Subroutines
62  * here provide support for adding and subtracting timeval structures
63  * and decrementing interval timers, optionally reloading the interval
64  * timers when they expire.
65  */
66 
67 static int	nanosleep1(struct thread *td, struct timespec *rqt,
68 		    struct timespec *rmt);
69 static int	settime(struct thread *, struct timeval *);
70 static void	timevalfix(struct timeval *);
71 static void	no_lease_updatetime(int);
72 
73 static void
74 no_lease_updatetime(deltat)
75 	int deltat;
76 {
77 }
78 
79 void (*lease_updatetime)(int)  = no_lease_updatetime;
80 
81 static int
82 settime(td, tv)
83 	struct thread *td;
84 	struct timeval *tv;
85 {
86 	struct timeval delta, tv1, tv2;
87 	static struct timeval maxtime, laststep;
88 	struct timespec ts;
89 	int s;
90 
91 	s = splclock();
92 	microtime(&tv1);
93 	delta = *tv;
94 	timevalsub(&delta, &tv1);
95 
96 	/*
97 	 * If the system is secure, we do not allow the time to be
98 	 * set to a value earlier than 1 second less than the highest
99 	 * time we have yet seen. The worst a miscreant can do in
100 	 * this circumstance is "freeze" time. He couldn't go
101 	 * back to the past.
102 	 *
103 	 * We similarly do not allow the clock to be stepped more
104 	 * than one second, nor more than once per second. This allows
105 	 * a miscreant to make the clock march double-time, but no worse.
106 	 */
107 	if (securelevel_gt(td->td_ucred, 1) != 0) {
108 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
109 			/*
110 			 * Update maxtime to latest time we've seen.
111 			 */
112 			if (tv1.tv_sec > maxtime.tv_sec)
113 				maxtime = tv1;
114 			tv2 = *tv;
115 			timevalsub(&tv2, &maxtime);
116 			if (tv2.tv_sec < -1) {
117 				tv->tv_sec = maxtime.tv_sec - 1;
118 				printf("Time adjustment clamped to -1 second\n");
119 			}
120 		} else {
121 			if (tv1.tv_sec == laststep.tv_sec) {
122 				splx(s);
123 				return (EPERM);
124 			}
125 			if (delta.tv_sec > 1) {
126 				tv->tv_sec = tv1.tv_sec + 1;
127 				printf("Time adjustment clamped to +1 second\n");
128 			}
129 			laststep = *tv;
130 		}
131 	}
132 
133 	ts.tv_sec = tv->tv_sec;
134 	ts.tv_nsec = tv->tv_usec * 1000;
135 	mtx_lock(&Giant);
136 	tc_setclock(&ts);
137 	(void) splsoftclock();
138 	lease_updatetime(delta.tv_sec);
139 	splx(s);
140 	resettodr();
141 	mtx_unlock(&Giant);
142 	return (0);
143 }
144 
145 #ifndef _SYS_SYSPROTO_H_
146 struct clock_gettime_args {
147 	clockid_t clock_id;
148 	struct	timespec *tp;
149 };
150 #endif
151 
152 /*
153  * MPSAFE
154  */
155 /* ARGSUSED */
156 int
157 clock_gettime(td, uap)
158 	struct thread *td;
159 	struct clock_gettime_args *uap;
160 {
161 	struct timespec ats;
162 
163 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
164 		return (EINVAL);
165 	mtx_lock(&Giant);
166 	nanotime(&ats);
167 	mtx_unlock(&Giant);
168 	return (copyout(&ats, SCARG(uap, tp), sizeof(ats)));
169 }
170 
171 #ifndef _SYS_SYSPROTO_H_
172 struct clock_settime_args {
173 	clockid_t clock_id;
174 	const struct	timespec *tp;
175 };
176 #endif
177 
178 /*
179  * MPSAFE
180  */
181 /* ARGSUSED */
182 int
183 clock_settime(td, uap)
184 	struct thread *td;
185 	struct clock_settime_args *uap;
186 {
187 	struct timeval atv;
188 	struct timespec ats;
189 	int error;
190 
191 	if ((error = suser(td)) != 0)
192 		return (error);
193 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
194 		return (EINVAL);
195 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
196 		return (error);
197 	if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
198 		return (EINVAL);
199 	/* XXX Don't convert nsec->usec and back */
200 	TIMESPEC_TO_TIMEVAL(&atv, &ats);
201 	error = settime(td, &atv);
202 	return (error);
203 }
204 
205 #ifndef _SYS_SYSPROTO_H_
206 struct clock_getres_args {
207 	clockid_t clock_id;
208 	struct	timespec *tp;
209 };
210 #endif
211 
212 int
213 clock_getres(td, uap)
214 	struct thread *td;
215 	struct clock_getres_args *uap;
216 {
217 	struct timespec ts;
218 	int error;
219 
220 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
221 		return (EINVAL);
222 	error = 0;
223 	if (SCARG(uap, tp)) {
224 		ts.tv_sec = 0;
225 		ts.tv_nsec = 1000000000 / tc_getfrequency();
226 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
227 	}
228 	return (error);
229 }
230 
231 static int nanowait;
232 
233 static int
234 nanosleep1(td, rqt, rmt)
235 	struct thread *td;
236 	struct timespec *rqt, *rmt;
237 {
238 	struct timespec ts, ts2, ts3;
239 	struct timeval tv;
240 	int error;
241 
242 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
243 		return (EINVAL);
244 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
245 		return (0);
246 	getnanouptime(&ts);
247 	timespecadd(&ts, rqt);
248 	TIMESPEC_TO_TIMEVAL(&tv, rqt);
249 	for (;;) {
250 		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
251 		    tvtohz(&tv));
252 		getnanouptime(&ts2);
253 		if (error != EWOULDBLOCK) {
254 			if (error == ERESTART)
255 				error = EINTR;
256 			if (rmt != NULL) {
257 				timespecsub(&ts, &ts2);
258 				if (ts.tv_sec < 0)
259 					timespecclear(&ts);
260 				*rmt = ts;
261 			}
262 			return (error);
263 		}
264 		if (timespeccmp(&ts2, &ts, >=))
265 			return (0);
266 		ts3 = ts;
267 		timespecsub(&ts3, &ts2);
268 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
269 	}
270 }
271 
272 #ifndef _SYS_SYSPROTO_H_
273 struct nanosleep_args {
274 	struct	timespec *rqtp;
275 	struct	timespec *rmtp;
276 };
277 #endif
278 
279 /*
280  * MPSAFE
281  */
282 /* ARGSUSED */
283 int
284 nanosleep(td, uap)
285 	struct thread *td;
286 	struct nanosleep_args *uap;
287 {
288 	struct timespec rmt, rqt;
289 	int error;
290 
291 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(rqt));
292 	if (error)
293 		return (error);
294 
295 	mtx_lock(&Giant);
296 	if (SCARG(uap, rmtp)) {
297 		if (!useracc((caddr_t)SCARG(uap, rmtp), sizeof(rmt),
298 		    VM_PROT_WRITE)) {
299 			error = EFAULT;
300 			goto done2;
301 		}
302 	}
303 	error = nanosleep1(td, &rqt, &rmt);
304 	if (error && SCARG(uap, rmtp)) {
305 		int error2;
306 
307 		error2 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
308 		if (error2)	/* XXX shouldn't happen, did useracc() above */
309 			error = error2;
310 	}
311 done2:
312 	mtx_unlock(&Giant);
313 	return (error);
314 }
315 
316 #ifndef _SYS_SYSPROTO_H_
317 struct gettimeofday_args {
318 	struct	timeval *tp;
319 	struct	timezone *tzp;
320 };
321 #endif
322 /*
323  * MPSAFE
324  */
325 /* ARGSUSED */
326 int
327 gettimeofday(td, uap)
328 	struct thread *td;
329 	register struct gettimeofday_args *uap;
330 {
331 	struct timeval atv;
332 	int error = 0;
333 
334 	if (uap->tp) {
335 		microtime(&atv);
336 		error = copyout(&atv, uap->tp, sizeof (atv));
337 	}
338 	if (error == 0 && uap->tzp != NULL) {
339 		mtx_lock(&Giant);
340 		error = copyout(&tz, uap->tzp, sizeof (tz));
341 		mtx_unlock(&Giant);
342 	}
343 	return (error);
344 }
345 
346 #ifndef _SYS_SYSPROTO_H_
347 struct settimeofday_args {
348 	struct	timeval *tv;
349 	struct	timezone *tzp;
350 };
351 #endif
352 /*
353  * MPSAFE
354  */
355 /* ARGSUSED */
356 int
357 settimeofday(td, uap)
358 	struct thread *td;
359 	struct settimeofday_args *uap;
360 {
361 	struct timeval atv;
362 	struct timezone atz;
363 	int error = 0;
364 
365 	if ((error = suser(td)))
366 		return (error);
367 	/* Verify all parameters before changing time. */
368 	if (uap->tv) {
369 		if ((error = copyin(uap->tv, &atv, sizeof(atv))))
370 			return (error);
371 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
372 			return (EINVAL);
373 	}
374 	if (uap->tzp &&
375 	    (error = copyin(uap->tzp, &atz, sizeof(atz))))
376 		return (error);
377 
378 	if (uap->tv && (error = settime(td, &atv)))
379 		return (error);
380 	if (uap->tzp) {
381 		mtx_lock(&Giant);
382 		tz = atz;
383 		mtx_unlock(&Giant);
384 	}
385 	return (error);
386 }
387 /*
388  * Get value of an interval timer.  The process virtual and
389  * profiling virtual time timers are kept in the p_stats area, since
390  * they can be swapped out.  These are kept internally in the
391  * way they are specified externally: in time until they expire.
392  *
393  * The real time interval timer is kept in the process table slot
394  * for the process, and its value (it_value) is kept as an
395  * absolute time rather than as a delta, so that it is easy to keep
396  * periodic real-time signals from drifting.
397  *
398  * Virtual time timers are processed in the hardclock() routine of
399  * kern_clock.c.  The real time timer is processed by a timeout
400  * routine, called from the softclock() routine.  Since a callout
401  * may be delayed in real time due to interrupt processing in the system,
402  * it is possible for the real time timeout routine (realitexpire, given below),
403  * to be delayed in real time past when it is supposed to occur.  It
404  * does not suffice, therefore, to reload the real timer .it_value from the
405  * real time timers .it_interval.  Rather, we compute the next time in
406  * absolute time the timer should go off.
407  */
408 #ifndef _SYS_SYSPROTO_H_
409 struct getitimer_args {
410 	u_int	which;
411 	struct	itimerval *itv;
412 };
413 #endif
414 /*
415  * MPSAFE
416  */
417 /* ARGSUSED */
418 int
419 getitimer(td, uap)
420 	struct thread *td;
421 	register struct getitimer_args *uap;
422 {
423 	struct proc *p = td->td_proc;
424 	struct timeval ctv;
425 	struct itimerval aitv;
426 	int s;
427 	int error;
428 
429 	if (uap->which > ITIMER_PROF)
430 		return (EINVAL);
431 
432 	mtx_lock(&Giant);
433 
434 	s = splclock(); /* XXX still needed ? */
435 	if (uap->which == ITIMER_REAL) {
436 		/*
437 		 * Convert from absolute to relative time in .it_value
438 		 * part of real time timer.  If time for real time timer
439 		 * has passed return 0, else return difference between
440 		 * current time and time for the timer to go off.
441 		 */
442 		aitv = p->p_realtimer;
443 		if (timevalisset(&aitv.it_value)) {
444 			getmicrouptime(&ctv);
445 			if (timevalcmp(&aitv.it_value, &ctv, <))
446 				timevalclear(&aitv.it_value);
447 			else
448 				timevalsub(&aitv.it_value, &ctv);
449 		}
450 	} else {
451 		aitv = p->p_stats->p_timer[uap->which];
452 	}
453 	splx(s);
454 	error = copyout(&aitv, uap->itv, sizeof (struct itimerval));
455 	mtx_unlock(&Giant);
456 	return(error);
457 }
458 
459 #ifndef _SYS_SYSPROTO_H_
460 struct setitimer_args {
461 	u_int	which;
462 	struct	itimerval *itv, *oitv;
463 };
464 #endif
465 /*
466  * MPSAFE
467  */
468 /* ARGSUSED */
469 int
470 setitimer(td, uap)
471 	struct thread *td;
472 	register struct setitimer_args *uap;
473 {
474 	struct proc *p = td->td_proc;
475 	struct itimerval aitv;
476 	struct timeval ctv;
477 	register struct itimerval *itvp;
478 	int s, error = 0;
479 
480 	if (uap->which > ITIMER_PROF)
481 		return (EINVAL);
482 	itvp = uap->itv;
483 	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
484 		return (error);
485 
486 	mtx_lock(&Giant);
487 
488 	if ((uap->itv = uap->oitv) &&
489 	    (error = getitimer(td, (struct getitimer_args *)uap))) {
490 		goto done2;
491 	}
492 	if (itvp == 0) {
493 		error = 0;
494 		goto done2;
495 	}
496 	if (itimerfix(&aitv.it_value)) {
497 		error = EINVAL;
498 		goto done2;
499 	}
500 	if (!timevalisset(&aitv.it_value)) {
501 		timevalclear(&aitv.it_interval);
502 	} else if (itimerfix(&aitv.it_interval)) {
503 		error = EINVAL;
504 		goto done2;
505 	}
506 	s = splclock(); /* XXX: still needed ? */
507 	if (uap->which == ITIMER_REAL) {
508 		if (timevalisset(&p->p_realtimer.it_value))
509 			callout_stop(&p->p_itcallout);
510 		if (timevalisset(&aitv.it_value))
511 			callout_reset(&p->p_itcallout, tvtohz(&aitv.it_value),
512 			    realitexpire, p);
513 		getmicrouptime(&ctv);
514 		timevaladd(&aitv.it_value, &ctv);
515 		p->p_realtimer = aitv;
516 	} else {
517 		p->p_stats->p_timer[uap->which] = aitv;
518 	}
519 	splx(s);
520 done2:
521 	mtx_unlock(&Giant);
522 	return (error);
523 }
524 
525 /*
526  * Real interval timer expired:
527  * send process whose timer expired an alarm signal.
528  * If time is not set up to reload, then just return.
529  * Else compute next time timer should go off which is > current time.
530  * This is where delay in processing this timeout causes multiple
531  * SIGALRM calls to be compressed into one.
532  * tvtohz() always adds 1 to allow for the time until the next clock
533  * interrupt being strictly less than 1 clock tick, but we don't want
534  * that here since we want to appear to be in sync with the clock
535  * interrupt even when we're delayed.
536  */
537 void
538 realitexpire(arg)
539 	void *arg;
540 {
541 	register struct proc *p;
542 	struct timeval ctv, ntv;
543 	int s;
544 
545 	p = (struct proc *)arg;
546 	PROC_LOCK(p);
547 	psignal(p, SIGALRM);
548 	if (!timevalisset(&p->p_realtimer.it_interval)) {
549 		timevalclear(&p->p_realtimer.it_value);
550 		PROC_UNLOCK(p);
551 		return;
552 	}
553 	for (;;) {
554 		s = splclock(); /* XXX: still neeeded ? */
555 		timevaladd(&p->p_realtimer.it_value,
556 		    &p->p_realtimer.it_interval);
557 		getmicrouptime(&ctv);
558 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
559 			ntv = p->p_realtimer.it_value;
560 			timevalsub(&ntv, &ctv);
561 			callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
562 			    realitexpire, p);
563 			splx(s);
564 			PROC_UNLOCK(p);
565 			return;
566 		}
567 		splx(s);
568 	}
569 	/*NOTREACHED*/
570 }
571 
572 /*
573  * Check that a proposed value to load into the .it_value or
574  * .it_interval part of an interval timer is acceptable, and
575  * fix it to have at least minimal value (i.e. if it is less
576  * than the resolution of the clock, round it up.)
577  */
578 int
579 itimerfix(tv)
580 	struct timeval *tv;
581 {
582 
583 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
584 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
585 		return (EINVAL);
586 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
587 		tv->tv_usec = tick;
588 	return (0);
589 }
590 
591 /*
592  * Decrement an interval timer by a specified number
593  * of microseconds, which must be less than a second,
594  * i.e. < 1000000.  If the timer expires, then reload
595  * it.  In this case, carry over (usec - old value) to
596  * reduce the value reloaded into the timer so that
597  * the timer does not drift.  This routine assumes
598  * that it is called in a context where the timers
599  * on which it is operating cannot change in value.
600  */
601 int
602 itimerdecr(itp, usec)
603 	register struct itimerval *itp;
604 	int usec;
605 {
606 
607 	if (itp->it_value.tv_usec < usec) {
608 		if (itp->it_value.tv_sec == 0) {
609 			/* expired, and already in next interval */
610 			usec -= itp->it_value.tv_usec;
611 			goto expire;
612 		}
613 		itp->it_value.tv_usec += 1000000;
614 		itp->it_value.tv_sec--;
615 	}
616 	itp->it_value.tv_usec -= usec;
617 	usec = 0;
618 	if (timevalisset(&itp->it_value))
619 		return (1);
620 	/* expired, exactly at end of interval */
621 expire:
622 	if (timevalisset(&itp->it_interval)) {
623 		itp->it_value = itp->it_interval;
624 		itp->it_value.tv_usec -= usec;
625 		if (itp->it_value.tv_usec < 0) {
626 			itp->it_value.tv_usec += 1000000;
627 			itp->it_value.tv_sec--;
628 		}
629 	} else
630 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
631 	return (0);
632 }
633 
634 /*
635  * Add and subtract routines for timevals.
636  * N.B.: subtract routine doesn't deal with
637  * results which are before the beginning,
638  * it just gets very confused in this case.
639  * Caveat emptor.
640  */
641 void
642 timevaladd(t1, t2)
643 	struct timeval *t1, *t2;
644 {
645 
646 	t1->tv_sec += t2->tv_sec;
647 	t1->tv_usec += t2->tv_usec;
648 	timevalfix(t1);
649 }
650 
651 void
652 timevalsub(t1, t2)
653 	struct timeval *t1, *t2;
654 {
655 
656 	t1->tv_sec -= t2->tv_sec;
657 	t1->tv_usec -= t2->tv_usec;
658 	timevalfix(t1);
659 }
660 
661 static void
662 timevalfix(t1)
663 	struct timeval *t1;
664 {
665 
666 	if (t1->tv_usec < 0) {
667 		t1->tv_sec--;
668 		t1->tv_usec += 1000000;
669 	}
670 	if (t1->tv_usec >= 1000000) {
671 		t1->tv_sec++;
672 		t1->tv_usec -= 1000000;
673 	}
674 }
675