1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 #include "opt_ktrace.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/limits.h> 38 #include <sys/clock.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/sysproto.h> 42 #include <sys/resourcevar.h> 43 #include <sys/signalvar.h> 44 #include <sys/kernel.h> 45 #include <sys/sleepqueue.h> 46 #include <sys/syscallsubr.h> 47 #include <sys/sysctl.h> 48 #include <sys/priv.h> 49 #include <sys/proc.h> 50 #include <sys/posix4.h> 51 #include <sys/time.h> 52 #include <sys/timers.h> 53 #include <sys/timetc.h> 54 #include <sys/vnode.h> 55 #ifdef KTRACE 56 #include <sys/ktrace.h> 57 #endif 58 59 #include <vm/vm.h> 60 #include <vm/vm_extern.h> 61 #include <vm/uma.h> 62 63 #define MAX_CLOCKS (CLOCK_MONOTONIC+1) 64 #define CPUCLOCK_BIT 0x80000000 65 #define CPUCLOCK_PROCESS_BIT 0x40000000 66 #define CPUCLOCK_ID_MASK (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT)) 67 #define MAKE_THREAD_CPUCLOCK(tid) (CPUCLOCK_BIT|(tid)) 68 #define MAKE_PROCESS_CPUCLOCK(pid) \ 69 (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid)) 70 71 #define NS_PER_SEC 1000000000 72 73 static struct kclock posix_clocks[MAX_CLOCKS]; 74 static uma_zone_t itimer_zone = NULL; 75 76 /* 77 * Time of day and interval timer support. 78 * 79 * These routines provide the kernel entry points to get and set 80 * the time-of-day and per-process interval timers. Subroutines 81 * here provide support for adding and subtracting timeval structures 82 * and decrementing interval timers, optionally reloading the interval 83 * timers when they expire. 84 */ 85 86 static int settime(struct thread *, struct timeval *); 87 static void timevalfix(struct timeval *); 88 static int user_clock_nanosleep(struct thread *td, clockid_t clock_id, 89 int flags, const struct timespec *ua_rqtp, 90 struct timespec *ua_rmtp); 91 92 static void itimer_start(void); 93 static int itimer_init(void *, int, int); 94 static void itimer_fini(void *, int); 95 static void itimer_enter(struct itimer *); 96 static void itimer_leave(struct itimer *); 97 static struct itimer *itimer_find(struct proc *, int); 98 static void itimers_alloc(struct proc *); 99 static int realtimer_create(struct itimer *); 100 static int realtimer_gettime(struct itimer *, struct itimerspec *); 101 static int realtimer_settime(struct itimer *, int, 102 struct itimerspec *, struct itimerspec *); 103 static int realtimer_delete(struct itimer *); 104 static void realtimer_clocktime(clockid_t, struct timespec *); 105 static void realtimer_expire(void *); 106 static void realtimer_expire_l(struct itimer *it, bool proc_locked); 107 108 static void realitexpire(void *arg); 109 110 static int register_posix_clock(int, const struct kclock *); 111 static void itimer_fire(struct itimer *it); 112 static int itimespecfix(struct timespec *ts); 113 114 #define CLOCK_CALL(clock, call, arglist) \ 115 ((*posix_clocks[clock].call) arglist) 116 117 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL); 118 119 static int 120 settime(struct thread *td, struct timeval *tv) 121 { 122 struct timeval delta, tv1, tv2; 123 static struct timeval maxtime, laststep; 124 struct timespec ts; 125 126 microtime(&tv1); 127 delta = *tv; 128 timevalsub(&delta, &tv1); 129 130 /* 131 * If the system is secure, we do not allow the time to be 132 * set to a value earlier than 1 second less than the highest 133 * time we have yet seen. The worst a miscreant can do in 134 * this circumstance is "freeze" time. He couldn't go 135 * back to the past. 136 * 137 * We similarly do not allow the clock to be stepped more 138 * than one second, nor more than once per second. This allows 139 * a miscreant to make the clock march double-time, but no worse. 140 */ 141 if (securelevel_gt(td->td_ucred, 1) != 0) { 142 if (delta.tv_sec < 0 || delta.tv_usec < 0) { 143 /* 144 * Update maxtime to latest time we've seen. 145 */ 146 if (tv1.tv_sec > maxtime.tv_sec) 147 maxtime = tv1; 148 tv2 = *tv; 149 timevalsub(&tv2, &maxtime); 150 if (tv2.tv_sec < -1) { 151 tv->tv_sec = maxtime.tv_sec - 1; 152 printf("Time adjustment clamped to -1 second\n"); 153 } 154 } else { 155 if (tv1.tv_sec == laststep.tv_sec) 156 return (EPERM); 157 if (delta.tv_sec > 1) { 158 tv->tv_sec = tv1.tv_sec + 1; 159 printf("Time adjustment clamped to +1 second\n"); 160 } 161 laststep = *tv; 162 } 163 } 164 165 ts.tv_sec = tv->tv_sec; 166 ts.tv_nsec = tv->tv_usec * 1000; 167 tc_setclock(&ts); 168 resettodr(); 169 return (0); 170 } 171 172 #ifndef _SYS_SYSPROTO_H_ 173 struct clock_getcpuclockid2_args { 174 id_t id; 175 int which, 176 clockid_t *clock_id; 177 }; 178 #endif 179 /* ARGSUSED */ 180 int 181 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap) 182 { 183 clockid_t clk_id; 184 int error; 185 186 error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id); 187 if (error == 0) 188 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 189 return (error); 190 } 191 192 int 193 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which, 194 clockid_t *clk_id) 195 { 196 struct proc *p; 197 pid_t pid; 198 lwpid_t tid; 199 int error; 200 201 switch (which) { 202 case CPUCLOCK_WHICH_PID: 203 if (id != 0) { 204 error = pget(id, PGET_CANSEE | PGET_NOTID, &p); 205 if (error != 0) 206 return (error); 207 PROC_UNLOCK(p); 208 pid = id; 209 } else { 210 pid = td->td_proc->p_pid; 211 } 212 *clk_id = MAKE_PROCESS_CPUCLOCK(pid); 213 return (0); 214 case CPUCLOCK_WHICH_TID: 215 tid = id == 0 ? td->td_tid : id; 216 *clk_id = MAKE_THREAD_CPUCLOCK(tid); 217 return (0); 218 default: 219 return (EINVAL); 220 } 221 } 222 223 #ifndef _SYS_SYSPROTO_H_ 224 struct clock_gettime_args { 225 clockid_t clock_id; 226 struct timespec *tp; 227 }; 228 #endif 229 /* ARGSUSED */ 230 int 231 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap) 232 { 233 struct timespec ats; 234 int error; 235 236 error = kern_clock_gettime(td, uap->clock_id, &ats); 237 if (error == 0) 238 error = copyout(&ats, uap->tp, sizeof(ats)); 239 240 return (error); 241 } 242 243 static inline void 244 cputick2timespec(uint64_t runtime, struct timespec *ats) 245 { 246 uint64_t tr; 247 tr = cpu_tickrate(); 248 ats->tv_sec = runtime / tr; 249 ats->tv_nsec = ((runtime % tr) * 1000000000ULL) / tr; 250 } 251 252 void 253 kern_thread_cputime(struct thread *targettd, struct timespec *ats) 254 { 255 uint64_t runtime, curtime, switchtime; 256 257 if (targettd == NULL) { /* current thread */ 258 spinlock_enter(); 259 switchtime = PCPU_GET(switchtime); 260 curtime = cpu_ticks(); 261 runtime = curthread->td_runtime; 262 spinlock_exit(); 263 runtime += curtime - switchtime; 264 } else { 265 PROC_LOCK_ASSERT(targettd->td_proc, MA_OWNED); 266 thread_lock(targettd); 267 runtime = targettd->td_runtime; 268 thread_unlock(targettd); 269 } 270 cputick2timespec(runtime, ats); 271 } 272 273 void 274 kern_process_cputime(struct proc *targetp, struct timespec *ats) 275 { 276 uint64_t runtime; 277 struct rusage ru; 278 279 PROC_LOCK_ASSERT(targetp, MA_OWNED); 280 PROC_STATLOCK(targetp); 281 rufetch(targetp, &ru); 282 runtime = targetp->p_rux.rux_runtime; 283 if (curthread->td_proc == targetp) 284 runtime += cpu_ticks() - PCPU_GET(switchtime); 285 PROC_STATUNLOCK(targetp); 286 cputick2timespec(runtime, ats); 287 } 288 289 static int 290 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats) 291 { 292 struct proc *p, *p2; 293 struct thread *td2; 294 lwpid_t tid; 295 pid_t pid; 296 int error; 297 298 p = td->td_proc; 299 if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) { 300 tid = clock_id & CPUCLOCK_ID_MASK; 301 td2 = tdfind(tid, p->p_pid); 302 if (td2 == NULL) 303 return (EINVAL); 304 kern_thread_cputime(td2, ats); 305 PROC_UNLOCK(td2->td_proc); 306 } else { 307 pid = clock_id & CPUCLOCK_ID_MASK; 308 error = pget(pid, PGET_CANSEE, &p2); 309 if (error != 0) 310 return (EINVAL); 311 kern_process_cputime(p2, ats); 312 PROC_UNLOCK(p2); 313 } 314 return (0); 315 } 316 317 int 318 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats) 319 { 320 struct timeval sys, user; 321 struct proc *p; 322 323 p = td->td_proc; 324 switch (clock_id) { 325 case CLOCK_REALTIME: /* Default to precise. */ 326 case CLOCK_REALTIME_PRECISE: 327 nanotime(ats); 328 break; 329 case CLOCK_REALTIME_FAST: 330 getnanotime(ats); 331 break; 332 case CLOCK_VIRTUAL: 333 PROC_LOCK(p); 334 PROC_STATLOCK(p); 335 calcru(p, &user, &sys); 336 PROC_STATUNLOCK(p); 337 PROC_UNLOCK(p); 338 TIMEVAL_TO_TIMESPEC(&user, ats); 339 break; 340 case CLOCK_PROF: 341 PROC_LOCK(p); 342 PROC_STATLOCK(p); 343 calcru(p, &user, &sys); 344 PROC_STATUNLOCK(p); 345 PROC_UNLOCK(p); 346 timevaladd(&user, &sys); 347 TIMEVAL_TO_TIMESPEC(&user, ats); 348 break; 349 case CLOCK_MONOTONIC: /* Default to precise. */ 350 case CLOCK_MONOTONIC_PRECISE: 351 case CLOCK_UPTIME: 352 case CLOCK_UPTIME_PRECISE: 353 nanouptime(ats); 354 break; 355 case CLOCK_UPTIME_FAST: 356 case CLOCK_MONOTONIC_FAST: 357 getnanouptime(ats); 358 break; 359 case CLOCK_SECOND: 360 ats->tv_sec = time_second; 361 ats->tv_nsec = 0; 362 break; 363 case CLOCK_THREAD_CPUTIME_ID: 364 kern_thread_cputime(NULL, ats); 365 break; 366 case CLOCK_PROCESS_CPUTIME_ID: 367 PROC_LOCK(p); 368 kern_process_cputime(p, ats); 369 PROC_UNLOCK(p); 370 break; 371 default: 372 if ((int)clock_id >= 0) 373 return (EINVAL); 374 return (get_cputime(td, clock_id, ats)); 375 } 376 return (0); 377 } 378 379 #ifndef _SYS_SYSPROTO_H_ 380 struct clock_settime_args { 381 clockid_t clock_id; 382 const struct timespec *tp; 383 }; 384 #endif 385 /* ARGSUSED */ 386 int 387 sys_clock_settime(struct thread *td, struct clock_settime_args *uap) 388 { 389 struct timespec ats; 390 int error; 391 392 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0) 393 return (error); 394 return (kern_clock_settime(td, uap->clock_id, &ats)); 395 } 396 397 static int allow_insane_settime = 0; 398 SYSCTL_INT(_debug, OID_AUTO, allow_insane_settime, CTLFLAG_RWTUN, 399 &allow_insane_settime, 0, 400 "do not perform possibly restrictive checks on settime(2) args"); 401 402 int 403 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats) 404 { 405 struct timeval atv; 406 int error; 407 408 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 409 return (error); 410 if (clock_id != CLOCK_REALTIME) 411 return (EINVAL); 412 if (!timespecvalid_interval(ats)) 413 return (EINVAL); 414 if (!allow_insane_settime && 415 (ats->tv_sec > 8000ULL * 365 * 24 * 60 * 60 || 416 ats->tv_sec < utc_offset())) 417 return (EINVAL); 418 /* XXX Don't convert nsec->usec and back */ 419 TIMESPEC_TO_TIMEVAL(&atv, ats); 420 error = settime(td, &atv); 421 return (error); 422 } 423 424 #ifndef _SYS_SYSPROTO_H_ 425 struct clock_getres_args { 426 clockid_t clock_id; 427 struct timespec *tp; 428 }; 429 #endif 430 int 431 sys_clock_getres(struct thread *td, struct clock_getres_args *uap) 432 { 433 struct timespec ts; 434 int error; 435 436 if (uap->tp == NULL) 437 return (0); 438 439 error = kern_clock_getres(td, uap->clock_id, &ts); 440 if (error == 0) 441 error = copyout(&ts, uap->tp, sizeof(ts)); 442 return (error); 443 } 444 445 int 446 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts) 447 { 448 449 ts->tv_sec = 0; 450 switch (clock_id) { 451 case CLOCK_REALTIME: 452 case CLOCK_REALTIME_FAST: 453 case CLOCK_REALTIME_PRECISE: 454 case CLOCK_MONOTONIC: 455 case CLOCK_MONOTONIC_FAST: 456 case CLOCK_MONOTONIC_PRECISE: 457 case CLOCK_UPTIME: 458 case CLOCK_UPTIME_FAST: 459 case CLOCK_UPTIME_PRECISE: 460 /* 461 * Round up the result of the division cheaply by adding 1. 462 * Rounding up is especially important if rounding down 463 * would give 0. Perfect rounding is unimportant. 464 */ 465 ts->tv_nsec = NS_PER_SEC / tc_getfrequency() + 1; 466 break; 467 case CLOCK_VIRTUAL: 468 case CLOCK_PROF: 469 /* Accurately round up here because we can do so cheaply. */ 470 ts->tv_nsec = howmany(NS_PER_SEC, hz); 471 break; 472 case CLOCK_SECOND: 473 ts->tv_sec = 1; 474 ts->tv_nsec = 0; 475 break; 476 case CLOCK_THREAD_CPUTIME_ID: 477 case CLOCK_PROCESS_CPUTIME_ID: 478 cputime: 479 ts->tv_nsec = 1000000000 / cpu_tickrate() + 1; 480 break; 481 default: 482 if ((int)clock_id < 0) 483 goto cputime; 484 return (EINVAL); 485 } 486 return (0); 487 } 488 489 int 490 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt) 491 { 492 493 return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt, 494 rmt)); 495 } 496 497 static __read_mostly bool nanosleep_precise = true; 498 SYSCTL_BOOL(_kern_timecounter, OID_AUTO, nanosleep_precise, CTLFLAG_RW, 499 &nanosleep_precise, 0, "clock_nanosleep() with CLOCK_REALTIME, " 500 "CLOCK_MONOTONIC, CLOCK_UPTIME and nanosleep(2) use precise clock"); 501 static uint8_t nanowait[MAXCPU]; 502 503 int 504 kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 505 const struct timespec *rqt, struct timespec *rmt) 506 { 507 struct timespec ts, now; 508 sbintime_t sbt, sbtt, prec, tmp; 509 time_t over; 510 int error; 511 bool is_abs_real, precise; 512 513 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= NS_PER_SEC) 514 return (EINVAL); 515 if ((flags & ~TIMER_ABSTIME) != 0) 516 return (EINVAL); 517 switch (clock_id) { 518 case CLOCK_REALTIME: 519 precise = nanosleep_precise; 520 is_abs_real = (flags & TIMER_ABSTIME) != 0; 521 break; 522 case CLOCK_REALTIME_PRECISE: 523 precise = true; 524 is_abs_real = (flags & TIMER_ABSTIME) != 0; 525 break; 526 case CLOCK_REALTIME_FAST: 527 case CLOCK_SECOND: 528 precise = false; 529 is_abs_real = (flags & TIMER_ABSTIME) != 0; 530 break; 531 case CLOCK_MONOTONIC: 532 case CLOCK_UPTIME: 533 precise = nanosleep_precise; 534 is_abs_real = false; 535 break; 536 case CLOCK_MONOTONIC_PRECISE: 537 case CLOCK_UPTIME_PRECISE: 538 precise = true; 539 is_abs_real = false; 540 break; 541 case CLOCK_MONOTONIC_FAST: 542 case CLOCK_UPTIME_FAST: 543 precise = false; 544 is_abs_real = false; 545 break; 546 case CLOCK_VIRTUAL: 547 case CLOCK_PROF: 548 case CLOCK_PROCESS_CPUTIME_ID: 549 return (ENOTSUP); 550 case CLOCK_THREAD_CPUTIME_ID: 551 default: 552 return (EINVAL); 553 } 554 do { 555 ts = *rqt; 556 if ((flags & TIMER_ABSTIME) != 0) { 557 if (is_abs_real) 558 td->td_rtcgen = 559 atomic_load_acq_int(&rtc_generation); 560 error = kern_clock_gettime(td, clock_id, &now); 561 KASSERT(error == 0, ("kern_clock_gettime: %d", error)); 562 timespecsub(&ts, &now, &ts); 563 } 564 if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) { 565 error = EWOULDBLOCK; 566 break; 567 } 568 if (ts.tv_sec > INT32_MAX / 2) { 569 over = ts.tv_sec - INT32_MAX / 2; 570 ts.tv_sec -= over; 571 } else 572 over = 0; 573 tmp = tstosbt(ts); 574 if (precise) { 575 prec = 0; 576 sbt = sbinuptime(); 577 } else { 578 prec = tmp >> tc_precexp; 579 if (TIMESEL(&sbt, tmp)) 580 sbt += tc_tick_sbt; 581 } 582 sbt += tmp; 583 error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp", 584 sbt, prec, C_ABSOLUTE); 585 } while (error == 0 && is_abs_real && td->td_rtcgen == 0); 586 td->td_rtcgen = 0; 587 if (error != EWOULDBLOCK) { 588 if (TIMESEL(&sbtt, tmp)) 589 sbtt += tc_tick_sbt; 590 if (sbtt >= sbt) 591 return (0); 592 if (error == ERESTART) 593 error = EINTR; 594 if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) { 595 ts = sbttots(sbt - sbtt); 596 ts.tv_sec += over; 597 if (ts.tv_sec < 0) 598 timespecclear(&ts); 599 *rmt = ts; 600 } 601 return (error); 602 } 603 return (0); 604 } 605 606 #ifndef _SYS_SYSPROTO_H_ 607 struct nanosleep_args { 608 struct timespec *rqtp; 609 struct timespec *rmtp; 610 }; 611 #endif 612 /* ARGSUSED */ 613 int 614 sys_nanosleep(struct thread *td, struct nanosleep_args *uap) 615 { 616 617 return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, 618 uap->rqtp, uap->rmtp)); 619 } 620 621 #ifndef _SYS_SYSPROTO_H_ 622 struct clock_nanosleep_args { 623 clockid_t clock_id; 624 int flags; 625 struct timespec *rqtp; 626 struct timespec *rmtp; 627 }; 628 #endif 629 /* ARGSUSED */ 630 int 631 sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap) 632 { 633 int error; 634 635 error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp, 636 uap->rmtp); 637 return (kern_posix_error(td, error)); 638 } 639 640 static int 641 user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 642 const struct timespec *ua_rqtp, struct timespec *ua_rmtp) 643 { 644 struct timespec rmt, rqt; 645 int error, error2; 646 647 error = copyin(ua_rqtp, &rqt, sizeof(rqt)); 648 if (error) 649 return (error); 650 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 651 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 652 error2 = copyout(&rmt, ua_rmtp, sizeof(rmt)); 653 if (error2 != 0) 654 error = error2; 655 } 656 return (error); 657 } 658 659 #ifndef _SYS_SYSPROTO_H_ 660 struct gettimeofday_args { 661 struct timeval *tp; 662 struct timezone *tzp; 663 }; 664 #endif 665 /* ARGSUSED */ 666 int 667 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap) 668 { 669 struct timeval atv; 670 struct timezone rtz; 671 int error = 0; 672 673 if (uap->tp) { 674 microtime(&atv); 675 error = copyout(&atv, uap->tp, sizeof (atv)); 676 } 677 if (error == 0 && uap->tzp != NULL) { 678 rtz.tz_minuteswest = 0; 679 rtz.tz_dsttime = 0; 680 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 681 } 682 return (error); 683 } 684 685 #ifndef _SYS_SYSPROTO_H_ 686 struct settimeofday_args { 687 struct timeval *tv; 688 struct timezone *tzp; 689 }; 690 #endif 691 /* ARGSUSED */ 692 int 693 sys_settimeofday(struct thread *td, struct settimeofday_args *uap) 694 { 695 struct timeval atv, *tvp; 696 struct timezone atz, *tzp; 697 int error; 698 699 if (uap->tv) { 700 error = copyin(uap->tv, &atv, sizeof(atv)); 701 if (error) 702 return (error); 703 tvp = &atv; 704 } else 705 tvp = NULL; 706 if (uap->tzp) { 707 error = copyin(uap->tzp, &atz, sizeof(atz)); 708 if (error) 709 return (error); 710 tzp = &atz; 711 } else 712 tzp = NULL; 713 return (kern_settimeofday(td, tvp, tzp)); 714 } 715 716 int 717 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp) 718 { 719 int error; 720 721 error = priv_check(td, PRIV_SETTIMEOFDAY); 722 if (error) 723 return (error); 724 /* Verify all parameters before changing time. */ 725 if (tv) { 726 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 || 727 tv->tv_sec < 0) 728 return (EINVAL); 729 error = settime(td, tv); 730 } 731 return (error); 732 } 733 734 /* 735 * Get value of an interval timer. The process virtual and profiling virtual 736 * time timers are kept in the p_stats area, since they can be swapped out. 737 * These are kept internally in the way they are specified externally: in 738 * time until they expire. 739 * 740 * The real time interval timer is kept in the process table slot for the 741 * process, and its value (it_value) is kept as an absolute time rather than 742 * as a delta, so that it is easy to keep periodic real-time signals from 743 * drifting. 744 * 745 * Virtual time timers are processed in the hardclock() routine of 746 * kern_clock.c. The real time timer is processed by a timeout routine, 747 * called from the softclock() routine. Since a callout may be delayed in 748 * real time due to interrupt processing in the system, it is possible for 749 * the real time timeout routine (realitexpire, given below), to be delayed 750 * in real time past when it is supposed to occur. It does not suffice, 751 * therefore, to reload the real timer .it_value from the real time timers 752 * .it_interval. Rather, we compute the next time in absolute time the timer 753 * should go off. 754 */ 755 #ifndef _SYS_SYSPROTO_H_ 756 struct getitimer_args { 757 u_int which; 758 struct itimerval *itv; 759 }; 760 #endif 761 int 762 sys_getitimer(struct thread *td, struct getitimer_args *uap) 763 { 764 struct itimerval aitv; 765 int error; 766 767 error = kern_getitimer(td, uap->which, &aitv); 768 if (error != 0) 769 return (error); 770 return (copyout(&aitv, uap->itv, sizeof (struct itimerval))); 771 } 772 773 int 774 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv) 775 { 776 struct proc *p = td->td_proc; 777 struct timeval ctv; 778 779 if (which > ITIMER_PROF) 780 return (EINVAL); 781 782 if (which == ITIMER_REAL) { 783 /* 784 * Convert from absolute to relative time in .it_value 785 * part of real time timer. If time for real time timer 786 * has passed return 0, else return difference between 787 * current time and time for the timer to go off. 788 */ 789 PROC_LOCK(p); 790 *aitv = p->p_realtimer; 791 PROC_UNLOCK(p); 792 if (timevalisset(&aitv->it_value)) { 793 microuptime(&ctv); 794 if (timevalcmp(&aitv->it_value, &ctv, <)) 795 timevalclear(&aitv->it_value); 796 else 797 timevalsub(&aitv->it_value, &ctv); 798 } 799 } else { 800 PROC_ITIMLOCK(p); 801 *aitv = p->p_stats->p_timer[which]; 802 PROC_ITIMUNLOCK(p); 803 } 804 #ifdef KTRACE 805 if (KTRPOINT(td, KTR_STRUCT)) 806 ktritimerval(aitv); 807 #endif 808 return (0); 809 } 810 811 #ifndef _SYS_SYSPROTO_H_ 812 struct setitimer_args { 813 u_int which; 814 struct itimerval *itv, *oitv; 815 }; 816 #endif 817 int 818 sys_setitimer(struct thread *td, struct setitimer_args *uap) 819 { 820 struct itimerval aitv, oitv; 821 int error; 822 823 if (uap->itv == NULL) { 824 uap->itv = uap->oitv; 825 return (sys_getitimer(td, (struct getitimer_args *)uap)); 826 } 827 828 if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval)))) 829 return (error); 830 error = kern_setitimer(td, uap->which, &aitv, &oitv); 831 if (error != 0 || uap->oitv == NULL) 832 return (error); 833 return (copyout(&oitv, uap->oitv, sizeof(struct itimerval))); 834 } 835 836 int 837 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv, 838 struct itimerval *oitv) 839 { 840 struct proc *p = td->td_proc; 841 struct timeval ctv; 842 sbintime_t sbt, pr; 843 844 if (aitv == NULL) 845 return (kern_getitimer(td, which, oitv)); 846 847 if (which > ITIMER_PROF) 848 return (EINVAL); 849 #ifdef KTRACE 850 if (KTRPOINT(td, KTR_STRUCT)) 851 ktritimerval(aitv); 852 #endif 853 if (itimerfix(&aitv->it_value) || 854 aitv->it_value.tv_sec > INT32_MAX / 2) 855 return (EINVAL); 856 if (!timevalisset(&aitv->it_value)) 857 timevalclear(&aitv->it_interval); 858 else if (itimerfix(&aitv->it_interval) || 859 aitv->it_interval.tv_sec > INT32_MAX / 2) 860 return (EINVAL); 861 862 if (which == ITIMER_REAL) { 863 PROC_LOCK(p); 864 if (timevalisset(&p->p_realtimer.it_value)) 865 callout_stop(&p->p_itcallout); 866 microuptime(&ctv); 867 if (timevalisset(&aitv->it_value)) { 868 pr = tvtosbt(aitv->it_value) >> tc_precexp; 869 timevaladd(&aitv->it_value, &ctv); 870 sbt = tvtosbt(aitv->it_value); 871 callout_reset_sbt(&p->p_itcallout, sbt, pr, 872 realitexpire, p, C_ABSOLUTE); 873 } 874 *oitv = p->p_realtimer; 875 p->p_realtimer = *aitv; 876 PROC_UNLOCK(p); 877 if (timevalisset(&oitv->it_value)) { 878 if (timevalcmp(&oitv->it_value, &ctv, <)) 879 timevalclear(&oitv->it_value); 880 else 881 timevalsub(&oitv->it_value, &ctv); 882 } 883 } else { 884 if (aitv->it_interval.tv_sec == 0 && 885 aitv->it_interval.tv_usec != 0 && 886 aitv->it_interval.tv_usec < tick) 887 aitv->it_interval.tv_usec = tick; 888 if (aitv->it_value.tv_sec == 0 && 889 aitv->it_value.tv_usec != 0 && 890 aitv->it_value.tv_usec < tick) 891 aitv->it_value.tv_usec = tick; 892 PROC_ITIMLOCK(p); 893 *oitv = p->p_stats->p_timer[which]; 894 p->p_stats->p_timer[which] = *aitv; 895 PROC_ITIMUNLOCK(p); 896 } 897 #ifdef KTRACE 898 if (KTRPOINT(td, KTR_STRUCT)) 899 ktritimerval(oitv); 900 #endif 901 return (0); 902 } 903 904 static void 905 realitexpire_reset_callout(struct proc *p, sbintime_t *isbtp) 906 { 907 sbintime_t prec; 908 909 if ((p->p_flag & P_WEXIT) != 0) 910 return; 911 prec = isbtp == NULL ? tvtosbt(p->p_realtimer.it_interval) : *isbtp; 912 callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value), 913 prec >> tc_precexp, realitexpire, p, C_ABSOLUTE); 914 } 915 916 void 917 itimer_proc_continue(struct proc *p) 918 { 919 struct timeval ctv; 920 struct itimer *it; 921 int id; 922 923 PROC_LOCK_ASSERT(p, MA_OWNED); 924 925 if ((p->p_flag2 & P2_ITSTOPPED) != 0) { 926 p->p_flag2 &= ~P2_ITSTOPPED; 927 microuptime(&ctv); 928 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >=)) 929 realitexpire(p); 930 else 931 realitexpire_reset_callout(p, NULL); 932 } 933 934 if (p->p_itimers != NULL) { 935 for (id = 3; id < TIMER_MAX; id++) { 936 it = p->p_itimers->its_timers[id]; 937 if (it == NULL) 938 continue; 939 if ((it->it_flags & ITF_PSTOPPED) != 0) { 940 ITIMER_LOCK(it); 941 if ((it->it_flags & ITF_PSTOPPED) != 0) { 942 it->it_flags &= ~ITF_PSTOPPED; 943 if ((it->it_flags & ITF_DELETING) == 0) 944 realtimer_expire_l(it, true); 945 } 946 ITIMER_UNLOCK(it); 947 } 948 } 949 } 950 } 951 952 /* 953 * Real interval timer expired: 954 * send process whose timer expired an alarm signal. 955 * If time is not set up to reload, then just return. 956 * Else compute next time timer should go off which is > current time. 957 * This is where delay in processing this timeout causes multiple 958 * SIGALRM calls to be compressed into one. 959 * tvtohz() always adds 1 to allow for the time until the next clock 960 * interrupt being strictly less than 1 clock tick, but we don't want 961 * that here since we want to appear to be in sync with the clock 962 * interrupt even when we're delayed. 963 */ 964 static void 965 realitexpire(void *arg) 966 { 967 struct proc *p; 968 struct timeval ctv; 969 sbintime_t isbt; 970 971 p = (struct proc *)arg; 972 kern_psignal(p, SIGALRM); 973 if (!timevalisset(&p->p_realtimer.it_interval)) { 974 timevalclear(&p->p_realtimer.it_value); 975 return; 976 } 977 978 isbt = tvtosbt(p->p_realtimer.it_interval); 979 if (isbt >= sbt_timethreshold) 980 getmicrouptime(&ctv); 981 else 982 microuptime(&ctv); 983 do { 984 timevaladd(&p->p_realtimer.it_value, 985 &p->p_realtimer.it_interval); 986 } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=)); 987 988 if (P_SHOULDSTOP(p) || P_KILLED(p)) { 989 p->p_flag2 |= P2_ITSTOPPED; 990 return; 991 } 992 993 p->p_flag2 &= ~P2_ITSTOPPED; 994 realitexpire_reset_callout(p, &isbt); 995 } 996 997 /* 998 * Check that a proposed value to load into the .it_value or 999 * .it_interval part of an interval timer is acceptable, and 1000 * fix it to have at least minimal value (i.e. if it is less 1001 * than the resolution of the clock, round it up.) 1002 */ 1003 int 1004 itimerfix(struct timeval *tv) 1005 { 1006 1007 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000) 1008 return (EINVAL); 1009 if (tv->tv_sec == 0 && tv->tv_usec != 0 && 1010 tv->tv_usec < (u_int)tick / 16) 1011 tv->tv_usec = (u_int)tick / 16; 1012 return (0); 1013 } 1014 1015 /* 1016 * Decrement an interval timer by a specified number 1017 * of microseconds, which must be less than a second, 1018 * i.e. < 1000000. If the timer expires, then reload 1019 * it. In this case, carry over (usec - old value) to 1020 * reduce the value reloaded into the timer so that 1021 * the timer does not drift. This routine assumes 1022 * that it is called in a context where the timers 1023 * on which it is operating cannot change in value. 1024 */ 1025 int 1026 itimerdecr(struct itimerval *itp, int usec) 1027 { 1028 1029 if (itp->it_value.tv_usec < usec) { 1030 if (itp->it_value.tv_sec == 0) { 1031 /* expired, and already in next interval */ 1032 usec -= itp->it_value.tv_usec; 1033 goto expire; 1034 } 1035 itp->it_value.tv_usec += 1000000; 1036 itp->it_value.tv_sec--; 1037 } 1038 itp->it_value.tv_usec -= usec; 1039 usec = 0; 1040 if (timevalisset(&itp->it_value)) 1041 return (1); 1042 /* expired, exactly at end of interval */ 1043 expire: 1044 if (timevalisset(&itp->it_interval)) { 1045 itp->it_value = itp->it_interval; 1046 itp->it_value.tv_usec -= usec; 1047 if (itp->it_value.tv_usec < 0) { 1048 itp->it_value.tv_usec += 1000000; 1049 itp->it_value.tv_sec--; 1050 } 1051 } else 1052 itp->it_value.tv_usec = 0; /* sec is already 0 */ 1053 return (0); 1054 } 1055 1056 /* 1057 * Add and subtract routines for timevals. 1058 * N.B.: subtract routine doesn't deal with 1059 * results which are before the beginning, 1060 * it just gets very confused in this case. 1061 * Caveat emptor. 1062 */ 1063 void 1064 timevaladd(struct timeval *t1, const struct timeval *t2) 1065 { 1066 1067 t1->tv_sec += t2->tv_sec; 1068 t1->tv_usec += t2->tv_usec; 1069 timevalfix(t1); 1070 } 1071 1072 void 1073 timevalsub(struct timeval *t1, const struct timeval *t2) 1074 { 1075 1076 t1->tv_sec -= t2->tv_sec; 1077 t1->tv_usec -= t2->tv_usec; 1078 timevalfix(t1); 1079 } 1080 1081 static void 1082 timevalfix(struct timeval *t1) 1083 { 1084 1085 if (t1->tv_usec < 0) { 1086 t1->tv_sec--; 1087 t1->tv_usec += 1000000; 1088 } 1089 if (t1->tv_usec >= 1000000) { 1090 t1->tv_sec++; 1091 t1->tv_usec -= 1000000; 1092 } 1093 } 1094 1095 /* 1096 * ratecheck(): simple time-based rate-limit checking. 1097 */ 1098 int 1099 ratecheck(struct timeval *lasttime, const struct timeval *mininterval) 1100 { 1101 struct timeval tv, delta; 1102 int rv = 0; 1103 1104 getmicrouptime(&tv); /* NB: 10ms precision */ 1105 delta = tv; 1106 timevalsub(&delta, lasttime); 1107 1108 /* 1109 * check for 0,0 is so that the message will be seen at least once, 1110 * even if interval is huge. 1111 */ 1112 if (timevalcmp(&delta, mininterval, >=) || 1113 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { 1114 *lasttime = tv; 1115 rv = 1; 1116 } 1117 1118 return (rv); 1119 } 1120 1121 /* 1122 * eventratecheck(): events per second limitation. 1123 * 1124 * Return 0 if the limit is to be enforced (e.g. the caller 1125 * should ignore the event because of the rate limitation). 1126 * 1127 * maxeps of 0 always causes zero to be returned. maxeps of -1 1128 * always causes 1 to be returned; this effectively defeats rate 1129 * limiting. 1130 * 1131 * Note that we maintain the struct timeval for compatibility 1132 * with other bsd systems. We reuse the storage and just monitor 1133 * clock ticks for minimal overhead. 1134 */ 1135 int 1136 eventratecheck(struct timeval *lasttime, int *cureps, int maxeps) 1137 { 1138 int now; 1139 1140 /* 1141 * Reset the last time and counter if this is the first call 1142 * or more than a second has passed since the last update of 1143 * lasttime. 1144 */ 1145 now = ticks; 1146 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) { 1147 lasttime->tv_sec = now; 1148 *cureps = 1; 1149 return (maxeps != 0); 1150 } else { 1151 (*cureps)++; /* NB: ignore potential overflow */ 1152 return (maxeps < 0 || *cureps <= maxeps); 1153 } 1154 } 1155 1156 static void 1157 itimer_start(void) 1158 { 1159 static const struct kclock rt_clock = { 1160 .timer_create = realtimer_create, 1161 .timer_delete = realtimer_delete, 1162 .timer_settime = realtimer_settime, 1163 .timer_gettime = realtimer_gettime, 1164 }; 1165 1166 itimer_zone = uma_zcreate("itimer", sizeof(struct itimer), 1167 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0); 1168 register_posix_clock(CLOCK_REALTIME, &rt_clock); 1169 register_posix_clock(CLOCK_MONOTONIC, &rt_clock); 1170 p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L); 1171 p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX); 1172 p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX); 1173 } 1174 1175 static int 1176 register_posix_clock(int clockid, const struct kclock *clk) 1177 { 1178 if ((unsigned)clockid >= MAX_CLOCKS) { 1179 printf("%s: invalid clockid\n", __func__); 1180 return (0); 1181 } 1182 posix_clocks[clockid] = *clk; 1183 return (1); 1184 } 1185 1186 static int 1187 itimer_init(void *mem, int size, int flags) 1188 { 1189 struct itimer *it; 1190 1191 it = (struct itimer *)mem; 1192 mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF); 1193 return (0); 1194 } 1195 1196 static void 1197 itimer_fini(void *mem, int size) 1198 { 1199 struct itimer *it; 1200 1201 it = (struct itimer *)mem; 1202 mtx_destroy(&it->it_mtx); 1203 } 1204 1205 static void 1206 itimer_enter(struct itimer *it) 1207 { 1208 1209 mtx_assert(&it->it_mtx, MA_OWNED); 1210 it->it_usecount++; 1211 } 1212 1213 static void 1214 itimer_leave(struct itimer *it) 1215 { 1216 1217 mtx_assert(&it->it_mtx, MA_OWNED); 1218 KASSERT(it->it_usecount > 0, ("invalid it_usecount")); 1219 1220 if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0) 1221 wakeup(it); 1222 } 1223 1224 #ifndef _SYS_SYSPROTO_H_ 1225 struct ktimer_create_args { 1226 clockid_t clock_id; 1227 struct sigevent * evp; 1228 int * timerid; 1229 }; 1230 #endif 1231 int 1232 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap) 1233 { 1234 struct sigevent *evp, ev; 1235 int id; 1236 int error; 1237 1238 if (uap->evp == NULL) { 1239 evp = NULL; 1240 } else { 1241 error = copyin(uap->evp, &ev, sizeof(ev)); 1242 if (error != 0) 1243 return (error); 1244 evp = &ev; 1245 } 1246 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 1247 if (error == 0) { 1248 error = copyout(&id, uap->timerid, sizeof(int)); 1249 if (error != 0) 1250 kern_ktimer_delete(td, id); 1251 } 1252 return (error); 1253 } 1254 1255 int 1256 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp, 1257 int *timerid, int preset_id) 1258 { 1259 struct proc *p = td->td_proc; 1260 struct itimer *it; 1261 int id; 1262 int error; 1263 1264 if (clock_id < 0 || clock_id >= MAX_CLOCKS) 1265 return (EINVAL); 1266 1267 if (posix_clocks[clock_id].timer_create == NULL) 1268 return (EINVAL); 1269 1270 if (evp != NULL) { 1271 if (evp->sigev_notify != SIGEV_NONE && 1272 evp->sigev_notify != SIGEV_SIGNAL && 1273 evp->sigev_notify != SIGEV_THREAD_ID) 1274 return (EINVAL); 1275 if ((evp->sigev_notify == SIGEV_SIGNAL || 1276 evp->sigev_notify == SIGEV_THREAD_ID) && 1277 !_SIG_VALID(evp->sigev_signo)) 1278 return (EINVAL); 1279 } 1280 1281 if (p->p_itimers == NULL) 1282 itimers_alloc(p); 1283 1284 it = uma_zalloc(itimer_zone, M_WAITOK); 1285 it->it_flags = 0; 1286 it->it_usecount = 0; 1287 timespecclear(&it->it_time.it_value); 1288 timespecclear(&it->it_time.it_interval); 1289 it->it_overrun = 0; 1290 it->it_overrun_last = 0; 1291 it->it_clockid = clock_id; 1292 it->it_proc = p; 1293 ksiginfo_init(&it->it_ksi); 1294 it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT; 1295 error = CLOCK_CALL(clock_id, timer_create, (it)); 1296 if (error != 0) 1297 goto out; 1298 1299 PROC_LOCK(p); 1300 if (preset_id != -1) { 1301 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id")); 1302 id = preset_id; 1303 if (p->p_itimers->its_timers[id] != NULL) { 1304 PROC_UNLOCK(p); 1305 error = 0; 1306 goto out; 1307 } 1308 } else { 1309 /* 1310 * Find a free timer slot, skipping those reserved 1311 * for setitimer(). 1312 */ 1313 for (id = 3; id < TIMER_MAX; id++) 1314 if (p->p_itimers->its_timers[id] == NULL) 1315 break; 1316 if (id == TIMER_MAX) { 1317 PROC_UNLOCK(p); 1318 error = EAGAIN; 1319 goto out; 1320 } 1321 } 1322 p->p_itimers->its_timers[id] = it; 1323 if (evp != NULL) 1324 it->it_sigev = *evp; 1325 else { 1326 it->it_sigev.sigev_notify = SIGEV_SIGNAL; 1327 switch (clock_id) { 1328 default: 1329 case CLOCK_REALTIME: 1330 it->it_sigev.sigev_signo = SIGALRM; 1331 break; 1332 case CLOCK_VIRTUAL: 1333 it->it_sigev.sigev_signo = SIGVTALRM; 1334 break; 1335 case CLOCK_PROF: 1336 it->it_sigev.sigev_signo = SIGPROF; 1337 break; 1338 } 1339 it->it_sigev.sigev_value.sival_int = id; 1340 } 1341 1342 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1343 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1344 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo; 1345 it->it_ksi.ksi_code = SI_TIMER; 1346 it->it_ksi.ksi_value = it->it_sigev.sigev_value; 1347 it->it_ksi.ksi_timerid = id; 1348 } 1349 PROC_UNLOCK(p); 1350 *timerid = id; 1351 return (0); 1352 1353 out: 1354 ITIMER_LOCK(it); 1355 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1356 ITIMER_UNLOCK(it); 1357 uma_zfree(itimer_zone, it); 1358 return (error); 1359 } 1360 1361 #ifndef _SYS_SYSPROTO_H_ 1362 struct ktimer_delete_args { 1363 int timerid; 1364 }; 1365 #endif 1366 int 1367 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap) 1368 { 1369 1370 return (kern_ktimer_delete(td, uap->timerid)); 1371 } 1372 1373 static struct itimer * 1374 itimer_find(struct proc *p, int timerid) 1375 { 1376 struct itimer *it; 1377 1378 PROC_LOCK_ASSERT(p, MA_OWNED); 1379 if ((p->p_itimers == NULL) || 1380 (timerid < 0) || (timerid >= TIMER_MAX) || 1381 (it = p->p_itimers->its_timers[timerid]) == NULL) { 1382 return (NULL); 1383 } 1384 ITIMER_LOCK(it); 1385 if ((it->it_flags & ITF_DELETING) != 0) { 1386 ITIMER_UNLOCK(it); 1387 it = NULL; 1388 } 1389 return (it); 1390 } 1391 1392 int 1393 kern_ktimer_delete(struct thread *td, int timerid) 1394 { 1395 struct proc *p = td->td_proc; 1396 struct itimer *it; 1397 1398 PROC_LOCK(p); 1399 it = itimer_find(p, timerid); 1400 if (it == NULL) { 1401 PROC_UNLOCK(p); 1402 return (EINVAL); 1403 } 1404 PROC_UNLOCK(p); 1405 1406 it->it_flags |= ITF_DELETING; 1407 while (it->it_usecount > 0) { 1408 it->it_flags |= ITF_WANTED; 1409 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0); 1410 } 1411 it->it_flags &= ~ITF_WANTED; 1412 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1413 ITIMER_UNLOCK(it); 1414 1415 PROC_LOCK(p); 1416 if (KSI_ONQ(&it->it_ksi)) 1417 sigqueue_take(&it->it_ksi); 1418 p->p_itimers->its_timers[timerid] = NULL; 1419 PROC_UNLOCK(p); 1420 uma_zfree(itimer_zone, it); 1421 return (0); 1422 } 1423 1424 #ifndef _SYS_SYSPROTO_H_ 1425 struct ktimer_settime_args { 1426 int timerid; 1427 int flags; 1428 const struct itimerspec * value; 1429 struct itimerspec * ovalue; 1430 }; 1431 #endif 1432 int 1433 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap) 1434 { 1435 struct itimerspec val, oval, *ovalp; 1436 int error; 1437 1438 error = copyin(uap->value, &val, sizeof(val)); 1439 if (error != 0) 1440 return (error); 1441 ovalp = uap->ovalue != NULL ? &oval : NULL; 1442 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 1443 if (error == 0 && uap->ovalue != NULL) 1444 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp)); 1445 return (error); 1446 } 1447 1448 int 1449 kern_ktimer_settime(struct thread *td, int timer_id, int flags, 1450 struct itimerspec *val, struct itimerspec *oval) 1451 { 1452 struct proc *p; 1453 struct itimer *it; 1454 int error; 1455 1456 p = td->td_proc; 1457 PROC_LOCK(p); 1458 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1459 PROC_UNLOCK(p); 1460 error = EINVAL; 1461 } else { 1462 PROC_UNLOCK(p); 1463 itimer_enter(it); 1464 error = CLOCK_CALL(it->it_clockid, timer_settime, (it, 1465 flags, val, oval)); 1466 itimer_leave(it); 1467 ITIMER_UNLOCK(it); 1468 } 1469 return (error); 1470 } 1471 1472 #ifndef _SYS_SYSPROTO_H_ 1473 struct ktimer_gettime_args { 1474 int timerid; 1475 struct itimerspec * value; 1476 }; 1477 #endif 1478 int 1479 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap) 1480 { 1481 struct itimerspec val; 1482 int error; 1483 1484 error = kern_ktimer_gettime(td, uap->timerid, &val); 1485 if (error == 0) 1486 error = copyout(&val, uap->value, sizeof(val)); 1487 return (error); 1488 } 1489 1490 int 1491 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val) 1492 { 1493 struct proc *p; 1494 struct itimer *it; 1495 int error; 1496 1497 p = td->td_proc; 1498 PROC_LOCK(p); 1499 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1500 PROC_UNLOCK(p); 1501 error = EINVAL; 1502 } else { 1503 PROC_UNLOCK(p); 1504 itimer_enter(it); 1505 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val)); 1506 itimer_leave(it); 1507 ITIMER_UNLOCK(it); 1508 } 1509 return (error); 1510 } 1511 1512 #ifndef _SYS_SYSPROTO_H_ 1513 struct timer_getoverrun_args { 1514 int timerid; 1515 }; 1516 #endif 1517 int 1518 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap) 1519 { 1520 1521 return (kern_ktimer_getoverrun(td, uap->timerid)); 1522 } 1523 1524 int 1525 kern_ktimer_getoverrun(struct thread *td, int timer_id) 1526 { 1527 struct proc *p = td->td_proc; 1528 struct itimer *it; 1529 int error ; 1530 1531 PROC_LOCK(p); 1532 if (timer_id < 3 || 1533 (it = itimer_find(p, timer_id)) == NULL) { 1534 PROC_UNLOCK(p); 1535 error = EINVAL; 1536 } else { 1537 td->td_retval[0] = it->it_overrun_last; 1538 ITIMER_UNLOCK(it); 1539 PROC_UNLOCK(p); 1540 error = 0; 1541 } 1542 return (error); 1543 } 1544 1545 static int 1546 realtimer_create(struct itimer *it) 1547 { 1548 callout_init_mtx(&it->it_callout, &it->it_mtx, 0); 1549 return (0); 1550 } 1551 1552 static int 1553 realtimer_delete(struct itimer *it) 1554 { 1555 mtx_assert(&it->it_mtx, MA_OWNED); 1556 1557 /* 1558 * clear timer's value and interval to tell realtimer_expire 1559 * to not rearm the timer. 1560 */ 1561 timespecclear(&it->it_time.it_value); 1562 timespecclear(&it->it_time.it_interval); 1563 ITIMER_UNLOCK(it); 1564 callout_drain(&it->it_callout); 1565 ITIMER_LOCK(it); 1566 return (0); 1567 } 1568 1569 static int 1570 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue) 1571 { 1572 struct timespec cts; 1573 1574 mtx_assert(&it->it_mtx, MA_OWNED); 1575 1576 realtimer_clocktime(it->it_clockid, &cts); 1577 *ovalue = it->it_time; 1578 if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) { 1579 timespecsub(&ovalue->it_value, &cts, &ovalue->it_value); 1580 if (ovalue->it_value.tv_sec < 0 || 1581 (ovalue->it_value.tv_sec == 0 && 1582 ovalue->it_value.tv_nsec == 0)) { 1583 ovalue->it_value.tv_sec = 0; 1584 ovalue->it_value.tv_nsec = 1; 1585 } 1586 } 1587 return (0); 1588 } 1589 1590 static int 1591 realtimer_settime(struct itimer *it, int flags, struct itimerspec *value, 1592 struct itimerspec *ovalue) 1593 { 1594 struct timespec cts, ts; 1595 struct timeval tv; 1596 struct itimerspec val; 1597 1598 mtx_assert(&it->it_mtx, MA_OWNED); 1599 1600 val = *value; 1601 if (itimespecfix(&val.it_value)) 1602 return (EINVAL); 1603 1604 if (timespecisset(&val.it_value)) { 1605 if (itimespecfix(&val.it_interval)) 1606 return (EINVAL); 1607 } else { 1608 timespecclear(&val.it_interval); 1609 } 1610 1611 if (ovalue != NULL) 1612 realtimer_gettime(it, ovalue); 1613 1614 it->it_time = val; 1615 if (timespecisset(&val.it_value)) { 1616 realtimer_clocktime(it->it_clockid, &cts); 1617 ts = val.it_value; 1618 if ((flags & TIMER_ABSTIME) == 0) { 1619 /* Convert to absolute time. */ 1620 timespecadd(&it->it_time.it_value, &cts, 1621 &it->it_time.it_value); 1622 } else { 1623 timespecsub(&ts, &cts, &ts); 1624 /* 1625 * We don't care if ts is negative, tztohz will 1626 * fix it. 1627 */ 1628 } 1629 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1630 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire, 1631 it); 1632 } else { 1633 callout_stop(&it->it_callout); 1634 } 1635 1636 return (0); 1637 } 1638 1639 static void 1640 realtimer_clocktime(clockid_t id, struct timespec *ts) 1641 { 1642 if (id == CLOCK_REALTIME) 1643 getnanotime(ts); 1644 else /* CLOCK_MONOTONIC */ 1645 getnanouptime(ts); 1646 } 1647 1648 int 1649 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi) 1650 { 1651 struct itimer *it; 1652 1653 PROC_LOCK_ASSERT(p, MA_OWNED); 1654 it = itimer_find(p, timerid); 1655 if (it != NULL) { 1656 ksi->ksi_overrun = it->it_overrun; 1657 it->it_overrun_last = it->it_overrun; 1658 it->it_overrun = 0; 1659 ITIMER_UNLOCK(it); 1660 return (0); 1661 } 1662 return (EINVAL); 1663 } 1664 1665 static int 1666 itimespecfix(struct timespec *ts) 1667 { 1668 1669 if (!timespecvalid_interval(ts)) 1670 return (EINVAL); 1671 if ((UINT64_MAX - ts->tv_nsec) / NS_PER_SEC < ts->tv_sec) 1672 return (EINVAL); 1673 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000) 1674 ts->tv_nsec = tick * 1000; 1675 return (0); 1676 } 1677 1678 #define timespectons(tsp) \ 1679 ((uint64_t)(tsp)->tv_sec * NS_PER_SEC + (tsp)->tv_nsec) 1680 #define timespecfromns(ns) (struct timespec){ \ 1681 .tv_sec = (ns) / NS_PER_SEC, \ 1682 .tv_nsec = (ns) % NS_PER_SEC \ 1683 } 1684 1685 static void 1686 realtimer_expire_l(struct itimer *it, bool proc_locked) 1687 { 1688 struct timespec cts, ts; 1689 struct timeval tv; 1690 struct proc *p; 1691 uint64_t interval, now, overruns, value; 1692 1693 realtimer_clocktime(it->it_clockid, &cts); 1694 /* Only fire if time is reached. */ 1695 if (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1696 if (timespecisset(&it->it_time.it_interval)) { 1697 timespecadd(&it->it_time.it_value, 1698 &it->it_time.it_interval, 1699 &it->it_time.it_value); 1700 1701 interval = timespectons(&it->it_time.it_interval); 1702 value = timespectons(&it->it_time.it_value); 1703 now = timespectons(&cts); 1704 1705 if (now >= value) { 1706 /* 1707 * We missed at least one period. 1708 */ 1709 overruns = howmany(now - value + 1, interval); 1710 if (it->it_overrun + overruns >= 1711 it->it_overrun && 1712 it->it_overrun + overruns <= INT_MAX) { 1713 it->it_overrun += (int)overruns; 1714 } else { 1715 it->it_overrun = INT_MAX; 1716 it->it_ksi.ksi_errno = ERANGE; 1717 } 1718 value = 1719 now + interval - (now - value) % interval; 1720 it->it_time.it_value = timespecfromns(value); 1721 } 1722 } else { 1723 /* single shot timer ? */ 1724 timespecclear(&it->it_time.it_value); 1725 } 1726 1727 p = it->it_proc; 1728 if (timespecisset(&it->it_time.it_value)) { 1729 if (P_SHOULDSTOP(p) || P_KILLED(p)) { 1730 it->it_flags |= ITF_PSTOPPED; 1731 } else { 1732 timespecsub(&it->it_time.it_value, &cts, &ts); 1733 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1734 callout_reset(&it->it_callout, tvtohz(&tv), 1735 realtimer_expire, it); 1736 } 1737 } 1738 1739 itimer_enter(it); 1740 ITIMER_UNLOCK(it); 1741 if (proc_locked) 1742 PROC_UNLOCK(p); 1743 itimer_fire(it); 1744 if (proc_locked) 1745 PROC_LOCK(p); 1746 ITIMER_LOCK(it); 1747 itimer_leave(it); 1748 } else if (timespecisset(&it->it_time.it_value)) { 1749 p = it->it_proc; 1750 if (P_SHOULDSTOP(p) || P_KILLED(p)) { 1751 it->it_flags |= ITF_PSTOPPED; 1752 } else { 1753 ts = it->it_time.it_value; 1754 timespecsub(&ts, &cts, &ts); 1755 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1756 callout_reset(&it->it_callout, tvtohz(&tv), 1757 realtimer_expire, it); 1758 } 1759 } 1760 } 1761 1762 /* Timeout callback for realtime timer */ 1763 static void 1764 realtimer_expire(void *arg) 1765 { 1766 realtimer_expire_l(arg, false); 1767 } 1768 1769 static void 1770 itimer_fire(struct itimer *it) 1771 { 1772 struct proc *p = it->it_proc; 1773 struct thread *td; 1774 1775 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1776 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1777 if (sigev_findtd(p, &it->it_sigev, &td) != 0) { 1778 ITIMER_LOCK(it); 1779 timespecclear(&it->it_time.it_value); 1780 timespecclear(&it->it_time.it_interval); 1781 callout_stop(&it->it_callout); 1782 ITIMER_UNLOCK(it); 1783 return; 1784 } 1785 if (!KSI_ONQ(&it->it_ksi)) { 1786 it->it_ksi.ksi_errno = 0; 1787 ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev); 1788 tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi); 1789 } else { 1790 if (it->it_overrun < INT_MAX) 1791 it->it_overrun++; 1792 else 1793 it->it_ksi.ksi_errno = ERANGE; 1794 } 1795 PROC_UNLOCK(p); 1796 } 1797 } 1798 1799 static void 1800 itimers_alloc(struct proc *p) 1801 { 1802 struct itimers *its; 1803 1804 its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO); 1805 PROC_LOCK(p); 1806 if (p->p_itimers == NULL) { 1807 p->p_itimers = its; 1808 PROC_UNLOCK(p); 1809 } 1810 else { 1811 PROC_UNLOCK(p); 1812 free(its, M_SUBPROC); 1813 } 1814 } 1815 1816 /* Clean up timers when some process events are being triggered. */ 1817 static void 1818 itimers_event_exit_exec(int start_idx, struct proc *p) 1819 { 1820 struct itimers *its; 1821 struct itimer *it; 1822 int i; 1823 1824 its = p->p_itimers; 1825 if (its == NULL) 1826 return; 1827 1828 for (i = start_idx; i < TIMER_MAX; ++i) { 1829 if ((it = its->its_timers[i]) != NULL) 1830 kern_ktimer_delete(curthread, i); 1831 } 1832 if (its->its_timers[0] == NULL && its->its_timers[1] == NULL && 1833 its->its_timers[2] == NULL) { 1834 /* Synchronize with itimer_proc_continue(). */ 1835 PROC_LOCK(p); 1836 p->p_itimers = NULL; 1837 PROC_UNLOCK(p); 1838 free(its, M_SUBPROC); 1839 } 1840 } 1841 1842 void 1843 itimers_exec(struct proc *p) 1844 { 1845 /* 1846 * According to susv3, XSI interval timers should be inherited 1847 * by new image. 1848 */ 1849 itimers_event_exit_exec(3, p); 1850 } 1851 1852 void 1853 itimers_exit(struct proc *p) 1854 { 1855 itimers_event_exit_exec(0, p); 1856 } 1857