1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ktrace.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/limits.h> 42 #include <sys/clock.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/sysproto.h> 46 #include <sys/resourcevar.h> 47 #include <sys/signalvar.h> 48 #include <sys/kernel.h> 49 #include <sys/sleepqueue.h> 50 #include <sys/syscallsubr.h> 51 #include <sys/sysctl.h> 52 #include <sys/sysent.h> 53 #include <sys/priv.h> 54 #include <sys/proc.h> 55 #include <sys/posix4.h> 56 #include <sys/time.h> 57 #include <sys/timers.h> 58 #include <sys/timetc.h> 59 #include <sys/vnode.h> 60 #ifdef KTRACE 61 #include <sys/ktrace.h> 62 #endif 63 64 #include <vm/vm.h> 65 #include <vm/vm_extern.h> 66 67 #define MAX_CLOCKS (CLOCK_MONOTONIC+1) 68 #define CPUCLOCK_BIT 0x80000000 69 #define CPUCLOCK_PROCESS_BIT 0x40000000 70 #define CPUCLOCK_ID_MASK (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT)) 71 #define MAKE_THREAD_CPUCLOCK(tid) (CPUCLOCK_BIT|(tid)) 72 #define MAKE_PROCESS_CPUCLOCK(pid) \ 73 (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid)) 74 75 static struct kclock posix_clocks[MAX_CLOCKS]; 76 static uma_zone_t itimer_zone = NULL; 77 78 /* 79 * Time of day and interval timer support. 80 * 81 * These routines provide the kernel entry points to get and set 82 * the time-of-day and per-process interval timers. Subroutines 83 * here provide support for adding and subtracting timeval structures 84 * and decrementing interval timers, optionally reloading the interval 85 * timers when they expire. 86 */ 87 88 static int settime(struct thread *, struct timeval *); 89 static void timevalfix(struct timeval *); 90 static int user_clock_nanosleep(struct thread *td, clockid_t clock_id, 91 int flags, const struct timespec *ua_rqtp, 92 struct timespec *ua_rmtp); 93 94 static void itimer_start(void); 95 static int itimer_init(void *, int, int); 96 static void itimer_fini(void *, int); 97 static void itimer_enter(struct itimer *); 98 static void itimer_leave(struct itimer *); 99 static struct itimer *itimer_find(struct proc *, int); 100 static void itimers_alloc(struct proc *); 101 static int realtimer_create(struct itimer *); 102 static int realtimer_gettime(struct itimer *, struct itimerspec *); 103 static int realtimer_settime(struct itimer *, int, 104 struct itimerspec *, struct itimerspec *); 105 static int realtimer_delete(struct itimer *); 106 static void realtimer_clocktime(clockid_t, struct timespec *); 107 static void realtimer_expire(void *); 108 static void realtimer_expire_l(struct itimer *it, bool proc_locked); 109 110 static int register_posix_clock(int, const struct kclock *); 111 static void itimer_fire(struct itimer *it); 112 static int itimespecfix(struct timespec *ts); 113 114 #define CLOCK_CALL(clock, call, arglist) \ 115 ((*posix_clocks[clock].call) arglist) 116 117 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL); 118 119 static int 120 settime(struct thread *td, struct timeval *tv) 121 { 122 struct timeval delta, tv1, tv2; 123 static struct timeval maxtime, laststep; 124 struct timespec ts; 125 126 microtime(&tv1); 127 delta = *tv; 128 timevalsub(&delta, &tv1); 129 130 /* 131 * If the system is secure, we do not allow the time to be 132 * set to a value earlier than 1 second less than the highest 133 * time we have yet seen. The worst a miscreant can do in 134 * this circumstance is "freeze" time. He couldn't go 135 * back to the past. 136 * 137 * We similarly do not allow the clock to be stepped more 138 * than one second, nor more than once per second. This allows 139 * a miscreant to make the clock march double-time, but no worse. 140 */ 141 if (securelevel_gt(td->td_ucred, 1) != 0) { 142 if (delta.tv_sec < 0 || delta.tv_usec < 0) { 143 /* 144 * Update maxtime to latest time we've seen. 145 */ 146 if (tv1.tv_sec > maxtime.tv_sec) 147 maxtime = tv1; 148 tv2 = *tv; 149 timevalsub(&tv2, &maxtime); 150 if (tv2.tv_sec < -1) { 151 tv->tv_sec = maxtime.tv_sec - 1; 152 printf("Time adjustment clamped to -1 second\n"); 153 } 154 } else { 155 if (tv1.tv_sec == laststep.tv_sec) 156 return (EPERM); 157 if (delta.tv_sec > 1) { 158 tv->tv_sec = tv1.tv_sec + 1; 159 printf("Time adjustment clamped to +1 second\n"); 160 } 161 laststep = *tv; 162 } 163 } 164 165 ts.tv_sec = tv->tv_sec; 166 ts.tv_nsec = tv->tv_usec * 1000; 167 tc_setclock(&ts); 168 resettodr(); 169 return (0); 170 } 171 172 #ifndef _SYS_SYSPROTO_H_ 173 struct clock_getcpuclockid2_args { 174 id_t id; 175 int which, 176 clockid_t *clock_id; 177 }; 178 #endif 179 /* ARGSUSED */ 180 int 181 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap) 182 { 183 clockid_t clk_id; 184 int error; 185 186 error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id); 187 if (error == 0) 188 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 189 return (error); 190 } 191 192 int 193 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which, 194 clockid_t *clk_id) 195 { 196 struct proc *p; 197 pid_t pid; 198 lwpid_t tid; 199 int error; 200 201 switch (which) { 202 case CPUCLOCK_WHICH_PID: 203 if (id != 0) { 204 error = pget(id, PGET_CANSEE | PGET_NOTID, &p); 205 if (error != 0) 206 return (error); 207 PROC_UNLOCK(p); 208 pid = id; 209 } else { 210 pid = td->td_proc->p_pid; 211 } 212 *clk_id = MAKE_PROCESS_CPUCLOCK(pid); 213 return (0); 214 case CPUCLOCK_WHICH_TID: 215 tid = id == 0 ? td->td_tid : id; 216 *clk_id = MAKE_THREAD_CPUCLOCK(tid); 217 return (0); 218 default: 219 return (EINVAL); 220 } 221 } 222 223 #ifndef _SYS_SYSPROTO_H_ 224 struct clock_gettime_args { 225 clockid_t clock_id; 226 struct timespec *tp; 227 }; 228 #endif 229 /* ARGSUSED */ 230 int 231 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap) 232 { 233 struct timespec ats; 234 int error; 235 236 error = kern_clock_gettime(td, uap->clock_id, &ats); 237 if (error == 0) 238 error = copyout(&ats, uap->tp, sizeof(ats)); 239 240 return (error); 241 } 242 243 static inline void 244 cputick2timespec(uint64_t runtime, struct timespec *ats) 245 { 246 runtime = cputick2usec(runtime); 247 ats->tv_sec = runtime / 1000000; 248 ats->tv_nsec = runtime % 1000000 * 1000; 249 } 250 251 void 252 kern_thread_cputime(struct thread *targettd, struct timespec *ats) 253 { 254 uint64_t runtime, curtime, switchtime; 255 256 if (targettd == NULL) { /* current thread */ 257 critical_enter(); 258 switchtime = PCPU_GET(switchtime); 259 curtime = cpu_ticks(); 260 runtime = curthread->td_runtime; 261 critical_exit(); 262 runtime += curtime - switchtime; 263 } else { 264 PROC_LOCK_ASSERT(targettd->td_proc, MA_OWNED); 265 thread_lock(targettd); 266 runtime = targettd->td_runtime; 267 thread_unlock(targettd); 268 } 269 cputick2timespec(runtime, ats); 270 } 271 272 void 273 kern_process_cputime(struct proc *targetp, struct timespec *ats) 274 { 275 uint64_t runtime; 276 struct rusage ru; 277 278 PROC_LOCK_ASSERT(targetp, MA_OWNED); 279 PROC_STATLOCK(targetp); 280 rufetch(targetp, &ru); 281 runtime = targetp->p_rux.rux_runtime; 282 if (curthread->td_proc == targetp) 283 runtime += cpu_ticks() - PCPU_GET(switchtime); 284 PROC_STATUNLOCK(targetp); 285 cputick2timespec(runtime, ats); 286 } 287 288 static int 289 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats) 290 { 291 struct proc *p, *p2; 292 struct thread *td2; 293 lwpid_t tid; 294 pid_t pid; 295 int error; 296 297 p = td->td_proc; 298 if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) { 299 tid = clock_id & CPUCLOCK_ID_MASK; 300 td2 = tdfind(tid, p->p_pid); 301 if (td2 == NULL) 302 return (EINVAL); 303 kern_thread_cputime(td2, ats); 304 PROC_UNLOCK(td2->td_proc); 305 } else { 306 pid = clock_id & CPUCLOCK_ID_MASK; 307 error = pget(pid, PGET_CANSEE, &p2); 308 if (error != 0) 309 return (EINVAL); 310 kern_process_cputime(p2, ats); 311 PROC_UNLOCK(p2); 312 } 313 return (0); 314 } 315 316 int 317 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats) 318 { 319 struct timeval sys, user; 320 struct proc *p; 321 322 p = td->td_proc; 323 switch (clock_id) { 324 case CLOCK_REALTIME: /* Default to precise. */ 325 case CLOCK_REALTIME_PRECISE: 326 nanotime(ats); 327 break; 328 case CLOCK_REALTIME_FAST: 329 getnanotime(ats); 330 break; 331 case CLOCK_VIRTUAL: 332 PROC_LOCK(p); 333 PROC_STATLOCK(p); 334 calcru(p, &user, &sys); 335 PROC_STATUNLOCK(p); 336 PROC_UNLOCK(p); 337 TIMEVAL_TO_TIMESPEC(&user, ats); 338 break; 339 case CLOCK_PROF: 340 PROC_LOCK(p); 341 PROC_STATLOCK(p); 342 calcru(p, &user, &sys); 343 PROC_STATUNLOCK(p); 344 PROC_UNLOCK(p); 345 timevaladd(&user, &sys); 346 TIMEVAL_TO_TIMESPEC(&user, ats); 347 break; 348 case CLOCK_MONOTONIC: /* Default to precise. */ 349 case CLOCK_MONOTONIC_PRECISE: 350 case CLOCK_UPTIME: 351 case CLOCK_UPTIME_PRECISE: 352 nanouptime(ats); 353 break; 354 case CLOCK_UPTIME_FAST: 355 case CLOCK_MONOTONIC_FAST: 356 getnanouptime(ats); 357 break; 358 case CLOCK_SECOND: 359 ats->tv_sec = time_second; 360 ats->tv_nsec = 0; 361 break; 362 case CLOCK_THREAD_CPUTIME_ID: 363 kern_thread_cputime(NULL, ats); 364 break; 365 case CLOCK_PROCESS_CPUTIME_ID: 366 PROC_LOCK(p); 367 kern_process_cputime(p, ats); 368 PROC_UNLOCK(p); 369 break; 370 default: 371 if ((int)clock_id >= 0) 372 return (EINVAL); 373 return (get_cputime(td, clock_id, ats)); 374 } 375 return (0); 376 } 377 378 #ifndef _SYS_SYSPROTO_H_ 379 struct clock_settime_args { 380 clockid_t clock_id; 381 const struct timespec *tp; 382 }; 383 #endif 384 /* ARGSUSED */ 385 int 386 sys_clock_settime(struct thread *td, struct clock_settime_args *uap) 387 { 388 struct timespec ats; 389 int error; 390 391 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0) 392 return (error); 393 return (kern_clock_settime(td, uap->clock_id, &ats)); 394 } 395 396 static int allow_insane_settime = 0; 397 SYSCTL_INT(_debug, OID_AUTO, allow_insane_settime, CTLFLAG_RWTUN, 398 &allow_insane_settime, 0, 399 "do not perform possibly restrictive checks on settime(2) args"); 400 401 int 402 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats) 403 { 404 struct timeval atv; 405 int error; 406 407 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 408 return (error); 409 if (clock_id != CLOCK_REALTIME) 410 return (EINVAL); 411 if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000 || 412 ats->tv_sec < 0) 413 return (EINVAL); 414 if (!allow_insane_settime && 415 (ats->tv_sec > 8000ULL * 365 * 24 * 60 * 60 || 416 ats->tv_sec < utc_offset())) 417 return (EINVAL); 418 /* XXX Don't convert nsec->usec and back */ 419 TIMESPEC_TO_TIMEVAL(&atv, ats); 420 error = settime(td, &atv); 421 return (error); 422 } 423 424 #ifndef _SYS_SYSPROTO_H_ 425 struct clock_getres_args { 426 clockid_t clock_id; 427 struct timespec *tp; 428 }; 429 #endif 430 int 431 sys_clock_getres(struct thread *td, struct clock_getres_args *uap) 432 { 433 struct timespec ts; 434 int error; 435 436 if (uap->tp == NULL) 437 return (0); 438 439 error = kern_clock_getres(td, uap->clock_id, &ts); 440 if (error == 0) 441 error = copyout(&ts, uap->tp, sizeof(ts)); 442 return (error); 443 } 444 445 int 446 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts) 447 { 448 449 ts->tv_sec = 0; 450 switch (clock_id) { 451 case CLOCK_REALTIME: 452 case CLOCK_REALTIME_FAST: 453 case CLOCK_REALTIME_PRECISE: 454 case CLOCK_MONOTONIC: 455 case CLOCK_MONOTONIC_FAST: 456 case CLOCK_MONOTONIC_PRECISE: 457 case CLOCK_UPTIME: 458 case CLOCK_UPTIME_FAST: 459 case CLOCK_UPTIME_PRECISE: 460 /* 461 * Round up the result of the division cheaply by adding 1. 462 * Rounding up is especially important if rounding down 463 * would give 0. Perfect rounding is unimportant. 464 */ 465 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1; 466 break; 467 case CLOCK_VIRTUAL: 468 case CLOCK_PROF: 469 /* Accurately round up here because we can do so cheaply. */ 470 ts->tv_nsec = howmany(1000000000, hz); 471 break; 472 case CLOCK_SECOND: 473 ts->tv_sec = 1; 474 ts->tv_nsec = 0; 475 break; 476 case CLOCK_THREAD_CPUTIME_ID: 477 case CLOCK_PROCESS_CPUTIME_ID: 478 cputime: 479 /* sync with cputick2usec */ 480 ts->tv_nsec = 1000000 / cpu_tickrate(); 481 if (ts->tv_nsec == 0) 482 ts->tv_nsec = 1000; 483 break; 484 default: 485 if ((int)clock_id < 0) 486 goto cputime; 487 return (EINVAL); 488 } 489 return (0); 490 } 491 492 int 493 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt) 494 { 495 496 return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt, 497 rmt)); 498 } 499 500 static uint8_t nanowait[MAXCPU]; 501 502 int 503 kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 504 const struct timespec *rqt, struct timespec *rmt) 505 { 506 struct timespec ts, now; 507 sbintime_t sbt, sbtt, prec, tmp; 508 time_t over; 509 int error; 510 bool is_abs_real; 511 512 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000) 513 return (EINVAL); 514 if ((flags & ~TIMER_ABSTIME) != 0) 515 return (EINVAL); 516 switch (clock_id) { 517 case CLOCK_REALTIME: 518 case CLOCK_REALTIME_PRECISE: 519 case CLOCK_REALTIME_FAST: 520 case CLOCK_SECOND: 521 is_abs_real = (flags & TIMER_ABSTIME) != 0; 522 break; 523 case CLOCK_MONOTONIC: 524 case CLOCK_MONOTONIC_PRECISE: 525 case CLOCK_MONOTONIC_FAST: 526 case CLOCK_UPTIME: 527 case CLOCK_UPTIME_PRECISE: 528 case CLOCK_UPTIME_FAST: 529 is_abs_real = false; 530 break; 531 case CLOCK_VIRTUAL: 532 case CLOCK_PROF: 533 case CLOCK_PROCESS_CPUTIME_ID: 534 return (ENOTSUP); 535 case CLOCK_THREAD_CPUTIME_ID: 536 default: 537 return (EINVAL); 538 } 539 do { 540 ts = *rqt; 541 if ((flags & TIMER_ABSTIME) != 0) { 542 if (is_abs_real) 543 td->td_rtcgen = 544 atomic_load_acq_int(&rtc_generation); 545 error = kern_clock_gettime(td, clock_id, &now); 546 KASSERT(error == 0, ("kern_clock_gettime: %d", error)); 547 timespecsub(&ts, &now, &ts); 548 } 549 if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) { 550 error = EWOULDBLOCK; 551 break; 552 } 553 if (ts.tv_sec > INT32_MAX / 2) { 554 over = ts.tv_sec - INT32_MAX / 2; 555 ts.tv_sec -= over; 556 } else 557 over = 0; 558 tmp = tstosbt(ts); 559 prec = tmp; 560 prec >>= tc_precexp; 561 if (TIMESEL(&sbt, tmp)) 562 sbt += tc_tick_sbt; 563 sbt += tmp; 564 error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp", 565 sbt, prec, C_ABSOLUTE); 566 } while (error == 0 && is_abs_real && td->td_rtcgen == 0); 567 td->td_rtcgen = 0; 568 if (error != EWOULDBLOCK) { 569 if (TIMESEL(&sbtt, tmp)) 570 sbtt += tc_tick_sbt; 571 if (sbtt >= sbt) 572 return (0); 573 if (error == ERESTART) 574 error = EINTR; 575 if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) { 576 ts = sbttots(sbt - sbtt); 577 ts.tv_sec += over; 578 if (ts.tv_sec < 0) 579 timespecclear(&ts); 580 *rmt = ts; 581 } 582 return (error); 583 } 584 return (0); 585 } 586 587 #ifndef _SYS_SYSPROTO_H_ 588 struct nanosleep_args { 589 struct timespec *rqtp; 590 struct timespec *rmtp; 591 }; 592 #endif 593 /* ARGSUSED */ 594 int 595 sys_nanosleep(struct thread *td, struct nanosleep_args *uap) 596 { 597 598 return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, 599 uap->rqtp, uap->rmtp)); 600 } 601 602 #ifndef _SYS_SYSPROTO_H_ 603 struct clock_nanosleep_args { 604 clockid_t clock_id; 605 int flags; 606 struct timespec *rqtp; 607 struct timespec *rmtp; 608 }; 609 #endif 610 /* ARGSUSED */ 611 int 612 sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap) 613 { 614 int error; 615 616 error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp, 617 uap->rmtp); 618 return (kern_posix_error(td, error)); 619 } 620 621 static int 622 user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 623 const struct timespec *ua_rqtp, struct timespec *ua_rmtp) 624 { 625 struct timespec rmt, rqt; 626 int error, error2; 627 628 error = copyin(ua_rqtp, &rqt, sizeof(rqt)); 629 if (error) 630 return (error); 631 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 632 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 633 error2 = copyout(&rmt, ua_rmtp, sizeof(rmt)); 634 if (error2 != 0) 635 error = error2; 636 } 637 return (error); 638 } 639 640 #ifndef _SYS_SYSPROTO_H_ 641 struct gettimeofday_args { 642 struct timeval *tp; 643 struct timezone *tzp; 644 }; 645 #endif 646 /* ARGSUSED */ 647 int 648 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap) 649 { 650 struct timeval atv; 651 struct timezone rtz; 652 int error = 0; 653 654 if (uap->tp) { 655 microtime(&atv); 656 error = copyout(&atv, uap->tp, sizeof (atv)); 657 } 658 if (error == 0 && uap->tzp != NULL) { 659 rtz.tz_minuteswest = 0; 660 rtz.tz_dsttime = 0; 661 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 662 } 663 return (error); 664 } 665 666 #ifndef _SYS_SYSPROTO_H_ 667 struct settimeofday_args { 668 struct timeval *tv; 669 struct timezone *tzp; 670 }; 671 #endif 672 /* ARGSUSED */ 673 int 674 sys_settimeofday(struct thread *td, struct settimeofday_args *uap) 675 { 676 struct timeval atv, *tvp; 677 struct timezone atz, *tzp; 678 int error; 679 680 if (uap->tv) { 681 error = copyin(uap->tv, &atv, sizeof(atv)); 682 if (error) 683 return (error); 684 tvp = &atv; 685 } else 686 tvp = NULL; 687 if (uap->tzp) { 688 error = copyin(uap->tzp, &atz, sizeof(atz)); 689 if (error) 690 return (error); 691 tzp = &atz; 692 } else 693 tzp = NULL; 694 return (kern_settimeofday(td, tvp, tzp)); 695 } 696 697 int 698 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp) 699 { 700 int error; 701 702 error = priv_check(td, PRIV_SETTIMEOFDAY); 703 if (error) 704 return (error); 705 /* Verify all parameters before changing time. */ 706 if (tv) { 707 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 || 708 tv->tv_sec < 0) 709 return (EINVAL); 710 error = settime(td, tv); 711 } 712 return (error); 713 } 714 715 /* 716 * Get value of an interval timer. The process virtual and profiling virtual 717 * time timers are kept in the p_stats area, since they can be swapped out. 718 * These are kept internally in the way they are specified externally: in 719 * time until they expire. 720 * 721 * The real time interval timer is kept in the process table slot for the 722 * process, and its value (it_value) is kept as an absolute time rather than 723 * as a delta, so that it is easy to keep periodic real-time signals from 724 * drifting. 725 * 726 * Virtual time timers are processed in the hardclock() routine of 727 * kern_clock.c. The real time timer is processed by a timeout routine, 728 * called from the softclock() routine. Since a callout may be delayed in 729 * real time due to interrupt processing in the system, it is possible for 730 * the real time timeout routine (realitexpire, given below), to be delayed 731 * in real time past when it is supposed to occur. It does not suffice, 732 * therefore, to reload the real timer .it_value from the real time timers 733 * .it_interval. Rather, we compute the next time in absolute time the timer 734 * should go off. 735 */ 736 #ifndef _SYS_SYSPROTO_H_ 737 struct getitimer_args { 738 u_int which; 739 struct itimerval *itv; 740 }; 741 #endif 742 int 743 sys_getitimer(struct thread *td, struct getitimer_args *uap) 744 { 745 struct itimerval aitv; 746 int error; 747 748 error = kern_getitimer(td, uap->which, &aitv); 749 if (error != 0) 750 return (error); 751 return (copyout(&aitv, uap->itv, sizeof (struct itimerval))); 752 } 753 754 int 755 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv) 756 { 757 struct proc *p = td->td_proc; 758 struct timeval ctv; 759 760 if (which > ITIMER_PROF) 761 return (EINVAL); 762 763 if (which == ITIMER_REAL) { 764 /* 765 * Convert from absolute to relative time in .it_value 766 * part of real time timer. If time for real time timer 767 * has passed return 0, else return difference between 768 * current time and time for the timer to go off. 769 */ 770 PROC_LOCK(p); 771 *aitv = p->p_realtimer; 772 PROC_UNLOCK(p); 773 if (timevalisset(&aitv->it_value)) { 774 microuptime(&ctv); 775 if (timevalcmp(&aitv->it_value, &ctv, <)) 776 timevalclear(&aitv->it_value); 777 else 778 timevalsub(&aitv->it_value, &ctv); 779 } 780 } else { 781 PROC_ITIMLOCK(p); 782 *aitv = p->p_stats->p_timer[which]; 783 PROC_ITIMUNLOCK(p); 784 } 785 #ifdef KTRACE 786 if (KTRPOINT(td, KTR_STRUCT)) 787 ktritimerval(aitv); 788 #endif 789 return (0); 790 } 791 792 #ifndef _SYS_SYSPROTO_H_ 793 struct setitimer_args { 794 u_int which; 795 struct itimerval *itv, *oitv; 796 }; 797 #endif 798 int 799 sys_setitimer(struct thread *td, struct setitimer_args *uap) 800 { 801 struct itimerval aitv, oitv; 802 int error; 803 804 if (uap->itv == NULL) { 805 uap->itv = uap->oitv; 806 return (sys_getitimer(td, (struct getitimer_args *)uap)); 807 } 808 809 if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval)))) 810 return (error); 811 error = kern_setitimer(td, uap->which, &aitv, &oitv); 812 if (error != 0 || uap->oitv == NULL) 813 return (error); 814 return (copyout(&oitv, uap->oitv, sizeof(struct itimerval))); 815 } 816 817 int 818 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv, 819 struct itimerval *oitv) 820 { 821 struct proc *p = td->td_proc; 822 struct timeval ctv; 823 sbintime_t sbt, pr; 824 825 if (aitv == NULL) 826 return (kern_getitimer(td, which, oitv)); 827 828 if (which > ITIMER_PROF) 829 return (EINVAL); 830 #ifdef KTRACE 831 if (KTRPOINT(td, KTR_STRUCT)) 832 ktritimerval(aitv); 833 #endif 834 if (itimerfix(&aitv->it_value) || 835 aitv->it_value.tv_sec > INT32_MAX / 2) 836 return (EINVAL); 837 if (!timevalisset(&aitv->it_value)) 838 timevalclear(&aitv->it_interval); 839 else if (itimerfix(&aitv->it_interval) || 840 aitv->it_interval.tv_sec > INT32_MAX / 2) 841 return (EINVAL); 842 843 if (which == ITIMER_REAL) { 844 PROC_LOCK(p); 845 if (timevalisset(&p->p_realtimer.it_value)) 846 callout_stop(&p->p_itcallout); 847 microuptime(&ctv); 848 if (timevalisset(&aitv->it_value)) { 849 pr = tvtosbt(aitv->it_value) >> tc_precexp; 850 timevaladd(&aitv->it_value, &ctv); 851 sbt = tvtosbt(aitv->it_value); 852 callout_reset_sbt(&p->p_itcallout, sbt, pr, 853 realitexpire, p, C_ABSOLUTE); 854 } 855 *oitv = p->p_realtimer; 856 p->p_realtimer = *aitv; 857 PROC_UNLOCK(p); 858 if (timevalisset(&oitv->it_value)) { 859 if (timevalcmp(&oitv->it_value, &ctv, <)) 860 timevalclear(&oitv->it_value); 861 else 862 timevalsub(&oitv->it_value, &ctv); 863 } 864 } else { 865 if (aitv->it_interval.tv_sec == 0 && 866 aitv->it_interval.tv_usec != 0 && 867 aitv->it_interval.tv_usec < tick) 868 aitv->it_interval.tv_usec = tick; 869 if (aitv->it_value.tv_sec == 0 && 870 aitv->it_value.tv_usec != 0 && 871 aitv->it_value.tv_usec < tick) 872 aitv->it_value.tv_usec = tick; 873 PROC_ITIMLOCK(p); 874 *oitv = p->p_stats->p_timer[which]; 875 p->p_stats->p_timer[which] = *aitv; 876 PROC_ITIMUNLOCK(p); 877 } 878 #ifdef KTRACE 879 if (KTRPOINT(td, KTR_STRUCT)) 880 ktritimerval(oitv); 881 #endif 882 return (0); 883 } 884 885 static void 886 realitexpire_reset_callout(struct proc *p, sbintime_t *isbtp) 887 { 888 sbintime_t prec; 889 890 prec = isbtp == NULL ? tvtosbt(p->p_realtimer.it_interval) : *isbtp; 891 callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value), 892 prec >> tc_precexp, realitexpire, p, C_ABSOLUTE); 893 } 894 895 void 896 itimer_proc_continue(struct proc *p) 897 { 898 struct timeval ctv; 899 struct itimer *it; 900 int id; 901 902 PROC_LOCK_ASSERT(p, MA_OWNED); 903 904 if ((p->p_flag2 & P2_ITSTOPPED) != 0) { 905 p->p_flag2 &= ~P2_ITSTOPPED; 906 microuptime(&ctv); 907 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >=)) 908 realitexpire(p); 909 else 910 realitexpire_reset_callout(p, NULL); 911 } 912 913 if (p->p_itimers != NULL) { 914 for (id = 3; id < TIMER_MAX; id++) { 915 it = p->p_itimers->its_timers[id]; 916 if (it == NULL) 917 continue; 918 if ((it->it_flags & ITF_PSTOPPED) != 0) { 919 ITIMER_LOCK(it); 920 if ((it->it_flags & ITF_PSTOPPED) != 0) { 921 it->it_flags &= ~ITF_PSTOPPED; 922 if ((it->it_flags & ITF_DELETING) == 0) 923 realtimer_expire_l(it, true); 924 } 925 ITIMER_UNLOCK(it); 926 } 927 } 928 } 929 } 930 931 /* 932 * Real interval timer expired: 933 * send process whose timer expired an alarm signal. 934 * If time is not set up to reload, then just return. 935 * Else compute next time timer should go off which is > current time. 936 * This is where delay in processing this timeout causes multiple 937 * SIGALRM calls to be compressed into one. 938 * tvtohz() always adds 1 to allow for the time until the next clock 939 * interrupt being strictly less than 1 clock tick, but we don't want 940 * that here since we want to appear to be in sync with the clock 941 * interrupt even when we're delayed. 942 */ 943 void 944 realitexpire(void *arg) 945 { 946 struct proc *p; 947 struct timeval ctv; 948 sbintime_t isbt; 949 950 p = (struct proc *)arg; 951 kern_psignal(p, SIGALRM); 952 if (!timevalisset(&p->p_realtimer.it_interval)) { 953 timevalclear(&p->p_realtimer.it_value); 954 if (p->p_flag & P_WEXIT) 955 wakeup(&p->p_itcallout); 956 return; 957 } 958 959 isbt = tvtosbt(p->p_realtimer.it_interval); 960 if (isbt >= sbt_timethreshold) 961 getmicrouptime(&ctv); 962 else 963 microuptime(&ctv); 964 do { 965 timevaladd(&p->p_realtimer.it_value, 966 &p->p_realtimer.it_interval); 967 } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=)); 968 969 if (P_SHOULDSTOP(p) || P_KILLED(p)) { 970 p->p_flag2 |= P2_ITSTOPPED; 971 return; 972 } 973 974 p->p_flag2 &= ~P2_ITSTOPPED; 975 realitexpire_reset_callout(p, &isbt); 976 } 977 978 /* 979 * Check that a proposed value to load into the .it_value or 980 * .it_interval part of an interval timer is acceptable, and 981 * fix it to have at least minimal value (i.e. if it is less 982 * than the resolution of the clock, round it up.) 983 */ 984 int 985 itimerfix(struct timeval *tv) 986 { 987 988 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000) 989 return (EINVAL); 990 if (tv->tv_sec == 0 && tv->tv_usec != 0 && 991 tv->tv_usec < (u_int)tick / 16) 992 tv->tv_usec = (u_int)tick / 16; 993 return (0); 994 } 995 996 /* 997 * Decrement an interval timer by a specified number 998 * of microseconds, which must be less than a second, 999 * i.e. < 1000000. If the timer expires, then reload 1000 * it. In this case, carry over (usec - old value) to 1001 * reduce the value reloaded into the timer so that 1002 * the timer does not drift. This routine assumes 1003 * that it is called in a context where the timers 1004 * on which it is operating cannot change in value. 1005 */ 1006 int 1007 itimerdecr(struct itimerval *itp, int usec) 1008 { 1009 1010 if (itp->it_value.tv_usec < usec) { 1011 if (itp->it_value.tv_sec == 0) { 1012 /* expired, and already in next interval */ 1013 usec -= itp->it_value.tv_usec; 1014 goto expire; 1015 } 1016 itp->it_value.tv_usec += 1000000; 1017 itp->it_value.tv_sec--; 1018 } 1019 itp->it_value.tv_usec -= usec; 1020 usec = 0; 1021 if (timevalisset(&itp->it_value)) 1022 return (1); 1023 /* expired, exactly at end of interval */ 1024 expire: 1025 if (timevalisset(&itp->it_interval)) { 1026 itp->it_value = itp->it_interval; 1027 itp->it_value.tv_usec -= usec; 1028 if (itp->it_value.tv_usec < 0) { 1029 itp->it_value.tv_usec += 1000000; 1030 itp->it_value.tv_sec--; 1031 } 1032 } else 1033 itp->it_value.tv_usec = 0; /* sec is already 0 */ 1034 return (0); 1035 } 1036 1037 /* 1038 * Add and subtract routines for timevals. 1039 * N.B.: subtract routine doesn't deal with 1040 * results which are before the beginning, 1041 * it just gets very confused in this case. 1042 * Caveat emptor. 1043 */ 1044 void 1045 timevaladd(struct timeval *t1, const struct timeval *t2) 1046 { 1047 1048 t1->tv_sec += t2->tv_sec; 1049 t1->tv_usec += t2->tv_usec; 1050 timevalfix(t1); 1051 } 1052 1053 void 1054 timevalsub(struct timeval *t1, const struct timeval *t2) 1055 { 1056 1057 t1->tv_sec -= t2->tv_sec; 1058 t1->tv_usec -= t2->tv_usec; 1059 timevalfix(t1); 1060 } 1061 1062 static void 1063 timevalfix(struct timeval *t1) 1064 { 1065 1066 if (t1->tv_usec < 0) { 1067 t1->tv_sec--; 1068 t1->tv_usec += 1000000; 1069 } 1070 if (t1->tv_usec >= 1000000) { 1071 t1->tv_sec++; 1072 t1->tv_usec -= 1000000; 1073 } 1074 } 1075 1076 /* 1077 * ratecheck(): simple time-based rate-limit checking. 1078 */ 1079 int 1080 ratecheck(struct timeval *lasttime, const struct timeval *mininterval) 1081 { 1082 struct timeval tv, delta; 1083 int rv = 0; 1084 1085 getmicrouptime(&tv); /* NB: 10ms precision */ 1086 delta = tv; 1087 timevalsub(&delta, lasttime); 1088 1089 /* 1090 * check for 0,0 is so that the message will be seen at least once, 1091 * even if interval is huge. 1092 */ 1093 if (timevalcmp(&delta, mininterval, >=) || 1094 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { 1095 *lasttime = tv; 1096 rv = 1; 1097 } 1098 1099 return (rv); 1100 } 1101 1102 /* 1103 * ppsratecheck(): packets (or events) per second limitation. 1104 * 1105 * Return 0 if the limit is to be enforced (e.g. the caller 1106 * should drop a packet because of the rate limitation). 1107 * 1108 * maxpps of 0 always causes zero to be returned. maxpps of -1 1109 * always causes 1 to be returned; this effectively defeats rate 1110 * limiting. 1111 * 1112 * Note that we maintain the struct timeval for compatibility 1113 * with other bsd systems. We reuse the storage and just monitor 1114 * clock ticks for minimal overhead. 1115 */ 1116 int 1117 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) 1118 { 1119 int now; 1120 1121 /* 1122 * Reset the last time and counter if this is the first call 1123 * or more than a second has passed since the last update of 1124 * lasttime. 1125 */ 1126 now = ticks; 1127 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) { 1128 lasttime->tv_sec = now; 1129 *curpps = 1; 1130 return (maxpps != 0); 1131 } else { 1132 (*curpps)++; /* NB: ignore potential overflow */ 1133 return (maxpps < 0 || *curpps <= maxpps); 1134 } 1135 } 1136 1137 static void 1138 itimer_start(void) 1139 { 1140 static const struct kclock rt_clock = { 1141 .timer_create = realtimer_create, 1142 .timer_delete = realtimer_delete, 1143 .timer_settime = realtimer_settime, 1144 .timer_gettime = realtimer_gettime, 1145 }; 1146 1147 itimer_zone = uma_zcreate("itimer", sizeof(struct itimer), 1148 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0); 1149 register_posix_clock(CLOCK_REALTIME, &rt_clock); 1150 register_posix_clock(CLOCK_MONOTONIC, &rt_clock); 1151 p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L); 1152 p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX); 1153 p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX); 1154 } 1155 1156 static int 1157 register_posix_clock(int clockid, const struct kclock *clk) 1158 { 1159 if ((unsigned)clockid >= MAX_CLOCKS) { 1160 printf("%s: invalid clockid\n", __func__); 1161 return (0); 1162 } 1163 posix_clocks[clockid] = *clk; 1164 return (1); 1165 } 1166 1167 static int 1168 itimer_init(void *mem, int size, int flags) 1169 { 1170 struct itimer *it; 1171 1172 it = (struct itimer *)mem; 1173 mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF); 1174 return (0); 1175 } 1176 1177 static void 1178 itimer_fini(void *mem, int size) 1179 { 1180 struct itimer *it; 1181 1182 it = (struct itimer *)mem; 1183 mtx_destroy(&it->it_mtx); 1184 } 1185 1186 static void 1187 itimer_enter(struct itimer *it) 1188 { 1189 1190 mtx_assert(&it->it_mtx, MA_OWNED); 1191 it->it_usecount++; 1192 } 1193 1194 static void 1195 itimer_leave(struct itimer *it) 1196 { 1197 1198 mtx_assert(&it->it_mtx, MA_OWNED); 1199 KASSERT(it->it_usecount > 0, ("invalid it_usecount")); 1200 1201 if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0) 1202 wakeup(it); 1203 } 1204 1205 #ifndef _SYS_SYSPROTO_H_ 1206 struct ktimer_create_args { 1207 clockid_t clock_id; 1208 struct sigevent * evp; 1209 int * timerid; 1210 }; 1211 #endif 1212 int 1213 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap) 1214 { 1215 struct sigevent *evp, ev; 1216 int id; 1217 int error; 1218 1219 if (uap->evp == NULL) { 1220 evp = NULL; 1221 } else { 1222 error = copyin(uap->evp, &ev, sizeof(ev)); 1223 if (error != 0) 1224 return (error); 1225 evp = &ev; 1226 } 1227 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 1228 if (error == 0) { 1229 error = copyout(&id, uap->timerid, sizeof(int)); 1230 if (error != 0) 1231 kern_ktimer_delete(td, id); 1232 } 1233 return (error); 1234 } 1235 1236 int 1237 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp, 1238 int *timerid, int preset_id) 1239 { 1240 struct proc *p = td->td_proc; 1241 struct itimer *it; 1242 int id; 1243 int error; 1244 1245 if (clock_id < 0 || clock_id >= MAX_CLOCKS) 1246 return (EINVAL); 1247 1248 if (posix_clocks[clock_id].timer_create == NULL) 1249 return (EINVAL); 1250 1251 if (evp != NULL) { 1252 if (evp->sigev_notify != SIGEV_NONE && 1253 evp->sigev_notify != SIGEV_SIGNAL && 1254 evp->sigev_notify != SIGEV_THREAD_ID) 1255 return (EINVAL); 1256 if ((evp->sigev_notify == SIGEV_SIGNAL || 1257 evp->sigev_notify == SIGEV_THREAD_ID) && 1258 !_SIG_VALID(evp->sigev_signo)) 1259 return (EINVAL); 1260 } 1261 1262 if (p->p_itimers == NULL) 1263 itimers_alloc(p); 1264 1265 it = uma_zalloc(itimer_zone, M_WAITOK); 1266 it->it_flags = 0; 1267 it->it_usecount = 0; 1268 it->it_active = 0; 1269 timespecclear(&it->it_time.it_value); 1270 timespecclear(&it->it_time.it_interval); 1271 it->it_overrun = 0; 1272 it->it_overrun_last = 0; 1273 it->it_clockid = clock_id; 1274 it->it_timerid = -1; 1275 it->it_proc = p; 1276 ksiginfo_init(&it->it_ksi); 1277 it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT; 1278 error = CLOCK_CALL(clock_id, timer_create, (it)); 1279 if (error != 0) 1280 goto out; 1281 1282 PROC_LOCK(p); 1283 if (preset_id != -1) { 1284 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id")); 1285 id = preset_id; 1286 if (p->p_itimers->its_timers[id] != NULL) { 1287 PROC_UNLOCK(p); 1288 error = 0; 1289 goto out; 1290 } 1291 } else { 1292 /* 1293 * Find a free timer slot, skipping those reserved 1294 * for setitimer(). 1295 */ 1296 for (id = 3; id < TIMER_MAX; id++) 1297 if (p->p_itimers->its_timers[id] == NULL) 1298 break; 1299 if (id == TIMER_MAX) { 1300 PROC_UNLOCK(p); 1301 error = EAGAIN; 1302 goto out; 1303 } 1304 } 1305 it->it_timerid = id; 1306 p->p_itimers->its_timers[id] = it; 1307 if (evp != NULL) 1308 it->it_sigev = *evp; 1309 else { 1310 it->it_sigev.sigev_notify = SIGEV_SIGNAL; 1311 switch (clock_id) { 1312 default: 1313 case CLOCK_REALTIME: 1314 it->it_sigev.sigev_signo = SIGALRM; 1315 break; 1316 case CLOCK_VIRTUAL: 1317 it->it_sigev.sigev_signo = SIGVTALRM; 1318 break; 1319 case CLOCK_PROF: 1320 it->it_sigev.sigev_signo = SIGPROF; 1321 break; 1322 } 1323 it->it_sigev.sigev_value.sival_int = id; 1324 } 1325 1326 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1327 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1328 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo; 1329 it->it_ksi.ksi_code = SI_TIMER; 1330 it->it_ksi.ksi_value = it->it_sigev.sigev_value; 1331 it->it_ksi.ksi_timerid = id; 1332 } 1333 PROC_UNLOCK(p); 1334 *timerid = id; 1335 return (0); 1336 1337 out: 1338 ITIMER_LOCK(it); 1339 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1340 ITIMER_UNLOCK(it); 1341 uma_zfree(itimer_zone, it); 1342 return (error); 1343 } 1344 1345 #ifndef _SYS_SYSPROTO_H_ 1346 struct ktimer_delete_args { 1347 int timerid; 1348 }; 1349 #endif 1350 int 1351 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap) 1352 { 1353 1354 return (kern_ktimer_delete(td, uap->timerid)); 1355 } 1356 1357 static struct itimer * 1358 itimer_find(struct proc *p, int timerid) 1359 { 1360 struct itimer *it; 1361 1362 PROC_LOCK_ASSERT(p, MA_OWNED); 1363 if ((p->p_itimers == NULL) || 1364 (timerid < 0) || (timerid >= TIMER_MAX) || 1365 (it = p->p_itimers->its_timers[timerid]) == NULL) { 1366 return (NULL); 1367 } 1368 ITIMER_LOCK(it); 1369 if ((it->it_flags & ITF_DELETING) != 0) { 1370 ITIMER_UNLOCK(it); 1371 it = NULL; 1372 } 1373 return (it); 1374 } 1375 1376 int 1377 kern_ktimer_delete(struct thread *td, int timerid) 1378 { 1379 struct proc *p = td->td_proc; 1380 struct itimer *it; 1381 1382 PROC_LOCK(p); 1383 it = itimer_find(p, timerid); 1384 if (it == NULL) { 1385 PROC_UNLOCK(p); 1386 return (EINVAL); 1387 } 1388 PROC_UNLOCK(p); 1389 1390 it->it_flags |= ITF_DELETING; 1391 while (it->it_usecount > 0) { 1392 it->it_flags |= ITF_WANTED; 1393 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0); 1394 } 1395 it->it_flags &= ~ITF_WANTED; 1396 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1397 ITIMER_UNLOCK(it); 1398 1399 PROC_LOCK(p); 1400 if (KSI_ONQ(&it->it_ksi)) 1401 sigqueue_take(&it->it_ksi); 1402 p->p_itimers->its_timers[timerid] = NULL; 1403 PROC_UNLOCK(p); 1404 uma_zfree(itimer_zone, it); 1405 return (0); 1406 } 1407 1408 #ifndef _SYS_SYSPROTO_H_ 1409 struct ktimer_settime_args { 1410 int timerid; 1411 int flags; 1412 const struct itimerspec * value; 1413 struct itimerspec * ovalue; 1414 }; 1415 #endif 1416 int 1417 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap) 1418 { 1419 struct itimerspec val, oval, *ovalp; 1420 int error; 1421 1422 error = copyin(uap->value, &val, sizeof(val)); 1423 if (error != 0) 1424 return (error); 1425 ovalp = uap->ovalue != NULL ? &oval : NULL; 1426 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 1427 if (error == 0 && uap->ovalue != NULL) 1428 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp)); 1429 return (error); 1430 } 1431 1432 int 1433 kern_ktimer_settime(struct thread *td, int timer_id, int flags, 1434 struct itimerspec *val, struct itimerspec *oval) 1435 { 1436 struct proc *p; 1437 struct itimer *it; 1438 int error; 1439 1440 p = td->td_proc; 1441 PROC_LOCK(p); 1442 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1443 PROC_UNLOCK(p); 1444 error = EINVAL; 1445 } else { 1446 PROC_UNLOCK(p); 1447 itimer_enter(it); 1448 error = CLOCK_CALL(it->it_clockid, timer_settime, (it, 1449 flags, val, oval)); 1450 itimer_leave(it); 1451 ITIMER_UNLOCK(it); 1452 } 1453 return (error); 1454 } 1455 1456 #ifndef _SYS_SYSPROTO_H_ 1457 struct ktimer_gettime_args { 1458 int timerid; 1459 struct itimerspec * value; 1460 }; 1461 #endif 1462 int 1463 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap) 1464 { 1465 struct itimerspec val; 1466 int error; 1467 1468 error = kern_ktimer_gettime(td, uap->timerid, &val); 1469 if (error == 0) 1470 error = copyout(&val, uap->value, sizeof(val)); 1471 return (error); 1472 } 1473 1474 int 1475 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val) 1476 { 1477 struct proc *p; 1478 struct itimer *it; 1479 int error; 1480 1481 p = td->td_proc; 1482 PROC_LOCK(p); 1483 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1484 PROC_UNLOCK(p); 1485 error = EINVAL; 1486 } else { 1487 PROC_UNLOCK(p); 1488 itimer_enter(it); 1489 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val)); 1490 itimer_leave(it); 1491 ITIMER_UNLOCK(it); 1492 } 1493 return (error); 1494 } 1495 1496 #ifndef _SYS_SYSPROTO_H_ 1497 struct timer_getoverrun_args { 1498 int timerid; 1499 }; 1500 #endif 1501 int 1502 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap) 1503 { 1504 1505 return (kern_ktimer_getoverrun(td, uap->timerid)); 1506 } 1507 1508 int 1509 kern_ktimer_getoverrun(struct thread *td, int timer_id) 1510 { 1511 struct proc *p = td->td_proc; 1512 struct itimer *it; 1513 int error ; 1514 1515 PROC_LOCK(p); 1516 if (timer_id < 3 || 1517 (it = itimer_find(p, timer_id)) == NULL) { 1518 PROC_UNLOCK(p); 1519 error = EINVAL; 1520 } else { 1521 td->td_retval[0] = it->it_overrun_last; 1522 ITIMER_UNLOCK(it); 1523 PROC_UNLOCK(p); 1524 error = 0; 1525 } 1526 return (error); 1527 } 1528 1529 static int 1530 realtimer_create(struct itimer *it) 1531 { 1532 callout_init_mtx(&it->it_callout, &it->it_mtx, 0); 1533 return (0); 1534 } 1535 1536 static int 1537 realtimer_delete(struct itimer *it) 1538 { 1539 mtx_assert(&it->it_mtx, MA_OWNED); 1540 1541 /* 1542 * clear timer's value and interval to tell realtimer_expire 1543 * to not rearm the timer. 1544 */ 1545 timespecclear(&it->it_time.it_value); 1546 timespecclear(&it->it_time.it_interval); 1547 ITIMER_UNLOCK(it); 1548 callout_drain(&it->it_callout); 1549 ITIMER_LOCK(it); 1550 return (0); 1551 } 1552 1553 static int 1554 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue) 1555 { 1556 struct timespec cts; 1557 1558 mtx_assert(&it->it_mtx, MA_OWNED); 1559 1560 realtimer_clocktime(it->it_clockid, &cts); 1561 *ovalue = it->it_time; 1562 if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) { 1563 timespecsub(&ovalue->it_value, &cts, &ovalue->it_value); 1564 if (ovalue->it_value.tv_sec < 0 || 1565 (ovalue->it_value.tv_sec == 0 && 1566 ovalue->it_value.tv_nsec == 0)) { 1567 ovalue->it_value.tv_sec = 0; 1568 ovalue->it_value.tv_nsec = 1; 1569 } 1570 } 1571 return (0); 1572 } 1573 1574 static int 1575 realtimer_settime(struct itimer *it, int flags, struct itimerspec *value, 1576 struct itimerspec *ovalue) 1577 { 1578 struct timespec cts, ts; 1579 struct timeval tv; 1580 struct itimerspec val; 1581 1582 mtx_assert(&it->it_mtx, MA_OWNED); 1583 1584 val = *value; 1585 if (itimespecfix(&val.it_value)) 1586 return (EINVAL); 1587 1588 if (timespecisset(&val.it_value)) { 1589 if (itimespecfix(&val.it_interval)) 1590 return (EINVAL); 1591 } else { 1592 timespecclear(&val.it_interval); 1593 } 1594 1595 if (ovalue != NULL) 1596 realtimer_gettime(it, ovalue); 1597 1598 it->it_time = val; 1599 if (timespecisset(&val.it_value)) { 1600 realtimer_clocktime(it->it_clockid, &cts); 1601 ts = val.it_value; 1602 if ((flags & TIMER_ABSTIME) == 0) { 1603 /* Convert to absolute time. */ 1604 timespecadd(&it->it_time.it_value, &cts, 1605 &it->it_time.it_value); 1606 } else { 1607 timespecsub(&ts, &cts, &ts); 1608 /* 1609 * We don't care if ts is negative, tztohz will 1610 * fix it. 1611 */ 1612 } 1613 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1614 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire, 1615 it); 1616 } else { 1617 callout_stop(&it->it_callout); 1618 } 1619 1620 return (0); 1621 } 1622 1623 static void 1624 realtimer_clocktime(clockid_t id, struct timespec *ts) 1625 { 1626 if (id == CLOCK_REALTIME) 1627 getnanotime(ts); 1628 else /* CLOCK_MONOTONIC */ 1629 getnanouptime(ts); 1630 } 1631 1632 int 1633 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi) 1634 { 1635 struct itimer *it; 1636 1637 PROC_LOCK_ASSERT(p, MA_OWNED); 1638 it = itimer_find(p, timerid); 1639 if (it != NULL) { 1640 ksi->ksi_overrun = it->it_overrun; 1641 it->it_overrun_last = it->it_overrun; 1642 it->it_overrun = 0; 1643 ITIMER_UNLOCK(it); 1644 return (0); 1645 } 1646 return (EINVAL); 1647 } 1648 1649 static int 1650 itimespecfix(struct timespec *ts) 1651 { 1652 1653 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1654 return (EINVAL); 1655 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000) 1656 ts->tv_nsec = tick * 1000; 1657 return (0); 1658 } 1659 1660 #define timespectons(tsp) \ 1661 ((uint64_t)(tsp)->tv_sec * 1000000000 + (tsp)->tv_nsec) 1662 #define timespecfromns(ns) (struct timespec){ \ 1663 .tv_sec = (ns) / 1000000000, \ 1664 .tv_nsec = (ns) % 1000000000 \ 1665 } 1666 1667 static void 1668 realtimer_expire_l(struct itimer *it, bool proc_locked) 1669 { 1670 struct timespec cts, ts; 1671 struct timeval tv; 1672 struct proc *p; 1673 uint64_t interval, now, overruns, value; 1674 1675 realtimer_clocktime(it->it_clockid, &cts); 1676 /* Only fire if time is reached. */ 1677 if (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1678 if (timespecisset(&it->it_time.it_interval)) { 1679 timespecadd(&it->it_time.it_value, 1680 &it->it_time.it_interval, 1681 &it->it_time.it_value); 1682 1683 interval = timespectons(&it->it_time.it_interval); 1684 value = timespectons(&it->it_time.it_value); 1685 now = timespectons(&cts); 1686 1687 if (now >= value) { 1688 /* 1689 * We missed at least one period. 1690 */ 1691 overruns = howmany(now - value + 1, interval); 1692 if (it->it_overrun + overruns >= 1693 it->it_overrun && 1694 it->it_overrun + overruns <= INT_MAX) { 1695 it->it_overrun += (int)overruns; 1696 } else { 1697 it->it_overrun = INT_MAX; 1698 it->it_ksi.ksi_errno = ERANGE; 1699 } 1700 value = 1701 now + interval - (now - value) % interval; 1702 it->it_time.it_value = timespecfromns(value); 1703 } 1704 } else { 1705 /* single shot timer ? */ 1706 timespecclear(&it->it_time.it_value); 1707 } 1708 1709 p = it->it_proc; 1710 if (timespecisset(&it->it_time.it_value)) { 1711 if (P_SHOULDSTOP(p) || P_KILLED(p)) { 1712 it->it_flags |= ITF_PSTOPPED; 1713 } else { 1714 timespecsub(&it->it_time.it_value, &cts, &ts); 1715 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1716 callout_reset(&it->it_callout, tvtohz(&tv), 1717 realtimer_expire, it); 1718 } 1719 } 1720 1721 itimer_enter(it); 1722 ITIMER_UNLOCK(it); 1723 if (proc_locked) 1724 PROC_UNLOCK(p); 1725 itimer_fire(it); 1726 if (proc_locked) 1727 PROC_LOCK(p); 1728 ITIMER_LOCK(it); 1729 itimer_leave(it); 1730 } else if (timespecisset(&it->it_time.it_value)) { 1731 p = it->it_proc; 1732 if (P_SHOULDSTOP(p) || P_KILLED(p)) { 1733 it->it_flags |= ITF_PSTOPPED; 1734 } else { 1735 ts = it->it_time.it_value; 1736 timespecsub(&ts, &cts, &ts); 1737 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1738 callout_reset(&it->it_callout, tvtohz(&tv), 1739 realtimer_expire, it); 1740 } 1741 } 1742 } 1743 1744 /* Timeout callback for realtime timer */ 1745 static void 1746 realtimer_expire(void *arg) 1747 { 1748 realtimer_expire_l(arg, false); 1749 } 1750 1751 static void 1752 itimer_fire(struct itimer *it) 1753 { 1754 struct proc *p = it->it_proc; 1755 struct thread *td; 1756 1757 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1758 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1759 if (sigev_findtd(p, &it->it_sigev, &td) != 0) { 1760 ITIMER_LOCK(it); 1761 timespecclear(&it->it_time.it_value); 1762 timespecclear(&it->it_time.it_interval); 1763 callout_stop(&it->it_callout); 1764 ITIMER_UNLOCK(it); 1765 return; 1766 } 1767 if (!KSI_ONQ(&it->it_ksi)) { 1768 it->it_ksi.ksi_errno = 0; 1769 ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev); 1770 tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi); 1771 } else { 1772 if (it->it_overrun < INT_MAX) 1773 it->it_overrun++; 1774 else 1775 it->it_ksi.ksi_errno = ERANGE; 1776 } 1777 PROC_UNLOCK(p); 1778 } 1779 } 1780 1781 static void 1782 itimers_alloc(struct proc *p) 1783 { 1784 struct itimers *its; 1785 int i; 1786 1787 its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO); 1788 LIST_INIT(&its->its_virtual); 1789 LIST_INIT(&its->its_prof); 1790 TAILQ_INIT(&its->its_worklist); 1791 for (i = 0; i < TIMER_MAX; i++) 1792 its->its_timers[i] = NULL; 1793 PROC_LOCK(p); 1794 if (p->p_itimers == NULL) { 1795 p->p_itimers = its; 1796 PROC_UNLOCK(p); 1797 } 1798 else { 1799 PROC_UNLOCK(p); 1800 free(its, M_SUBPROC); 1801 } 1802 } 1803 1804 /* Clean up timers when some process events are being triggered. */ 1805 static void 1806 itimers_event_exit_exec(int start_idx, struct proc *p) 1807 { 1808 struct itimers *its; 1809 struct itimer *it; 1810 int i; 1811 1812 its = p->p_itimers; 1813 if (its == NULL) 1814 return; 1815 1816 for (i = start_idx; i < TIMER_MAX; ++i) { 1817 if ((it = its->its_timers[i]) != NULL) 1818 kern_ktimer_delete(curthread, i); 1819 } 1820 if (its->its_timers[0] == NULL && its->its_timers[1] == NULL && 1821 its->its_timers[2] == NULL) { 1822 free(its, M_SUBPROC); 1823 p->p_itimers = NULL; 1824 } 1825 } 1826 1827 void 1828 itimers_exec(struct proc *p) 1829 { 1830 /* 1831 * According to susv3, XSI interval timers should be inherited 1832 * by new image. 1833 */ 1834 itimers_event_exit_exec(3, p); 1835 } 1836 1837 void 1838 itimers_exit(struct proc *p) 1839 { 1840 itimers_event_exit_exec(0, p); 1841 } 1842