xref: /freebsd/sys/kern/kern_time.c (revision afe61c15161c324a7af299a9b8457aba5afc92db)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  */
35 
36 #include <sys/param.h>
37 #include <sys/resourcevar.h>
38 #include <sys/kernel.h>
39 #include <sys/systm.h>
40 #include <sys/proc.h>
41 #include <sys/vnode.h>
42 
43 #include <machine/cpu.h>
44 
45 void timevaladd		__P((struct timeval *, struct timeval *));
46 void timevalsub		__P((struct timeval *, struct timeval *));
47 void timevalfix		__P((struct timeval *));
48 
49 /*
50  * Time of day and interval timer support.
51  *
52  * These routines provide the kernel entry points to get and set
53  * the time-of-day and per-process interval timers.  Subroutines
54  * here provide support for adding and subtracting timeval structures
55  * and decrementing interval timers, optionally reloading the interval
56  * timers when they expire.
57  */
58 
59 struct gettimeofday_args {
60 	struct	timeval *tp;
61 	struct	timezone *tzp;
62 };
63 /* ARGSUSED */
64 int
65 gettimeofday(p, uap, retval)
66 	struct proc *p;
67 	register struct gettimeofday_args *uap;
68 	int *retval;
69 {
70 	struct timeval atv;
71 	int error = 0;
72 
73 	if (uap->tp) {
74 		microtime(&atv);
75 		if (error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
76 		    sizeof (atv)))
77 			return (error);
78 	}
79 	if (uap->tzp)
80 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
81 		    sizeof (tz));
82 	return (error);
83 }
84 
85 struct settimeofday_args {
86 	struct	timeval *tv;
87 	struct	timezone *tzp;
88 };
89 /* ARGSUSED */
90 int
91 settimeofday(p, uap, retval)
92 	struct proc *p;
93 	struct settimeofday_args *uap;
94 	int *retval;
95 {
96 	struct timeval atv, delta;
97 	struct timezone atz;
98 	int error, s;
99 
100 	if (error = suser(p->p_ucred, &p->p_acflag))
101 		return (error);
102 	/* Verify all parameters before changing time. */
103 	if (uap->tv &&
104 	    (error = copyin((caddr_t)uap->tv, (caddr_t)&atv, sizeof(atv))))
105 		return (error);
106 	if (uap->tzp &&
107 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
108 		return (error);
109 	if (uap->tv) {
110 		/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
111 		s = splclock();
112 		/* nb. delta.tv_usec may be < 0, but this is OK here */
113 		delta.tv_sec = atv.tv_sec - time.tv_sec;
114 		delta.tv_usec = atv.tv_usec - time.tv_usec;
115 		time = atv;
116 		(void) splsoftclock();
117 		timevaladd(&boottime, &delta);
118 		timevalfix(&boottime);
119 		timevaladd(&runtime, &delta);
120 		timevalfix(&runtime);
121 		LEASE_UPDATETIME(delta.tv_sec);
122 		splx(s);
123 		resettodr();
124 	}
125 	if (uap->tzp)
126 		tz = atz;
127 	return (0);
128 }
129 
130 extern	int tickadj;			/* "standard" clock skew, us./tick */
131 int	tickdelta;			/* current clock skew, us. per tick */
132 long	timedelta;			/* unapplied time correction, us. */
133 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
134 
135 struct adjtime_args {
136 	struct timeval *delta;
137 	struct timeval *olddelta;
138 };
139 /* ARGSUSED */
140 int
141 adjtime(p, uap, retval)
142 	struct proc *p;
143 	register struct adjtime_args *uap;
144 	int *retval;
145 {
146 	struct timeval atv;
147 	register long ndelta, ntickdelta, odelta;
148 	int s, error;
149 
150 	if (error = suser(p->p_ucred, &p->p_acflag))
151 		return (error);
152 	if (error =
153 	    copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval)))
154 		return (error);
155 
156 	/*
157 	 * Compute the total correction and the rate at which to apply it.
158 	 * Round the adjustment down to a whole multiple of the per-tick
159 	 * delta, so that after some number of incremental changes in
160 	 * hardclock(), tickdelta will become zero, lest the correction
161 	 * overshoot and start taking us away from the desired final time.
162 	 */
163 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
164 	if (ndelta > bigadj)
165 		ntickdelta = 10 * tickadj;
166 	else
167 		ntickdelta = tickadj;
168 	if (ndelta % ntickdelta)
169 		ndelta = ndelta / ntickdelta * ntickdelta;
170 
171 	/*
172 	 * To make hardclock()'s job easier, make the per-tick delta negative
173 	 * if we want time to run slower; then hardclock can simply compute
174 	 * tick + tickdelta, and subtract tickdelta from timedelta.
175 	 */
176 	if (ndelta < 0)
177 		ntickdelta = -ntickdelta;
178 	s = splclock();
179 	odelta = timedelta;
180 	timedelta = ndelta;
181 	tickdelta = ntickdelta;
182 	splx(s);
183 
184 	if (uap->olddelta) {
185 		atv.tv_sec = odelta / 1000000;
186 		atv.tv_usec = odelta % 1000000;
187 		(void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
188 		    sizeof(struct timeval));
189 	}
190 	return (0);
191 }
192 
193 /*
194  * Get value of an interval timer.  The process virtual and
195  * profiling virtual time timers are kept in the p_stats area, since
196  * they can be swapped out.  These are kept internally in the
197  * way they are specified externally: in time until they expire.
198  *
199  * The real time interval timer is kept in the process table slot
200  * for the process, and its value (it_value) is kept as an
201  * absolute time rather than as a delta, so that it is easy to keep
202  * periodic real-time signals from drifting.
203  *
204  * Virtual time timers are processed in the hardclock() routine of
205  * kern_clock.c.  The real time timer is processed by a timeout
206  * routine, called from the softclock() routine.  Since a callout
207  * may be delayed in real time due to interrupt processing in the system,
208  * it is possible for the real time timeout routine (realitexpire, given below),
209  * to be delayed in real time past when it is supposed to occur.  It
210  * does not suffice, therefore, to reload the real timer .it_value from the
211  * real time timers .it_interval.  Rather, we compute the next time in
212  * absolute time the timer should go off.
213  */
214 struct getitimer_args {
215 	u_int	which;
216 	struct	itimerval *itv;
217 };
218 /* ARGSUSED */
219 int
220 getitimer(p, uap, retval)
221 	struct proc *p;
222 	register struct getitimer_args *uap;
223 	int *retval;
224 {
225 	struct itimerval aitv;
226 	int s;
227 
228 	if (uap->which > ITIMER_PROF)
229 		return (EINVAL);
230 	s = splclock();
231 	if (uap->which == ITIMER_REAL) {
232 		/*
233 		 * Convert from absoulte to relative time in .it_value
234 		 * part of real time timer.  If time for real time timer
235 		 * has passed return 0, else return difference between
236 		 * current time and time for the timer to go off.
237 		 */
238 		aitv = p->p_realtimer;
239 		if (timerisset(&aitv.it_value))
240 			if (timercmp(&aitv.it_value, &time, <))
241 				timerclear(&aitv.it_value);
242 			else
243 				timevalsub(&aitv.it_value,
244 				    (struct timeval *)&time);
245 	} else
246 		aitv = p->p_stats->p_timer[uap->which];
247 	splx(s);
248 	return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
249 	    sizeof (struct itimerval)));
250 }
251 
252 struct setitimer_args {
253 	u_int	which;
254 	struct	itimerval *itv, *oitv;
255 };
256 /* ARGSUSED */
257 int
258 setitimer(p, uap, retval)
259 	struct proc *p;
260 	register struct setitimer_args *uap;
261 	int *retval;
262 {
263 	struct itimerval aitv;
264 	register struct itimerval *itvp;
265 	int s, error;
266 
267 	if (uap->which > ITIMER_PROF)
268 		return (EINVAL);
269 	itvp = uap->itv;
270 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
271 	    sizeof(struct itimerval))))
272 		return (error);
273 	if ((uap->itv = uap->oitv) && (error = getitimer(p, uap, retval)))
274 		return (error);
275 	if (itvp == 0)
276 		return (0);
277 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
278 		return (EINVAL);
279 	s = splclock();
280 	if (uap->which == ITIMER_REAL) {
281 		untimeout(realitexpire, (caddr_t)p);
282 		if (timerisset(&aitv.it_value)) {
283 			timevaladd(&aitv.it_value, (struct timeval *)&time);
284 			timeout(realitexpire, (caddr_t)p, hzto(&aitv.it_value));
285 		}
286 		p->p_realtimer = aitv;
287 	} else
288 		p->p_stats->p_timer[uap->which] = aitv;
289 	splx(s);
290 	return (0);
291 }
292 
293 /*
294  * Real interval timer expired:
295  * send process whose timer expired an alarm signal.
296  * If time is not set up to reload, then just return.
297  * Else compute next time timer should go off which is > current time.
298  * This is where delay in processing this timeout causes multiple
299  * SIGALRM calls to be compressed into one.
300  */
301 void
302 realitexpire(arg)
303 	void *arg;
304 {
305 	register struct proc *p;
306 	int s;
307 
308 	p = (struct proc *)arg;
309 	psignal(p, SIGALRM);
310 	if (!timerisset(&p->p_realtimer.it_interval)) {
311 		timerclear(&p->p_realtimer.it_value);
312 		return;
313 	}
314 	for (;;) {
315 		s = splclock();
316 		timevaladd(&p->p_realtimer.it_value,
317 		    &p->p_realtimer.it_interval);
318 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
319 			timeout(realitexpire, (caddr_t)p,
320 			    hzto(&p->p_realtimer.it_value));
321 			splx(s);
322 			return;
323 		}
324 		splx(s);
325 	}
326 }
327 
328 /*
329  * Check that a proposed value to load into the .it_value or
330  * .it_interval part of an interval timer is acceptable, and
331  * fix it to have at least minimal value (i.e. if it is less
332  * than the resolution of the clock, round it up.)
333  */
334 int
335 itimerfix(tv)
336 	struct timeval *tv;
337 {
338 
339 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
340 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
341 		return (EINVAL);
342 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
343 		tv->tv_usec = tick;
344 	return (0);
345 }
346 
347 /*
348  * Decrement an interval timer by a specified number
349  * of microseconds, which must be less than a second,
350  * i.e. < 1000000.  If the timer expires, then reload
351  * it.  In this case, carry over (usec - old value) to
352  * reduce the value reloaded into the timer so that
353  * the timer does not drift.  This routine assumes
354  * that it is called in a context where the timers
355  * on which it is operating cannot change in value.
356  */
357 int
358 itimerdecr(itp, usec)
359 	register struct itimerval *itp;
360 	int usec;
361 {
362 
363 	if (itp->it_value.tv_usec < usec) {
364 		if (itp->it_value.tv_sec == 0) {
365 			/* expired, and already in next interval */
366 			usec -= itp->it_value.tv_usec;
367 			goto expire;
368 		}
369 		itp->it_value.tv_usec += 1000000;
370 		itp->it_value.tv_sec--;
371 	}
372 	itp->it_value.tv_usec -= usec;
373 	usec = 0;
374 	if (timerisset(&itp->it_value))
375 		return (1);
376 	/* expired, exactly at end of interval */
377 expire:
378 	if (timerisset(&itp->it_interval)) {
379 		itp->it_value = itp->it_interval;
380 		itp->it_value.tv_usec -= usec;
381 		if (itp->it_value.tv_usec < 0) {
382 			itp->it_value.tv_usec += 1000000;
383 			itp->it_value.tv_sec--;
384 		}
385 	} else
386 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
387 	return (0);
388 }
389 
390 /*
391  * Add and subtract routines for timevals.
392  * N.B.: subtract routine doesn't deal with
393  * results which are before the beginning,
394  * it just gets very confused in this case.
395  * Caveat emptor.
396  */
397 void
398 timevaladd(t1, t2)
399 	struct timeval *t1, *t2;
400 {
401 
402 	t1->tv_sec += t2->tv_sec;
403 	t1->tv_usec += t2->tv_usec;
404 	timevalfix(t1);
405 }
406 
407 void
408 timevalsub(t1, t2)
409 	struct timeval *t1, *t2;
410 {
411 
412 	t1->tv_sec -= t2->tv_sec;
413 	t1->tv_usec -= t2->tv_usec;
414 	timevalfix(t1);
415 }
416 
417 void
418 timevalfix(t1)
419 	struct timeval *t1;
420 {
421 
422 	if (t1->tv_usec < 0) {
423 		t1->tv_sec--;
424 		t1->tv_usec += 1000000;
425 	}
426 	if (t1->tv_usec >= 1000000) {
427 		t1->tv_sec++;
428 		t1->tv_usec -= 1000000;
429 	}
430 }
431