xref: /freebsd/sys/kern/kern_time.c (revision a316b26e50bbed7cf655fbba726ab87d8ab7599d)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $Id: kern_time.c,v 1.4 1994/09/25 19:33:45 phk Exp $
35  */
36 
37 #include <sys/param.h>
38 #include <sys/resourcevar.h>
39 #include <sys/signalvar.h>
40 #include <sys/kernel.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/vnode.h>
44 
45 #include <machine/cpu.h>
46 
47 /*
48  * Time of day and interval timer support.
49  *
50  * These routines provide the kernel entry points to get and set
51  * the time-of-day and per-process interval timers.  Subroutines
52  * here provide support for adding and subtracting timeval structures
53  * and decrementing interval timers, optionally reloading the interval
54  * timers when they expire.
55  */
56 
57 struct gettimeofday_args {
58 	struct	timeval *tp;
59 	struct	timezone *tzp;
60 };
61 /* ARGSUSED */
62 int
63 gettimeofday(p, uap, retval)
64 	struct proc *p;
65 	register struct gettimeofday_args *uap;
66 	int *retval;
67 {
68 	struct timeval atv;
69 	int error = 0;
70 
71 	if (uap->tp) {
72 		microtime(&atv);
73 		if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
74 		    sizeof (atv))))
75 			return (error);
76 	}
77 	if (uap->tzp)
78 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
79 		    sizeof (tz));
80 	return (error);
81 }
82 
83 struct settimeofday_args {
84 	struct	timeval *tv;
85 	struct	timezone *tzp;
86 };
87 /* ARGSUSED */
88 int
89 settimeofday(p, uap, retval)
90 	struct proc *p;
91 	struct settimeofday_args *uap;
92 	int *retval;
93 {
94 	struct timeval atv, delta;
95 	struct timezone atz;
96 	int error, s;
97 
98 	if ((error = suser(p->p_ucred, &p->p_acflag)))
99 		return (error);
100 	/* Verify all parameters before changing time. */
101 	if (uap->tv &&
102 	    (error = copyin((caddr_t)uap->tv, (caddr_t)&atv, sizeof(atv))))
103 		return (error);
104 	if (uap->tzp &&
105 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
106 		return (error);
107 	if (uap->tv) {
108 		/* WHAT DO WE DO ABOUT PENDING REAL-TIME TIMEOUTS??? */
109 		s = splclock();
110 		/* nb. delta.tv_usec may be < 0, but this is OK here */
111 		delta.tv_sec = atv.tv_sec - time.tv_sec;
112 		delta.tv_usec = atv.tv_usec - time.tv_usec;
113 		time = atv;
114 		(void) splsoftclock();
115 		timevaladd(&boottime, &delta);
116 		timevalfix(&boottime);
117 		timevaladd(&runtime, &delta);
118 		timevalfix(&runtime);
119 		LEASE_UPDATETIME(delta.tv_sec);
120 		splx(s);
121 		resettodr();
122 	}
123 	if (uap->tzp)
124 		tz = atz;
125 	return (0);
126 }
127 
128 extern	int tickadj;			/* "standard" clock skew, us./tick */
129 int	tickdelta;			/* current clock skew, us. per tick */
130 long	timedelta;			/* unapplied time correction, us. */
131 long	bigadj = 1000000;		/* use 10x skew above bigadj us. */
132 
133 struct adjtime_args {
134 	struct timeval *delta;
135 	struct timeval *olddelta;
136 };
137 /* ARGSUSED */
138 int
139 adjtime(p, uap, retval)
140 	struct proc *p;
141 	register struct adjtime_args *uap;
142 	int *retval;
143 {
144 	struct timeval atv;
145 	register long ndelta, ntickdelta, odelta;
146 	int s, error;
147 
148 	if ((error = suser(p->p_ucred, &p->p_acflag)))
149 		return (error);
150 	if ((error =
151 	    copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval))))
152 		return (error);
153 
154 	/*
155 	 * Compute the total correction and the rate at which to apply it.
156 	 * Round the adjustment down to a whole multiple of the per-tick
157 	 * delta, so that after some number of incremental changes in
158 	 * hardclock(), tickdelta will become zero, lest the correction
159 	 * overshoot and start taking us away from the desired final time.
160 	 */
161 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
162 	if (ndelta > bigadj)
163 		ntickdelta = 10 * tickadj;
164 	else
165 		ntickdelta = tickadj;
166 	if (ndelta % ntickdelta)
167 		ndelta = ndelta / ntickdelta * ntickdelta;
168 
169 	/*
170 	 * To make hardclock()'s job easier, make the per-tick delta negative
171 	 * if we want time to run slower; then hardclock can simply compute
172 	 * tick + tickdelta, and subtract tickdelta from timedelta.
173 	 */
174 	if (ndelta < 0)
175 		ntickdelta = -ntickdelta;
176 	s = splclock();
177 	odelta = timedelta;
178 	timedelta = ndelta;
179 	tickdelta = ntickdelta;
180 	splx(s);
181 
182 	if (uap->olddelta) {
183 		atv.tv_sec = odelta / 1000000;
184 		atv.tv_usec = odelta % 1000000;
185 		(void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
186 		    sizeof(struct timeval));
187 	}
188 	return (0);
189 }
190 
191 /*
192  * Get value of an interval timer.  The process virtual and
193  * profiling virtual time timers are kept in the p_stats area, since
194  * they can be swapped out.  These are kept internally in the
195  * way they are specified externally: in time until they expire.
196  *
197  * The real time interval timer is kept in the process table slot
198  * for the process, and its value (it_value) is kept as an
199  * absolute time rather than as a delta, so that it is easy to keep
200  * periodic real-time signals from drifting.
201  *
202  * Virtual time timers are processed in the hardclock() routine of
203  * kern_clock.c.  The real time timer is processed by a timeout
204  * routine, called from the softclock() routine.  Since a callout
205  * may be delayed in real time due to interrupt processing in the system,
206  * it is possible for the real time timeout routine (realitexpire, given below),
207  * to be delayed in real time past when it is supposed to occur.  It
208  * does not suffice, therefore, to reload the real timer .it_value from the
209  * real time timers .it_interval.  Rather, we compute the next time in
210  * absolute time the timer should go off.
211  */
212 struct getitimer_args {
213 	u_int	which;
214 	struct	itimerval *itv;
215 };
216 /* ARGSUSED */
217 int
218 getitimer(p, uap, retval)
219 	struct proc *p;
220 	register struct getitimer_args *uap;
221 	int *retval;
222 {
223 	struct itimerval aitv;
224 	int s;
225 
226 	if (uap->which > ITIMER_PROF)
227 		return (EINVAL);
228 	s = splclock();
229 	if (uap->which == ITIMER_REAL) {
230 		/*
231 		 * Convert from absoulte to relative time in .it_value
232 		 * part of real time timer.  If time for real time timer
233 		 * has passed return 0, else return difference between
234 		 * current time and time for the timer to go off.
235 		 */
236 		aitv = p->p_realtimer;
237 		if (timerisset(&aitv.it_value))
238 			if (timercmp(&aitv.it_value, &time, <))
239 				timerclear(&aitv.it_value);
240 			else
241 				timevalsub(&aitv.it_value,
242 				    (struct timeval *)&time);
243 	} else
244 		aitv = p->p_stats->p_timer[uap->which];
245 	splx(s);
246 	return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
247 	    sizeof (struct itimerval)));
248 }
249 
250 struct setitimer_args {
251 	u_int	which;
252 	struct	itimerval *itv, *oitv;
253 };
254 /* ARGSUSED */
255 int
256 setitimer(p, uap, retval)
257 	struct proc *p;
258 	register struct setitimer_args *uap;
259 	int *retval;
260 {
261 	struct itimerval aitv;
262 	register struct itimerval *itvp;
263 	int s, error;
264 
265 	if (uap->which > ITIMER_PROF)
266 		return (EINVAL);
267 	itvp = uap->itv;
268 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
269 	    sizeof(struct itimerval))))
270 		return (error);
271 	if ((uap->itv = uap->oitv) && (error = getitimer(p, uap, retval)))
272 		return (error);
273 	if (itvp == 0)
274 		return (0);
275 	if (itimerfix(&aitv.it_value) || itimerfix(&aitv.it_interval))
276 		return (EINVAL);
277 	s = splclock();
278 	if (uap->which == ITIMER_REAL) {
279 		untimeout(realitexpire, (caddr_t)p);
280 		if (timerisset(&aitv.it_value)) {
281 			timevaladd(&aitv.it_value, (struct timeval *)&time);
282 			timeout(realitexpire, (caddr_t)p, hzto(&aitv.it_value));
283 		}
284 		p->p_realtimer = aitv;
285 	} else
286 		p->p_stats->p_timer[uap->which] = aitv;
287 	splx(s);
288 	return (0);
289 }
290 
291 /*
292  * Real interval timer expired:
293  * send process whose timer expired an alarm signal.
294  * If time is not set up to reload, then just return.
295  * Else compute next time timer should go off which is > current time.
296  * This is where delay in processing this timeout causes multiple
297  * SIGALRM calls to be compressed into one.
298  */
299 void
300 realitexpire(arg)
301 	void *arg;
302 {
303 	register struct proc *p;
304 	int s;
305 
306 	p = (struct proc *)arg;
307 	psignal(p, SIGALRM);
308 	if (!timerisset(&p->p_realtimer.it_interval)) {
309 		timerclear(&p->p_realtimer.it_value);
310 		return;
311 	}
312 	for (;;) {
313 		s = splclock();
314 		timevaladd(&p->p_realtimer.it_value,
315 		    &p->p_realtimer.it_interval);
316 		if (timercmp(&p->p_realtimer.it_value, &time, >)) {
317 			timeout(realitexpire, (caddr_t)p,
318 			    hzto(&p->p_realtimer.it_value));
319 			splx(s);
320 			return;
321 		}
322 		splx(s);
323 	}
324 }
325 
326 /*
327  * Check that a proposed value to load into the .it_value or
328  * .it_interval part of an interval timer is acceptable, and
329  * fix it to have at least minimal value (i.e. if it is less
330  * than the resolution of the clock, round it up.)
331  */
332 int
333 itimerfix(tv)
334 	struct timeval *tv;
335 {
336 
337 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
338 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
339 		return (EINVAL);
340 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
341 		tv->tv_usec = tick;
342 	return (0);
343 }
344 
345 /*
346  * Decrement an interval timer by a specified number
347  * of microseconds, which must be less than a second,
348  * i.e. < 1000000.  If the timer expires, then reload
349  * it.  In this case, carry over (usec - old value) to
350  * reduce the value reloaded into the timer so that
351  * the timer does not drift.  This routine assumes
352  * that it is called in a context where the timers
353  * on which it is operating cannot change in value.
354  */
355 int
356 itimerdecr(itp, usec)
357 	register struct itimerval *itp;
358 	int usec;
359 {
360 
361 	if (itp->it_value.tv_usec < usec) {
362 		if (itp->it_value.tv_sec == 0) {
363 			/* expired, and already in next interval */
364 			usec -= itp->it_value.tv_usec;
365 			goto expire;
366 		}
367 		itp->it_value.tv_usec += 1000000;
368 		itp->it_value.tv_sec--;
369 	}
370 	itp->it_value.tv_usec -= usec;
371 	usec = 0;
372 	if (timerisset(&itp->it_value))
373 		return (1);
374 	/* expired, exactly at end of interval */
375 expire:
376 	if (timerisset(&itp->it_interval)) {
377 		itp->it_value = itp->it_interval;
378 		itp->it_value.tv_usec -= usec;
379 		if (itp->it_value.tv_usec < 0) {
380 			itp->it_value.tv_usec += 1000000;
381 			itp->it_value.tv_sec--;
382 		}
383 	} else
384 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
385 	return (0);
386 }
387 
388 /*
389  * Add and subtract routines for timevals.
390  * N.B.: subtract routine doesn't deal with
391  * results which are before the beginning,
392  * it just gets very confused in this case.
393  * Caveat emptor.
394  */
395 void
396 timevaladd(t1, t2)
397 	struct timeval *t1, *t2;
398 {
399 
400 	t1->tv_sec += t2->tv_sec;
401 	t1->tv_usec += t2->tv_usec;
402 	timevalfix(t1);
403 }
404 
405 void
406 timevalsub(t1, t2)
407 	struct timeval *t1, *t2;
408 {
409 
410 	t1->tv_sec -= t2->tv_sec;
411 	t1->tv_usec -= t2->tv_usec;
412 	timevalfix(t1);
413 }
414 
415 void
416 timevalfix(t1)
417 	struct timeval *t1;
418 {
419 
420 	if (t1->tv_usec < 0) {
421 		t1->tv_sec--;
422 		t1->tv_usec += 1000000;
423 	}
424 	if (t1->tv_usec >= 1000000) {
425 		t1->tv_sec++;
426 		t1->tv_usec -= 1000000;
427 	}
428 }
429