1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/limits.h> 38 #include <sys/clock.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/sysproto.h> 42 #include <sys/eventhandler.h> 43 #include <sys/resourcevar.h> 44 #include <sys/signalvar.h> 45 #include <sys/kernel.h> 46 #include <sys/syscallsubr.h> 47 #include <sys/sysctl.h> 48 #include <sys/sysent.h> 49 #include <sys/priv.h> 50 #include <sys/proc.h> 51 #include <sys/posix4.h> 52 #include <sys/time.h> 53 #include <sys/timers.h> 54 #include <sys/timetc.h> 55 #include <sys/vnode.h> 56 57 #include <vm/vm.h> 58 #include <vm/vm_extern.h> 59 60 #define MAX_CLOCKS (CLOCK_MONOTONIC+1) 61 62 static struct kclock posix_clocks[MAX_CLOCKS]; 63 static uma_zone_t itimer_zone = NULL; 64 65 /* 66 * Time of day and interval timer support. 67 * 68 * These routines provide the kernel entry points to get and set 69 * the time-of-day and per-process interval timers. Subroutines 70 * here provide support for adding and subtracting timeval structures 71 * and decrementing interval timers, optionally reloading the interval 72 * timers when they expire. 73 */ 74 75 static int settime(struct thread *, struct timeval *); 76 static void timevalfix(struct timeval *); 77 static void no_lease_updatetime(int); 78 79 static void itimer_start(void); 80 static int itimer_init(void *, int, int); 81 static void itimer_fini(void *, int); 82 static void itimer_enter(struct itimer *); 83 static void itimer_leave(struct itimer *); 84 static struct itimer *itimer_find(struct proc *, int); 85 static void itimers_alloc(struct proc *); 86 static void itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp); 87 static void itimers_event_hook_exit(void *arg, struct proc *p); 88 static int realtimer_create(struct itimer *); 89 static int realtimer_gettime(struct itimer *, struct itimerspec *); 90 static int realtimer_settime(struct itimer *, int, 91 struct itimerspec *, struct itimerspec *); 92 static int realtimer_delete(struct itimer *); 93 static void realtimer_clocktime(clockid_t, struct timespec *); 94 static void realtimer_expire(void *); 95 static int kern_timer_create(struct thread *, clockid_t, 96 struct sigevent *, int *, int); 97 static int kern_timer_delete(struct thread *, int); 98 99 int register_posix_clock(int, struct kclock *); 100 void itimer_fire(struct itimer *it); 101 int itimespecfix(struct timespec *ts); 102 103 #define CLOCK_CALL(clock, call, arglist) \ 104 ((*posix_clocks[clock].call) arglist) 105 106 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL); 107 108 109 static void 110 no_lease_updatetime(deltat) 111 int deltat; 112 { 113 } 114 115 void (*lease_updatetime)(int) = no_lease_updatetime; 116 117 static int 118 settime(struct thread *td, struct timeval *tv) 119 { 120 struct timeval delta, tv1, tv2; 121 static struct timeval maxtime, laststep; 122 struct timespec ts; 123 int s; 124 125 s = splclock(); 126 microtime(&tv1); 127 delta = *tv; 128 timevalsub(&delta, &tv1); 129 130 /* 131 * If the system is secure, we do not allow the time to be 132 * set to a value earlier than 1 second less than the highest 133 * time we have yet seen. The worst a miscreant can do in 134 * this circumstance is "freeze" time. He couldn't go 135 * back to the past. 136 * 137 * We similarly do not allow the clock to be stepped more 138 * than one second, nor more than once per second. This allows 139 * a miscreant to make the clock march double-time, but no worse. 140 */ 141 if (securelevel_gt(td->td_ucred, 1) != 0) { 142 if (delta.tv_sec < 0 || delta.tv_usec < 0) { 143 /* 144 * Update maxtime to latest time we've seen. 145 */ 146 if (tv1.tv_sec > maxtime.tv_sec) 147 maxtime = tv1; 148 tv2 = *tv; 149 timevalsub(&tv2, &maxtime); 150 if (tv2.tv_sec < -1) { 151 tv->tv_sec = maxtime.tv_sec - 1; 152 printf("Time adjustment clamped to -1 second\n"); 153 } 154 } else { 155 if (tv1.tv_sec == laststep.tv_sec) { 156 splx(s); 157 return (EPERM); 158 } 159 if (delta.tv_sec > 1) { 160 tv->tv_sec = tv1.tv_sec + 1; 161 printf("Time adjustment clamped to +1 second\n"); 162 } 163 laststep = *tv; 164 } 165 } 166 167 ts.tv_sec = tv->tv_sec; 168 ts.tv_nsec = tv->tv_usec * 1000; 169 mtx_lock(&Giant); 170 tc_setclock(&ts); 171 (void) splsoftclock(); 172 lease_updatetime(delta.tv_sec); 173 splx(s); 174 resettodr(); 175 mtx_unlock(&Giant); 176 return (0); 177 } 178 179 #ifndef _SYS_SYSPROTO_H_ 180 struct clock_gettime_args { 181 clockid_t clock_id; 182 struct timespec *tp; 183 }; 184 #endif 185 /* ARGSUSED */ 186 int 187 clock_gettime(struct thread *td, struct clock_gettime_args *uap) 188 { 189 struct timespec ats; 190 int error; 191 192 error = kern_clock_gettime(td, uap->clock_id, &ats); 193 if (error == 0) 194 error = copyout(&ats, uap->tp, sizeof(ats)); 195 196 return (error); 197 } 198 199 int 200 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats) 201 { 202 struct timeval sys, user; 203 struct proc *p; 204 205 p = td->td_proc; 206 switch (clock_id) { 207 case CLOCK_REALTIME: /* Default to precise. */ 208 case CLOCK_REALTIME_PRECISE: 209 nanotime(ats); 210 break; 211 case CLOCK_REALTIME_FAST: 212 getnanotime(ats); 213 break; 214 case CLOCK_VIRTUAL: 215 PROC_LOCK(p); 216 calcru(p, &user, &sys); 217 PROC_UNLOCK(p); 218 TIMEVAL_TO_TIMESPEC(&user, ats); 219 break; 220 case CLOCK_PROF: 221 PROC_LOCK(p); 222 calcru(p, &user, &sys); 223 PROC_UNLOCK(p); 224 timevaladd(&user, &sys); 225 TIMEVAL_TO_TIMESPEC(&user, ats); 226 break; 227 case CLOCK_MONOTONIC: /* Default to precise. */ 228 case CLOCK_MONOTONIC_PRECISE: 229 case CLOCK_UPTIME: 230 case CLOCK_UPTIME_PRECISE: 231 nanouptime(ats); 232 break; 233 case CLOCK_UPTIME_FAST: 234 case CLOCK_MONOTONIC_FAST: 235 getnanouptime(ats); 236 break; 237 case CLOCK_SECOND: 238 ats->tv_sec = time_second; 239 ats->tv_nsec = 0; 240 break; 241 default: 242 return (EINVAL); 243 } 244 return (0); 245 } 246 247 #ifndef _SYS_SYSPROTO_H_ 248 struct clock_settime_args { 249 clockid_t clock_id; 250 const struct timespec *tp; 251 }; 252 #endif 253 /* ARGSUSED */ 254 int 255 clock_settime(struct thread *td, struct clock_settime_args *uap) 256 { 257 struct timespec ats; 258 int error; 259 260 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0) 261 return (error); 262 return (kern_clock_settime(td, uap->clock_id, &ats)); 263 } 264 265 int 266 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats) 267 { 268 struct timeval atv; 269 int error; 270 271 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 272 return (error); 273 if (clock_id != CLOCK_REALTIME) 274 return (EINVAL); 275 if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000) 276 return (EINVAL); 277 /* XXX Don't convert nsec->usec and back */ 278 TIMESPEC_TO_TIMEVAL(&atv, ats); 279 error = settime(td, &atv); 280 return (error); 281 } 282 283 #ifndef _SYS_SYSPROTO_H_ 284 struct clock_getres_args { 285 clockid_t clock_id; 286 struct timespec *tp; 287 }; 288 #endif 289 int 290 clock_getres(struct thread *td, struct clock_getres_args *uap) 291 { 292 struct timespec ts; 293 int error; 294 295 if (uap->tp == NULL) 296 return (0); 297 298 error = kern_clock_getres(td, uap->clock_id, &ts); 299 if (error == 0) 300 error = copyout(&ts, uap->tp, sizeof(ts)); 301 return (error); 302 } 303 304 int 305 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts) 306 { 307 308 ts->tv_sec = 0; 309 switch (clock_id) { 310 case CLOCK_REALTIME: 311 case CLOCK_REALTIME_FAST: 312 case CLOCK_REALTIME_PRECISE: 313 case CLOCK_MONOTONIC: 314 case CLOCK_MONOTONIC_FAST: 315 case CLOCK_MONOTONIC_PRECISE: 316 case CLOCK_UPTIME: 317 case CLOCK_UPTIME_FAST: 318 case CLOCK_UPTIME_PRECISE: 319 /* 320 * Round up the result of the division cheaply by adding 1. 321 * Rounding up is especially important if rounding down 322 * would give 0. Perfect rounding is unimportant. 323 */ 324 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1; 325 break; 326 case CLOCK_VIRTUAL: 327 case CLOCK_PROF: 328 /* Accurately round up here because we can do so cheaply. */ 329 ts->tv_nsec = (1000000000 + hz - 1) / hz; 330 break; 331 case CLOCK_SECOND: 332 ts->tv_sec = 1; 333 ts->tv_nsec = 0; 334 break; 335 default: 336 return (EINVAL); 337 } 338 return (0); 339 } 340 341 static int nanowait; 342 343 int 344 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt) 345 { 346 struct timespec ts, ts2, ts3; 347 struct timeval tv; 348 int error; 349 350 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000) 351 return (EINVAL); 352 if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0)) 353 return (0); 354 getnanouptime(&ts); 355 timespecadd(&ts, rqt); 356 TIMESPEC_TO_TIMEVAL(&tv, rqt); 357 for (;;) { 358 error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp", 359 tvtohz(&tv)); 360 getnanouptime(&ts2); 361 if (error != EWOULDBLOCK) { 362 if (error == ERESTART) 363 error = EINTR; 364 if (rmt != NULL) { 365 timespecsub(&ts, &ts2); 366 if (ts.tv_sec < 0) 367 timespecclear(&ts); 368 *rmt = ts; 369 } 370 return (error); 371 } 372 if (timespeccmp(&ts2, &ts, >=)) 373 return (0); 374 ts3 = ts; 375 timespecsub(&ts3, &ts2); 376 TIMESPEC_TO_TIMEVAL(&tv, &ts3); 377 } 378 } 379 380 #ifndef _SYS_SYSPROTO_H_ 381 struct nanosleep_args { 382 struct timespec *rqtp; 383 struct timespec *rmtp; 384 }; 385 #endif 386 /* ARGSUSED */ 387 int 388 nanosleep(struct thread *td, struct nanosleep_args *uap) 389 { 390 struct timespec rmt, rqt; 391 int error; 392 393 error = copyin(uap->rqtp, &rqt, sizeof(rqt)); 394 if (error) 395 return (error); 396 397 if (uap->rmtp && 398 !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE)) 399 return (EFAULT); 400 error = kern_nanosleep(td, &rqt, &rmt); 401 if (error && uap->rmtp) { 402 int error2; 403 404 error2 = copyout(&rmt, uap->rmtp, sizeof(rmt)); 405 if (error2) 406 error = error2; 407 } 408 return (error); 409 } 410 411 #ifndef _SYS_SYSPROTO_H_ 412 struct gettimeofday_args { 413 struct timeval *tp; 414 struct timezone *tzp; 415 }; 416 #endif 417 /* ARGSUSED */ 418 int 419 gettimeofday(struct thread *td, struct gettimeofday_args *uap) 420 { 421 struct timeval atv; 422 struct timezone rtz; 423 int error = 0; 424 425 if (uap->tp) { 426 microtime(&atv); 427 error = copyout(&atv, uap->tp, sizeof (atv)); 428 } 429 if (error == 0 && uap->tzp != NULL) { 430 rtz.tz_minuteswest = tz_minuteswest; 431 rtz.tz_dsttime = tz_dsttime; 432 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 433 } 434 return (error); 435 } 436 437 #ifndef _SYS_SYSPROTO_H_ 438 struct settimeofday_args { 439 struct timeval *tv; 440 struct timezone *tzp; 441 }; 442 #endif 443 /* ARGSUSED */ 444 int 445 settimeofday(struct thread *td, struct settimeofday_args *uap) 446 { 447 struct timeval atv, *tvp; 448 struct timezone atz, *tzp; 449 int error; 450 451 if (uap->tv) { 452 error = copyin(uap->tv, &atv, sizeof(atv)); 453 if (error) 454 return (error); 455 tvp = &atv; 456 } else 457 tvp = NULL; 458 if (uap->tzp) { 459 error = copyin(uap->tzp, &atz, sizeof(atz)); 460 if (error) 461 return (error); 462 tzp = &atz; 463 } else 464 tzp = NULL; 465 return (kern_settimeofday(td, tvp, tzp)); 466 } 467 468 int 469 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp) 470 { 471 int error; 472 473 error = priv_check(td, PRIV_SETTIMEOFDAY); 474 if (error) 475 return (error); 476 /* Verify all parameters before changing time. */ 477 if (tv) { 478 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000) 479 return (EINVAL); 480 error = settime(td, tv); 481 } 482 if (tzp && error == 0) { 483 tz_minuteswest = tzp->tz_minuteswest; 484 tz_dsttime = tzp->tz_dsttime; 485 } 486 return (error); 487 } 488 489 /* 490 * Get value of an interval timer. The process virtual and profiling virtual 491 * time timers are kept in the p_stats area, since they can be swapped out. 492 * These are kept internally in the way they are specified externally: in 493 * time until they expire. 494 * 495 * The real time interval timer is kept in the process table slot for the 496 * process, and its value (it_value) is kept as an absolute time rather than 497 * as a delta, so that it is easy to keep periodic real-time signals from 498 * drifting. 499 * 500 * Virtual time timers are processed in the hardclock() routine of 501 * kern_clock.c. The real time timer is processed by a timeout routine, 502 * called from the softclock() routine. Since a callout may be delayed in 503 * real time due to interrupt processing in the system, it is possible for 504 * the real time timeout routine (realitexpire, given below), to be delayed 505 * in real time past when it is supposed to occur. It does not suffice, 506 * therefore, to reload the real timer .it_value from the real time timers 507 * .it_interval. Rather, we compute the next time in absolute time the timer 508 * should go off. 509 */ 510 #ifndef _SYS_SYSPROTO_H_ 511 struct getitimer_args { 512 u_int which; 513 struct itimerval *itv; 514 }; 515 #endif 516 int 517 getitimer(struct thread *td, struct getitimer_args *uap) 518 { 519 struct itimerval aitv; 520 int error; 521 522 error = kern_getitimer(td, uap->which, &aitv); 523 if (error != 0) 524 return (error); 525 return (copyout(&aitv, uap->itv, sizeof (struct itimerval))); 526 } 527 528 int 529 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv) 530 { 531 struct proc *p = td->td_proc; 532 struct timeval ctv; 533 534 if (which > ITIMER_PROF) 535 return (EINVAL); 536 537 if (which == ITIMER_REAL) { 538 /* 539 * Convert from absolute to relative time in .it_value 540 * part of real time timer. If time for real time timer 541 * has passed return 0, else return difference between 542 * current time and time for the timer to go off. 543 */ 544 PROC_LOCK(p); 545 *aitv = p->p_realtimer; 546 PROC_UNLOCK(p); 547 if (timevalisset(&aitv->it_value)) { 548 getmicrouptime(&ctv); 549 if (timevalcmp(&aitv->it_value, &ctv, <)) 550 timevalclear(&aitv->it_value); 551 else 552 timevalsub(&aitv->it_value, &ctv); 553 } 554 } else { 555 mtx_lock_spin(&sched_lock); 556 *aitv = p->p_stats->p_timer[which]; 557 mtx_unlock_spin(&sched_lock); 558 } 559 return (0); 560 } 561 562 #ifndef _SYS_SYSPROTO_H_ 563 struct setitimer_args { 564 u_int which; 565 struct itimerval *itv, *oitv; 566 }; 567 #endif 568 int 569 setitimer(struct thread *td, struct setitimer_args *uap) 570 { 571 struct itimerval aitv, oitv; 572 int error; 573 574 if (uap->itv == NULL) { 575 uap->itv = uap->oitv; 576 return (getitimer(td, (struct getitimer_args *)uap)); 577 } 578 579 if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval)))) 580 return (error); 581 error = kern_setitimer(td, uap->which, &aitv, &oitv); 582 if (error != 0 || uap->oitv == NULL) 583 return (error); 584 return (copyout(&oitv, uap->oitv, sizeof(struct itimerval))); 585 } 586 587 int 588 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv, 589 struct itimerval *oitv) 590 { 591 struct proc *p = td->td_proc; 592 struct timeval ctv; 593 594 if (aitv == NULL) 595 return (kern_getitimer(td, which, oitv)); 596 597 if (which > ITIMER_PROF) 598 return (EINVAL); 599 if (itimerfix(&aitv->it_value)) 600 return (EINVAL); 601 if (!timevalisset(&aitv->it_value)) 602 timevalclear(&aitv->it_interval); 603 else if (itimerfix(&aitv->it_interval)) 604 return (EINVAL); 605 606 if (which == ITIMER_REAL) { 607 PROC_LOCK(p); 608 if (timevalisset(&p->p_realtimer.it_value)) 609 callout_stop(&p->p_itcallout); 610 getmicrouptime(&ctv); 611 if (timevalisset(&aitv->it_value)) { 612 callout_reset(&p->p_itcallout, tvtohz(&aitv->it_value), 613 realitexpire, p); 614 timevaladd(&aitv->it_value, &ctv); 615 } 616 *oitv = p->p_realtimer; 617 p->p_realtimer = *aitv; 618 PROC_UNLOCK(p); 619 if (timevalisset(&oitv->it_value)) { 620 if (timevalcmp(&oitv->it_value, &ctv, <)) 621 timevalclear(&oitv->it_value); 622 else 623 timevalsub(&oitv->it_value, &ctv); 624 } 625 } else { 626 mtx_lock_spin(&sched_lock); 627 *oitv = p->p_stats->p_timer[which]; 628 p->p_stats->p_timer[which] = *aitv; 629 mtx_unlock_spin(&sched_lock); 630 } 631 return (0); 632 } 633 634 /* 635 * Real interval timer expired: 636 * send process whose timer expired an alarm signal. 637 * If time is not set up to reload, then just return. 638 * Else compute next time timer should go off which is > current time. 639 * This is where delay in processing this timeout causes multiple 640 * SIGALRM calls to be compressed into one. 641 * tvtohz() always adds 1 to allow for the time until the next clock 642 * interrupt being strictly less than 1 clock tick, but we don't want 643 * that here since we want to appear to be in sync with the clock 644 * interrupt even when we're delayed. 645 */ 646 void 647 realitexpire(void *arg) 648 { 649 struct proc *p; 650 struct timeval ctv, ntv; 651 652 p = (struct proc *)arg; 653 PROC_LOCK(p); 654 psignal(p, SIGALRM); 655 if (!timevalisset(&p->p_realtimer.it_interval)) { 656 timevalclear(&p->p_realtimer.it_value); 657 if (p->p_flag & P_WEXIT) 658 wakeup(&p->p_itcallout); 659 PROC_UNLOCK(p); 660 return; 661 } 662 for (;;) { 663 timevaladd(&p->p_realtimer.it_value, 664 &p->p_realtimer.it_interval); 665 getmicrouptime(&ctv); 666 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) { 667 ntv = p->p_realtimer.it_value; 668 timevalsub(&ntv, &ctv); 669 callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1, 670 realitexpire, p); 671 PROC_UNLOCK(p); 672 return; 673 } 674 } 675 /*NOTREACHED*/ 676 } 677 678 /* 679 * Check that a proposed value to load into the .it_value or 680 * .it_interval part of an interval timer is acceptable, and 681 * fix it to have at least minimal value (i.e. if it is less 682 * than the resolution of the clock, round it up.) 683 */ 684 int 685 itimerfix(struct timeval *tv) 686 { 687 688 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000) 689 return (EINVAL); 690 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick) 691 tv->tv_usec = tick; 692 return (0); 693 } 694 695 /* 696 * Decrement an interval timer by a specified number 697 * of microseconds, which must be less than a second, 698 * i.e. < 1000000. If the timer expires, then reload 699 * it. In this case, carry over (usec - old value) to 700 * reduce the value reloaded into the timer so that 701 * the timer does not drift. This routine assumes 702 * that it is called in a context where the timers 703 * on which it is operating cannot change in value. 704 */ 705 int 706 itimerdecr(struct itimerval *itp, int usec) 707 { 708 709 if (itp->it_value.tv_usec < usec) { 710 if (itp->it_value.tv_sec == 0) { 711 /* expired, and already in next interval */ 712 usec -= itp->it_value.tv_usec; 713 goto expire; 714 } 715 itp->it_value.tv_usec += 1000000; 716 itp->it_value.tv_sec--; 717 } 718 itp->it_value.tv_usec -= usec; 719 usec = 0; 720 if (timevalisset(&itp->it_value)) 721 return (1); 722 /* expired, exactly at end of interval */ 723 expire: 724 if (timevalisset(&itp->it_interval)) { 725 itp->it_value = itp->it_interval; 726 itp->it_value.tv_usec -= usec; 727 if (itp->it_value.tv_usec < 0) { 728 itp->it_value.tv_usec += 1000000; 729 itp->it_value.tv_sec--; 730 } 731 } else 732 itp->it_value.tv_usec = 0; /* sec is already 0 */ 733 return (0); 734 } 735 736 /* 737 * Add and subtract routines for timevals. 738 * N.B.: subtract routine doesn't deal with 739 * results which are before the beginning, 740 * it just gets very confused in this case. 741 * Caveat emptor. 742 */ 743 void 744 timevaladd(struct timeval *t1, const struct timeval *t2) 745 { 746 747 t1->tv_sec += t2->tv_sec; 748 t1->tv_usec += t2->tv_usec; 749 timevalfix(t1); 750 } 751 752 void 753 timevalsub(struct timeval *t1, const struct timeval *t2) 754 { 755 756 t1->tv_sec -= t2->tv_sec; 757 t1->tv_usec -= t2->tv_usec; 758 timevalfix(t1); 759 } 760 761 static void 762 timevalfix(struct timeval *t1) 763 { 764 765 if (t1->tv_usec < 0) { 766 t1->tv_sec--; 767 t1->tv_usec += 1000000; 768 } 769 if (t1->tv_usec >= 1000000) { 770 t1->tv_sec++; 771 t1->tv_usec -= 1000000; 772 } 773 } 774 775 /* 776 * ratecheck(): simple time-based rate-limit checking. 777 */ 778 int 779 ratecheck(struct timeval *lasttime, const struct timeval *mininterval) 780 { 781 struct timeval tv, delta; 782 int rv = 0; 783 784 getmicrouptime(&tv); /* NB: 10ms precision */ 785 delta = tv; 786 timevalsub(&delta, lasttime); 787 788 /* 789 * check for 0,0 is so that the message will be seen at least once, 790 * even if interval is huge. 791 */ 792 if (timevalcmp(&delta, mininterval, >=) || 793 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { 794 *lasttime = tv; 795 rv = 1; 796 } 797 798 return (rv); 799 } 800 801 /* 802 * ppsratecheck(): packets (or events) per second limitation. 803 * 804 * Return 0 if the limit is to be enforced (e.g. the caller 805 * should drop a packet because of the rate limitation). 806 * 807 * maxpps of 0 always causes zero to be returned. maxpps of -1 808 * always causes 1 to be returned; this effectively defeats rate 809 * limiting. 810 * 811 * Note that we maintain the struct timeval for compatibility 812 * with other bsd systems. We reuse the storage and just monitor 813 * clock ticks for minimal overhead. 814 */ 815 int 816 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) 817 { 818 int now; 819 820 /* 821 * Reset the last time and counter if this is the first call 822 * or more than a second has passed since the last update of 823 * lasttime. 824 */ 825 now = ticks; 826 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) { 827 lasttime->tv_sec = now; 828 *curpps = 1; 829 return (maxpps != 0); 830 } else { 831 (*curpps)++; /* NB: ignore potential overflow */ 832 return (maxpps < 0 || *curpps < maxpps); 833 } 834 } 835 836 static void 837 itimer_start(void) 838 { 839 struct kclock rt_clock = { 840 .timer_create = realtimer_create, 841 .timer_delete = realtimer_delete, 842 .timer_settime = realtimer_settime, 843 .timer_gettime = realtimer_gettime, 844 .event_hook = NULL 845 }; 846 847 itimer_zone = uma_zcreate("itimer", sizeof(struct itimer), 848 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0); 849 register_posix_clock(CLOCK_REALTIME, &rt_clock); 850 register_posix_clock(CLOCK_MONOTONIC, &rt_clock); 851 p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L); 852 p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX); 853 p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX); 854 EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit, 855 (void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY); 856 EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec, 857 (void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY); 858 } 859 860 int 861 register_posix_clock(int clockid, struct kclock *clk) 862 { 863 if ((unsigned)clockid >= MAX_CLOCKS) { 864 printf("%s: invalid clockid\n", __func__); 865 return (0); 866 } 867 posix_clocks[clockid] = *clk; 868 return (1); 869 } 870 871 static int 872 itimer_init(void *mem, int size, int flags) 873 { 874 struct itimer *it; 875 876 it = (struct itimer *)mem; 877 mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF); 878 return (0); 879 } 880 881 static void 882 itimer_fini(void *mem, int size) 883 { 884 struct itimer *it; 885 886 it = (struct itimer *)mem; 887 mtx_destroy(&it->it_mtx); 888 } 889 890 static void 891 itimer_enter(struct itimer *it) 892 { 893 894 mtx_assert(&it->it_mtx, MA_OWNED); 895 it->it_usecount++; 896 } 897 898 static void 899 itimer_leave(struct itimer *it) 900 { 901 902 mtx_assert(&it->it_mtx, MA_OWNED); 903 KASSERT(it->it_usecount > 0, ("invalid it_usecount")); 904 905 if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0) 906 wakeup(it); 907 } 908 909 #ifndef _SYS_SYSPROTO_H_ 910 struct ktimer_create_args { 911 clockid_t clock_id; 912 struct sigevent * evp; 913 int * timerid; 914 }; 915 #endif 916 int 917 ktimer_create(struct thread *td, struct ktimer_create_args *uap) 918 { 919 struct sigevent *evp1, ev; 920 int id; 921 int error; 922 923 if (uap->evp != NULL) { 924 error = copyin(uap->evp, &ev, sizeof(ev)); 925 if (error != 0) 926 return (error); 927 evp1 = &ev; 928 } else 929 evp1 = NULL; 930 931 error = kern_timer_create(td, uap->clock_id, evp1, &id, -1); 932 933 if (error == 0) { 934 error = copyout(&id, uap->timerid, sizeof(int)); 935 if (error != 0) 936 kern_timer_delete(td, id); 937 } 938 return (error); 939 } 940 941 static int 942 kern_timer_create(struct thread *td, clockid_t clock_id, 943 struct sigevent *evp, int *timerid, int preset_id) 944 { 945 struct proc *p = td->td_proc; 946 struct itimer *it; 947 int id; 948 int error; 949 950 if (clock_id < 0 || clock_id >= MAX_CLOCKS) 951 return (EINVAL); 952 953 if (posix_clocks[clock_id].timer_create == NULL) 954 return (EINVAL); 955 956 if (evp != NULL) { 957 if (evp->sigev_notify != SIGEV_NONE && 958 evp->sigev_notify != SIGEV_SIGNAL && 959 evp->sigev_notify != SIGEV_THREAD_ID) 960 return (EINVAL); 961 if ((evp->sigev_notify == SIGEV_SIGNAL || 962 evp->sigev_notify == SIGEV_THREAD_ID) && 963 !_SIG_VALID(evp->sigev_signo)) 964 return (EINVAL); 965 } 966 967 if (p->p_itimers == NULL) 968 itimers_alloc(p); 969 970 it = uma_zalloc(itimer_zone, M_WAITOK); 971 it->it_flags = 0; 972 it->it_usecount = 0; 973 it->it_active = 0; 974 timespecclear(&it->it_time.it_value); 975 timespecclear(&it->it_time.it_interval); 976 it->it_overrun = 0; 977 it->it_overrun_last = 0; 978 it->it_clockid = clock_id; 979 it->it_timerid = -1; 980 it->it_proc = p; 981 ksiginfo_init(&it->it_ksi); 982 it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT; 983 error = CLOCK_CALL(clock_id, timer_create, (it)); 984 if (error != 0) 985 goto out; 986 987 PROC_LOCK(p); 988 if (preset_id != -1) { 989 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id")); 990 id = preset_id; 991 if (p->p_itimers->its_timers[id] != NULL) { 992 PROC_UNLOCK(p); 993 error = 0; 994 goto out; 995 } 996 } else { 997 /* 998 * Find a free timer slot, skipping those reserved 999 * for setitimer(). 1000 */ 1001 for (id = 3; id < TIMER_MAX; id++) 1002 if (p->p_itimers->its_timers[id] == NULL) 1003 break; 1004 if (id == TIMER_MAX) { 1005 PROC_UNLOCK(p); 1006 error = EAGAIN; 1007 goto out; 1008 } 1009 } 1010 it->it_timerid = id; 1011 p->p_itimers->its_timers[id] = it; 1012 if (evp != NULL) 1013 it->it_sigev = *evp; 1014 else { 1015 it->it_sigev.sigev_notify = SIGEV_SIGNAL; 1016 switch (clock_id) { 1017 default: 1018 case CLOCK_REALTIME: 1019 it->it_sigev.sigev_signo = SIGALRM; 1020 break; 1021 case CLOCK_VIRTUAL: 1022 it->it_sigev.sigev_signo = SIGVTALRM; 1023 break; 1024 case CLOCK_PROF: 1025 it->it_sigev.sigev_signo = SIGPROF; 1026 break; 1027 } 1028 it->it_sigev.sigev_value.sival_int = id; 1029 } 1030 1031 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1032 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1033 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo; 1034 it->it_ksi.ksi_code = SI_TIMER; 1035 it->it_ksi.ksi_value = it->it_sigev.sigev_value; 1036 it->it_ksi.ksi_timerid = id; 1037 } 1038 PROC_UNLOCK(p); 1039 *timerid = id; 1040 return (0); 1041 1042 out: 1043 ITIMER_LOCK(it); 1044 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1045 ITIMER_UNLOCK(it); 1046 uma_zfree(itimer_zone, it); 1047 return (error); 1048 } 1049 1050 #ifndef _SYS_SYSPROTO_H_ 1051 struct ktimer_delete_args { 1052 int timerid; 1053 }; 1054 #endif 1055 int 1056 ktimer_delete(struct thread *td, struct ktimer_delete_args *uap) 1057 { 1058 return (kern_timer_delete(td, uap->timerid)); 1059 } 1060 1061 static struct itimer * 1062 itimer_find(struct proc *p, int timerid) 1063 { 1064 struct itimer *it; 1065 1066 PROC_LOCK_ASSERT(p, MA_OWNED); 1067 if ((p->p_itimers == NULL) || (timerid >= TIMER_MAX) || 1068 (it = p->p_itimers->its_timers[timerid]) == NULL) { 1069 return (NULL); 1070 } 1071 ITIMER_LOCK(it); 1072 if ((it->it_flags & ITF_DELETING) != 0) { 1073 ITIMER_UNLOCK(it); 1074 it = NULL; 1075 } 1076 return (it); 1077 } 1078 1079 static int 1080 kern_timer_delete(struct thread *td, int timerid) 1081 { 1082 struct proc *p = td->td_proc; 1083 struct itimer *it; 1084 1085 PROC_LOCK(p); 1086 it = itimer_find(p, timerid); 1087 if (it == NULL) { 1088 PROC_UNLOCK(p); 1089 return (EINVAL); 1090 } 1091 PROC_UNLOCK(p); 1092 1093 it->it_flags |= ITF_DELETING; 1094 while (it->it_usecount > 0) { 1095 it->it_flags |= ITF_WANTED; 1096 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0); 1097 } 1098 it->it_flags &= ~ITF_WANTED; 1099 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1100 ITIMER_UNLOCK(it); 1101 1102 PROC_LOCK(p); 1103 if (KSI_ONQ(&it->it_ksi)) 1104 sigqueue_take(&it->it_ksi); 1105 p->p_itimers->its_timers[timerid] = NULL; 1106 PROC_UNLOCK(p); 1107 uma_zfree(itimer_zone, it); 1108 return (0); 1109 } 1110 1111 #ifndef _SYS_SYSPROTO_H_ 1112 struct ktimer_settime_args { 1113 int timerid; 1114 int flags; 1115 const struct itimerspec * value; 1116 struct itimerspec * ovalue; 1117 }; 1118 #endif 1119 int 1120 ktimer_settime(struct thread *td, struct ktimer_settime_args *uap) 1121 { 1122 struct proc *p = td->td_proc; 1123 struct itimer *it; 1124 struct itimerspec val, oval, *ovalp; 1125 int error; 1126 1127 error = copyin(uap->value, &val, sizeof(val)); 1128 if (error != 0) 1129 return (error); 1130 1131 if (uap->ovalue != NULL) 1132 ovalp = &oval; 1133 else 1134 ovalp = NULL; 1135 1136 PROC_LOCK(p); 1137 if (uap->timerid < 3 || 1138 (it = itimer_find(p, uap->timerid)) == NULL) { 1139 PROC_UNLOCK(p); 1140 error = EINVAL; 1141 } else { 1142 PROC_UNLOCK(p); 1143 itimer_enter(it); 1144 error = CLOCK_CALL(it->it_clockid, timer_settime, 1145 (it, uap->flags, &val, ovalp)); 1146 itimer_leave(it); 1147 ITIMER_UNLOCK(it); 1148 } 1149 if (error == 0 && uap->ovalue != NULL) 1150 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp)); 1151 return (error); 1152 } 1153 1154 #ifndef _SYS_SYSPROTO_H_ 1155 struct ktimer_gettime_args { 1156 int timerid; 1157 struct itimerspec * value; 1158 }; 1159 #endif 1160 int 1161 ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap) 1162 { 1163 struct proc *p = td->td_proc; 1164 struct itimer *it; 1165 struct itimerspec val; 1166 int error; 1167 1168 PROC_LOCK(p); 1169 if (uap->timerid < 3 || 1170 (it = itimer_find(p, uap->timerid)) == NULL) { 1171 PROC_UNLOCK(p); 1172 error = EINVAL; 1173 } else { 1174 PROC_UNLOCK(p); 1175 itimer_enter(it); 1176 error = CLOCK_CALL(it->it_clockid, timer_gettime, 1177 (it, &val)); 1178 itimer_leave(it); 1179 ITIMER_UNLOCK(it); 1180 } 1181 if (error == 0) 1182 error = copyout(&val, uap->value, sizeof(val)); 1183 return (error); 1184 } 1185 1186 #ifndef _SYS_SYSPROTO_H_ 1187 struct timer_getoverrun_args { 1188 int timerid; 1189 }; 1190 #endif 1191 int 1192 ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap) 1193 { 1194 struct proc *p = td->td_proc; 1195 struct itimer *it; 1196 int error ; 1197 1198 PROC_LOCK(p); 1199 if (uap->timerid < 3 || 1200 (it = itimer_find(p, uap->timerid)) == NULL) { 1201 PROC_UNLOCK(p); 1202 error = EINVAL; 1203 } else { 1204 td->td_retval[0] = it->it_overrun_last; 1205 ITIMER_UNLOCK(it); 1206 PROC_UNLOCK(p); 1207 error = 0; 1208 } 1209 return (error); 1210 } 1211 1212 static int 1213 realtimer_create(struct itimer *it) 1214 { 1215 callout_init_mtx(&it->it_callout, &it->it_mtx, 0); 1216 return (0); 1217 } 1218 1219 static int 1220 realtimer_delete(struct itimer *it) 1221 { 1222 mtx_assert(&it->it_mtx, MA_OWNED); 1223 1224 ITIMER_UNLOCK(it); 1225 callout_drain(&it->it_callout); 1226 ITIMER_LOCK(it); 1227 return (0); 1228 } 1229 1230 static int 1231 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue) 1232 { 1233 struct timespec cts; 1234 1235 mtx_assert(&it->it_mtx, MA_OWNED); 1236 1237 realtimer_clocktime(it->it_clockid, &cts); 1238 *ovalue = it->it_time; 1239 if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) { 1240 timespecsub(&ovalue->it_value, &cts); 1241 if (ovalue->it_value.tv_sec < 0 || 1242 (ovalue->it_value.tv_sec == 0 && 1243 ovalue->it_value.tv_nsec == 0)) { 1244 ovalue->it_value.tv_sec = 0; 1245 ovalue->it_value.tv_nsec = 1; 1246 } 1247 } 1248 return (0); 1249 } 1250 1251 static int 1252 realtimer_settime(struct itimer *it, int flags, 1253 struct itimerspec *value, struct itimerspec *ovalue) 1254 { 1255 struct timespec cts, ts; 1256 struct timeval tv; 1257 struct itimerspec val; 1258 1259 mtx_assert(&it->it_mtx, MA_OWNED); 1260 1261 val = *value; 1262 if (itimespecfix(&val.it_value)) 1263 return (EINVAL); 1264 1265 if (timespecisset(&val.it_value)) { 1266 if (itimespecfix(&val.it_interval)) 1267 return (EINVAL); 1268 } else { 1269 timespecclear(&val.it_interval); 1270 } 1271 1272 if (ovalue != NULL) 1273 realtimer_gettime(it, ovalue); 1274 1275 it->it_time = val; 1276 if (timespecisset(&val.it_value)) { 1277 realtimer_clocktime(it->it_clockid, &cts); 1278 ts = val.it_value; 1279 if ((flags & TIMER_ABSTIME) == 0) { 1280 /* Convert to absolute time. */ 1281 timespecadd(&it->it_time.it_value, &cts); 1282 } else { 1283 timespecsub(&ts, &cts); 1284 /* 1285 * We don't care if ts is negative, tztohz will 1286 * fix it. 1287 */ 1288 } 1289 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1290 callout_reset(&it->it_callout, tvtohz(&tv), 1291 realtimer_expire, it); 1292 } else { 1293 callout_stop(&it->it_callout); 1294 } 1295 1296 return (0); 1297 } 1298 1299 static void 1300 realtimer_clocktime(clockid_t id, struct timespec *ts) 1301 { 1302 if (id == CLOCK_REALTIME) 1303 getnanotime(ts); 1304 else /* CLOCK_MONOTONIC */ 1305 getnanouptime(ts); 1306 } 1307 1308 int 1309 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi) 1310 { 1311 struct itimer *it; 1312 1313 PROC_LOCK_ASSERT(p, MA_OWNED); 1314 it = itimer_find(p, timerid); 1315 if (it != NULL) { 1316 ksi->ksi_overrun = it->it_overrun; 1317 it->it_overrun_last = it->it_overrun; 1318 it->it_overrun = 0; 1319 ITIMER_UNLOCK(it); 1320 return (0); 1321 } 1322 return (EINVAL); 1323 } 1324 1325 int 1326 itimespecfix(struct timespec *ts) 1327 { 1328 1329 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1330 return (EINVAL); 1331 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000) 1332 ts->tv_nsec = tick * 1000; 1333 return (0); 1334 } 1335 1336 /* Timeout callback for realtime timer */ 1337 static void 1338 realtimer_expire(void *arg) 1339 { 1340 struct timespec cts, ts; 1341 struct timeval tv; 1342 struct itimer *it; 1343 struct proc *p; 1344 1345 it = (struct itimer *)arg; 1346 p = it->it_proc; 1347 1348 realtimer_clocktime(it->it_clockid, &cts); 1349 /* Only fire if time is reached. */ 1350 if (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1351 if (timespecisset(&it->it_time.it_interval)) { 1352 timespecadd(&it->it_time.it_value, 1353 &it->it_time.it_interval); 1354 while (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1355 if (it->it_overrun < INT_MAX) 1356 it->it_overrun++; 1357 else 1358 it->it_ksi.ksi_errno = ERANGE; 1359 timespecadd(&it->it_time.it_value, 1360 &it->it_time.it_interval); 1361 } 1362 } else { 1363 /* single shot timer ? */ 1364 timespecclear(&it->it_time.it_value); 1365 } 1366 if (timespecisset(&it->it_time.it_value)) { 1367 ts = it->it_time.it_value; 1368 timespecsub(&ts, &cts); 1369 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1370 callout_reset(&it->it_callout, tvtohz(&tv), 1371 realtimer_expire, it); 1372 } 1373 ITIMER_UNLOCK(it); 1374 itimer_fire(it); 1375 ITIMER_LOCK(it); 1376 } else if (timespecisset(&it->it_time.it_value)) { 1377 ts = it->it_time.it_value; 1378 timespecsub(&ts, &cts); 1379 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1380 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire, 1381 it); 1382 } 1383 } 1384 1385 void 1386 itimer_fire(struct itimer *it) 1387 { 1388 struct proc *p = it->it_proc; 1389 int ret; 1390 1391 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1392 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1393 PROC_LOCK(p); 1394 if (!KSI_ONQ(&it->it_ksi)) { 1395 it->it_ksi.ksi_errno = 0; 1396 ret = psignal_event(p, &it->it_sigev, &it->it_ksi); 1397 if (__predict_false(ret != 0)) { 1398 it->it_overrun++; 1399 /* 1400 * Broken userland code, thread went 1401 * away, disarm the timer. 1402 */ 1403 if (ret == ESRCH) { 1404 ITIMER_LOCK(it); 1405 timespecclear(&it->it_time.it_value); 1406 timespecclear(&it->it_time.it_interval); 1407 callout_stop(&it->it_callout); 1408 ITIMER_UNLOCK(it); 1409 } 1410 } 1411 } else { 1412 if (it->it_overrun < INT_MAX) 1413 it->it_overrun++; 1414 else 1415 it->it_ksi.ksi_errno = ERANGE; 1416 } 1417 PROC_UNLOCK(p); 1418 } 1419 } 1420 1421 static void 1422 itimers_alloc(struct proc *p) 1423 { 1424 struct itimers *its; 1425 int i; 1426 1427 its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO); 1428 LIST_INIT(&its->its_virtual); 1429 LIST_INIT(&its->its_prof); 1430 TAILQ_INIT(&its->its_worklist); 1431 for (i = 0; i < TIMER_MAX; i++) 1432 its->its_timers[i] = NULL; 1433 PROC_LOCK(p); 1434 if (p->p_itimers == NULL) { 1435 p->p_itimers = its; 1436 PROC_UNLOCK(p); 1437 } 1438 else { 1439 PROC_UNLOCK(p); 1440 free(its, M_SUBPROC); 1441 } 1442 } 1443 1444 static void 1445 itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused) 1446 { 1447 itimers_event_hook_exit(arg, p); 1448 } 1449 1450 /* Clean up timers when some process events are being triggered. */ 1451 static void 1452 itimers_event_hook_exit(void *arg, struct proc *p) 1453 { 1454 struct itimers *its; 1455 struct itimer *it; 1456 int event = (int)(intptr_t)arg; 1457 int i; 1458 1459 if (p->p_itimers != NULL) { 1460 its = p->p_itimers; 1461 for (i = 0; i < MAX_CLOCKS; ++i) { 1462 if (posix_clocks[i].event_hook != NULL) 1463 CLOCK_CALL(i, event_hook, (p, i, event)); 1464 } 1465 /* 1466 * According to susv3, XSI interval timers should be inherited 1467 * by new image. 1468 */ 1469 if (event == ITIMER_EV_EXEC) 1470 i = 3; 1471 else if (event == ITIMER_EV_EXIT) 1472 i = 0; 1473 else 1474 panic("unhandled event"); 1475 for (; i < TIMER_MAX; ++i) { 1476 if ((it = its->its_timers[i]) != NULL) 1477 kern_timer_delete(curthread, i); 1478 } 1479 if (its->its_timers[0] == NULL && 1480 its->its_timers[1] == NULL && 1481 its->its_timers[2] == NULL) { 1482 free(its, M_SUBPROC); 1483 p->p_itimers = NULL; 1484 } 1485 } 1486 } 1487