1 /* 2 * Copyright (c) 1982, 1986, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93 34 * $FreeBSD$ 35 */ 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/sysproto.h> 42 #include <sys/resourcevar.h> 43 #include <sys/signalvar.h> 44 #include <sys/kernel.h> 45 #include <sys/systm.h> 46 #include <sys/sysent.h> 47 #include <sys/proc.h> 48 #include <sys/time.h> 49 #include <sys/timetc.h> 50 #include <sys/vnode.h> 51 52 #include <vm/vm.h> 53 #include <vm/vm_extern.h> 54 55 struct timezone tz; 56 57 /* 58 * Time of day and interval timer support. 59 * 60 * These routines provide the kernel entry points to get and set 61 * the time-of-day and per-process interval timers. Subroutines 62 * here provide support for adding and subtracting timeval structures 63 * and decrementing interval timers, optionally reloading the interval 64 * timers when they expire. 65 */ 66 67 static int nanosleep1(struct thread *td, struct timespec *rqt, 68 struct timespec *rmt); 69 static int settime(struct thread *, struct timeval *); 70 static void timevalfix(struct timeval *); 71 static void no_lease_updatetime(int); 72 73 static void 74 no_lease_updatetime(deltat) 75 int deltat; 76 { 77 } 78 79 void (*lease_updatetime)(int) = no_lease_updatetime; 80 81 static int 82 settime(td, tv) 83 struct thread *td; 84 struct timeval *tv; 85 { 86 struct timeval delta, tv1, tv2; 87 static struct timeval maxtime, laststep; 88 struct timespec ts; 89 int s; 90 91 s = splclock(); 92 microtime(&tv1); 93 delta = *tv; 94 timevalsub(&delta, &tv1); 95 96 /* 97 * If the system is secure, we do not allow the time to be 98 * set to a value earlier than 1 second less than the highest 99 * time we have yet seen. The worst a miscreant can do in 100 * this circumstance is "freeze" time. He couldn't go 101 * back to the past. 102 * 103 * We similarly do not allow the clock to be stepped more 104 * than one second, nor more than once per second. This allows 105 * a miscreant to make the clock march double-time, but no worse. 106 */ 107 if (securelevel_gt(td->td_ucred, 1) != 0) { 108 if (delta.tv_sec < 0 || delta.tv_usec < 0) { 109 /* 110 * Update maxtime to latest time we've seen. 111 */ 112 if (tv1.tv_sec > maxtime.tv_sec) 113 maxtime = tv1; 114 tv2 = *tv; 115 timevalsub(&tv2, &maxtime); 116 if (tv2.tv_sec < -1) { 117 tv->tv_sec = maxtime.tv_sec - 1; 118 printf("Time adjustment clamped to -1 second\n"); 119 } 120 } else { 121 if (tv1.tv_sec == laststep.tv_sec) { 122 splx(s); 123 return (EPERM); 124 } 125 if (delta.tv_sec > 1) { 126 tv->tv_sec = tv1.tv_sec + 1; 127 printf("Time adjustment clamped to +1 second\n"); 128 } 129 laststep = *tv; 130 } 131 } 132 133 ts.tv_sec = tv->tv_sec; 134 ts.tv_nsec = tv->tv_usec * 1000; 135 mtx_lock(&Giant); 136 tc_setclock(&ts); 137 (void) splsoftclock(); 138 lease_updatetime(delta.tv_sec); 139 splx(s); 140 resettodr(); 141 mtx_unlock(&Giant); 142 return (0); 143 } 144 145 #ifndef _SYS_SYSPROTO_H_ 146 struct clock_gettime_args { 147 clockid_t clock_id; 148 struct timespec *tp; 149 }; 150 #endif 151 152 /* 153 * MPSAFE 154 */ 155 /* ARGSUSED */ 156 int 157 clock_gettime(td, uap) 158 struct thread *td; 159 struct clock_gettime_args *uap; 160 { 161 struct timespec ats; 162 163 if (SCARG(uap, clock_id) != CLOCK_REALTIME) 164 return (EINVAL); 165 mtx_lock(&Giant); 166 nanotime(&ats); 167 mtx_unlock(&Giant); 168 return (copyout(&ats, SCARG(uap, tp), sizeof(ats))); 169 } 170 171 #ifndef _SYS_SYSPROTO_H_ 172 struct clock_settime_args { 173 clockid_t clock_id; 174 const struct timespec *tp; 175 }; 176 #endif 177 178 /* 179 * MPSAFE 180 */ 181 /* ARGSUSED */ 182 int 183 clock_settime(td, uap) 184 struct thread *td; 185 struct clock_settime_args *uap; 186 { 187 struct timeval atv; 188 struct timespec ats; 189 int error; 190 191 if ((error = suser(td)) != 0) 192 return (error); 193 if (SCARG(uap, clock_id) != CLOCK_REALTIME) 194 return (EINVAL); 195 if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0) 196 return (error); 197 if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000) 198 return (EINVAL); 199 /* XXX Don't convert nsec->usec and back */ 200 TIMESPEC_TO_TIMEVAL(&atv, &ats); 201 error = settime(td, &atv); 202 return (error); 203 } 204 205 #ifndef _SYS_SYSPROTO_H_ 206 struct clock_getres_args { 207 clockid_t clock_id; 208 struct timespec *tp; 209 }; 210 #endif 211 212 int 213 clock_getres(td, uap) 214 struct thread *td; 215 struct clock_getres_args *uap; 216 { 217 struct timespec ts; 218 int error; 219 220 if (SCARG(uap, clock_id) != CLOCK_REALTIME) 221 return (EINVAL); 222 error = 0; 223 if (SCARG(uap, tp)) { 224 ts.tv_sec = 0; 225 ts.tv_nsec = 1000000000 / tc_getfrequency(); 226 error = copyout(&ts, SCARG(uap, tp), sizeof(ts)); 227 } 228 return (error); 229 } 230 231 static int nanowait; 232 233 static int 234 nanosleep1(td, rqt, rmt) 235 struct thread *td; 236 struct timespec *rqt, *rmt; 237 { 238 struct timespec ts, ts2, ts3; 239 struct timeval tv; 240 int error; 241 242 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000) 243 return (EINVAL); 244 if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0)) 245 return (0); 246 getnanouptime(&ts); 247 timespecadd(&ts, rqt); 248 TIMESPEC_TO_TIMEVAL(&tv, rqt); 249 for (;;) { 250 error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp", 251 tvtohz(&tv)); 252 getnanouptime(&ts2); 253 if (error != EWOULDBLOCK) { 254 if (error == ERESTART) 255 error = EINTR; 256 if (rmt != NULL) { 257 timespecsub(&ts, &ts2); 258 if (ts.tv_sec < 0) 259 timespecclear(&ts); 260 *rmt = ts; 261 } 262 return (error); 263 } 264 if (timespeccmp(&ts2, &ts, >=)) 265 return (0); 266 ts3 = ts; 267 timespecsub(&ts3, &ts2); 268 TIMESPEC_TO_TIMEVAL(&tv, &ts3); 269 } 270 } 271 272 #ifndef _SYS_SYSPROTO_H_ 273 struct nanosleep_args { 274 struct timespec *rqtp; 275 struct timespec *rmtp; 276 }; 277 #endif 278 279 /* 280 * MPSAFE 281 */ 282 /* ARGSUSED */ 283 int 284 nanosleep(td, uap) 285 struct thread *td; 286 struct nanosleep_args *uap; 287 { 288 struct timespec rmt, rqt; 289 int error; 290 291 error = copyin(SCARG(uap, rqtp), &rqt, sizeof(rqt)); 292 if (error) 293 return (error); 294 295 mtx_lock(&Giant); 296 if (SCARG(uap, rmtp)) { 297 if (!useracc((caddr_t)SCARG(uap, rmtp), sizeof(rmt), 298 VM_PROT_WRITE)) { 299 error = EFAULT; 300 goto done2; 301 } 302 } 303 error = nanosleep1(td, &rqt, &rmt); 304 if (error && SCARG(uap, rmtp)) { 305 int error2; 306 307 error2 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt)); 308 if (error2) /* XXX shouldn't happen, did useracc() above */ 309 error = error2; 310 } 311 done2: 312 mtx_unlock(&Giant); 313 return (error); 314 } 315 316 #ifndef _SYS_SYSPROTO_H_ 317 struct gettimeofday_args { 318 struct timeval *tp; 319 struct timezone *tzp; 320 }; 321 #endif 322 /* 323 * MPSAFE 324 */ 325 /* ARGSUSED */ 326 int 327 gettimeofday(td, uap) 328 struct thread *td; 329 register struct gettimeofday_args *uap; 330 { 331 struct timeval atv; 332 int error = 0; 333 334 if (uap->tp) { 335 microtime(&atv); 336 error = copyout(&atv, uap->tp, sizeof (atv)); 337 } 338 if (error == 0 && uap->tzp != NULL) { 339 mtx_lock(&Giant); 340 error = copyout(&tz, uap->tzp, sizeof (tz)); 341 mtx_unlock(&Giant); 342 } 343 return (error); 344 } 345 346 #ifndef _SYS_SYSPROTO_H_ 347 struct settimeofday_args { 348 struct timeval *tv; 349 struct timezone *tzp; 350 }; 351 #endif 352 /* 353 * MPSAFE 354 */ 355 /* ARGSUSED */ 356 int 357 settimeofday(td, uap) 358 struct thread *td; 359 struct settimeofday_args *uap; 360 { 361 struct timeval atv; 362 struct timezone atz; 363 int error = 0; 364 365 if ((error = suser(td))) 366 return (error); 367 /* Verify all parameters before changing time. */ 368 if (uap->tv) { 369 if ((error = copyin(uap->tv, &atv, sizeof(atv)))) 370 return (error); 371 if (atv.tv_usec < 0 || atv.tv_usec >= 1000000) 372 return (EINVAL); 373 } 374 if (uap->tzp && 375 (error = copyin(uap->tzp, &atz, sizeof(atz)))) 376 return (error); 377 378 if (uap->tv && (error = settime(td, &atv))) 379 return (error); 380 if (uap->tzp) { 381 mtx_lock(&Giant); 382 tz = atz; 383 mtx_unlock(&Giant); 384 } 385 return (error); 386 } 387 /* 388 * Get value of an interval timer. The process virtual and 389 * profiling virtual time timers are kept in the p_stats area, since 390 * they can be swapped out. These are kept internally in the 391 * way they are specified externally: in time until they expire. 392 * 393 * The real time interval timer is kept in the process table slot 394 * for the process, and its value (it_value) is kept as an 395 * absolute time rather than as a delta, so that it is easy to keep 396 * periodic real-time signals from drifting. 397 * 398 * Virtual time timers are processed in the hardclock() routine of 399 * kern_clock.c. The real time timer is processed by a timeout 400 * routine, called from the softclock() routine. Since a callout 401 * may be delayed in real time due to interrupt processing in the system, 402 * it is possible for the real time timeout routine (realitexpire, given below), 403 * to be delayed in real time past when it is supposed to occur. It 404 * does not suffice, therefore, to reload the real timer .it_value from the 405 * real time timers .it_interval. Rather, we compute the next time in 406 * absolute time the timer should go off. 407 */ 408 #ifndef _SYS_SYSPROTO_H_ 409 struct getitimer_args { 410 u_int which; 411 struct itimerval *itv; 412 }; 413 #endif 414 /* 415 * MPSAFE 416 */ 417 /* ARGSUSED */ 418 int 419 getitimer(td, uap) 420 struct thread *td; 421 register struct getitimer_args *uap; 422 { 423 struct proc *p = td->td_proc; 424 struct timeval ctv; 425 struct itimerval aitv; 426 int s; 427 int error; 428 429 if (uap->which > ITIMER_PROF) 430 return (EINVAL); 431 432 mtx_lock(&Giant); 433 434 s = splclock(); /* XXX still needed ? */ 435 if (uap->which == ITIMER_REAL) { 436 /* 437 * Convert from absolute to relative time in .it_value 438 * part of real time timer. If time for real time timer 439 * has passed return 0, else return difference between 440 * current time and time for the timer to go off. 441 */ 442 aitv = p->p_realtimer; 443 if (timevalisset(&aitv.it_value)) { 444 getmicrouptime(&ctv); 445 if (timevalcmp(&aitv.it_value, &ctv, <)) 446 timevalclear(&aitv.it_value); 447 else 448 timevalsub(&aitv.it_value, &ctv); 449 } 450 } else { 451 aitv = p->p_stats->p_timer[uap->which]; 452 } 453 splx(s); 454 error = copyout(&aitv, uap->itv, sizeof (struct itimerval)); 455 mtx_unlock(&Giant); 456 return(error); 457 } 458 459 #ifndef _SYS_SYSPROTO_H_ 460 struct setitimer_args { 461 u_int which; 462 struct itimerval *itv, *oitv; 463 }; 464 #endif 465 /* 466 * MPSAFE 467 */ 468 /* ARGSUSED */ 469 int 470 setitimer(td, uap) 471 struct thread *td; 472 register struct setitimer_args *uap; 473 { 474 struct proc *p = td->td_proc; 475 struct itimerval aitv; 476 struct timeval ctv; 477 register struct itimerval *itvp; 478 int s, error = 0; 479 480 if (uap->which > ITIMER_PROF) 481 return (EINVAL); 482 itvp = uap->itv; 483 if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval)))) 484 return (error); 485 486 mtx_lock(&Giant); 487 488 if ((uap->itv = uap->oitv) && 489 (error = getitimer(td, (struct getitimer_args *)uap))) { 490 goto done2; 491 } 492 if (itvp == 0) { 493 error = 0; 494 goto done2; 495 } 496 if (itimerfix(&aitv.it_value)) { 497 error = EINVAL; 498 goto done2; 499 } 500 if (!timevalisset(&aitv.it_value)) { 501 timevalclear(&aitv.it_interval); 502 } else if (itimerfix(&aitv.it_interval)) { 503 error = EINVAL; 504 goto done2; 505 } 506 s = splclock(); /* XXX: still needed ? */ 507 if (uap->which == ITIMER_REAL) { 508 if (timevalisset(&p->p_realtimer.it_value)) 509 callout_stop(&p->p_itcallout); 510 if (timevalisset(&aitv.it_value)) 511 callout_reset(&p->p_itcallout, tvtohz(&aitv.it_value), 512 realitexpire, p); 513 getmicrouptime(&ctv); 514 timevaladd(&aitv.it_value, &ctv); 515 p->p_realtimer = aitv; 516 } else { 517 p->p_stats->p_timer[uap->which] = aitv; 518 } 519 splx(s); 520 done2: 521 mtx_unlock(&Giant); 522 return (error); 523 } 524 525 /* 526 * Real interval timer expired: 527 * send process whose timer expired an alarm signal. 528 * If time is not set up to reload, then just return. 529 * Else compute next time timer should go off which is > current time. 530 * This is where delay in processing this timeout causes multiple 531 * SIGALRM calls to be compressed into one. 532 * tvtohz() always adds 1 to allow for the time until the next clock 533 * interrupt being strictly less than 1 clock tick, but we don't want 534 * that here since we want to appear to be in sync with the clock 535 * interrupt even when we're delayed. 536 */ 537 void 538 realitexpire(arg) 539 void *arg; 540 { 541 register struct proc *p; 542 struct timeval ctv, ntv; 543 int s; 544 545 p = (struct proc *)arg; 546 PROC_LOCK(p); 547 psignal(p, SIGALRM); 548 if (!timevalisset(&p->p_realtimer.it_interval)) { 549 timevalclear(&p->p_realtimer.it_value); 550 PROC_UNLOCK(p); 551 return; 552 } 553 for (;;) { 554 s = splclock(); /* XXX: still neeeded ? */ 555 timevaladd(&p->p_realtimer.it_value, 556 &p->p_realtimer.it_interval); 557 getmicrouptime(&ctv); 558 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) { 559 ntv = p->p_realtimer.it_value; 560 timevalsub(&ntv, &ctv); 561 callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1, 562 realitexpire, p); 563 splx(s); 564 PROC_UNLOCK(p); 565 return; 566 } 567 splx(s); 568 } 569 /*NOTREACHED*/ 570 } 571 572 /* 573 * Check that a proposed value to load into the .it_value or 574 * .it_interval part of an interval timer is acceptable, and 575 * fix it to have at least minimal value (i.e. if it is less 576 * than the resolution of the clock, round it up.) 577 */ 578 int 579 itimerfix(tv) 580 struct timeval *tv; 581 { 582 583 if (tv->tv_sec < 0 || tv->tv_sec > 100000000 || 584 tv->tv_usec < 0 || tv->tv_usec >= 1000000) 585 return (EINVAL); 586 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick) 587 tv->tv_usec = tick; 588 return (0); 589 } 590 591 /* 592 * Decrement an interval timer by a specified number 593 * of microseconds, which must be less than a second, 594 * i.e. < 1000000. If the timer expires, then reload 595 * it. In this case, carry over (usec - old value) to 596 * reduce the value reloaded into the timer so that 597 * the timer does not drift. This routine assumes 598 * that it is called in a context where the timers 599 * on which it is operating cannot change in value. 600 */ 601 int 602 itimerdecr(itp, usec) 603 register struct itimerval *itp; 604 int usec; 605 { 606 607 if (itp->it_value.tv_usec < usec) { 608 if (itp->it_value.tv_sec == 0) { 609 /* expired, and already in next interval */ 610 usec -= itp->it_value.tv_usec; 611 goto expire; 612 } 613 itp->it_value.tv_usec += 1000000; 614 itp->it_value.tv_sec--; 615 } 616 itp->it_value.tv_usec -= usec; 617 usec = 0; 618 if (timevalisset(&itp->it_value)) 619 return (1); 620 /* expired, exactly at end of interval */ 621 expire: 622 if (timevalisset(&itp->it_interval)) { 623 itp->it_value = itp->it_interval; 624 itp->it_value.tv_usec -= usec; 625 if (itp->it_value.tv_usec < 0) { 626 itp->it_value.tv_usec += 1000000; 627 itp->it_value.tv_sec--; 628 } 629 } else 630 itp->it_value.tv_usec = 0; /* sec is already 0 */ 631 return (0); 632 } 633 634 /* 635 * Add and subtract routines for timevals. 636 * N.B.: subtract routine doesn't deal with 637 * results which are before the beginning, 638 * it just gets very confused in this case. 639 * Caveat emptor. 640 */ 641 void 642 timevaladd(t1, t2) 643 struct timeval *t1, *t2; 644 { 645 646 t1->tv_sec += t2->tv_sec; 647 t1->tv_usec += t2->tv_usec; 648 timevalfix(t1); 649 } 650 651 void 652 timevalsub(t1, t2) 653 struct timeval *t1, *t2; 654 { 655 656 t1->tv_sec -= t2->tv_sec; 657 t1->tv_usec -= t2->tv_usec; 658 timevalfix(t1); 659 } 660 661 static void 662 timevalfix(t1) 663 struct timeval *t1; 664 { 665 666 if (t1->tv_usec < 0) { 667 t1->tv_sec--; 668 t1->tv_usec += 1000000; 669 } 670 if (t1->tv_usec >= 1000000) { 671 t1->tv_sec++; 672 t1->tv_usec -= 1000000; 673 } 674 } 675