1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ktrace.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/limits.h> 42 #include <sys/clock.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/sysproto.h> 46 #include <sys/eventhandler.h> 47 #include <sys/resourcevar.h> 48 #include <sys/signalvar.h> 49 #include <sys/kernel.h> 50 #include <sys/sleepqueue.h> 51 #include <sys/syscallsubr.h> 52 #include <sys/sysctl.h> 53 #include <sys/sysent.h> 54 #include <sys/priv.h> 55 #include <sys/proc.h> 56 #include <sys/posix4.h> 57 #include <sys/time.h> 58 #include <sys/timers.h> 59 #include <sys/timetc.h> 60 #include <sys/vnode.h> 61 #ifdef KTRACE 62 #include <sys/ktrace.h> 63 #endif 64 65 #include <vm/vm.h> 66 #include <vm/vm_extern.h> 67 68 #define MAX_CLOCKS (CLOCK_MONOTONIC+1) 69 #define CPUCLOCK_BIT 0x80000000 70 #define CPUCLOCK_PROCESS_BIT 0x40000000 71 #define CPUCLOCK_ID_MASK (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT)) 72 #define MAKE_THREAD_CPUCLOCK(tid) (CPUCLOCK_BIT|(tid)) 73 #define MAKE_PROCESS_CPUCLOCK(pid) \ 74 (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid)) 75 76 static struct kclock posix_clocks[MAX_CLOCKS]; 77 static uma_zone_t itimer_zone = NULL; 78 79 /* 80 * Time of day and interval timer support. 81 * 82 * These routines provide the kernel entry points to get and set 83 * the time-of-day and per-process interval timers. Subroutines 84 * here provide support for adding and subtracting timeval structures 85 * and decrementing interval timers, optionally reloading the interval 86 * timers when they expire. 87 */ 88 89 static int settime(struct thread *, struct timeval *); 90 static void timevalfix(struct timeval *); 91 static int user_clock_nanosleep(struct thread *td, clockid_t clock_id, 92 int flags, const struct timespec *ua_rqtp, 93 struct timespec *ua_rmtp); 94 95 static void itimer_start(void); 96 static int itimer_init(void *, int, int); 97 static void itimer_fini(void *, int); 98 static void itimer_enter(struct itimer *); 99 static void itimer_leave(struct itimer *); 100 static struct itimer *itimer_find(struct proc *, int); 101 static void itimers_alloc(struct proc *); 102 static void itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp); 103 static void itimers_event_hook_exit(void *arg, struct proc *p); 104 static int realtimer_create(struct itimer *); 105 static int realtimer_gettime(struct itimer *, struct itimerspec *); 106 static int realtimer_settime(struct itimer *, int, 107 struct itimerspec *, struct itimerspec *); 108 static int realtimer_delete(struct itimer *); 109 static void realtimer_clocktime(clockid_t, struct timespec *); 110 static void realtimer_expire(void *); 111 112 int register_posix_clock(int, struct kclock *); 113 void itimer_fire(struct itimer *it); 114 int itimespecfix(struct timespec *ts); 115 116 #define CLOCK_CALL(clock, call, arglist) \ 117 ((*posix_clocks[clock].call) arglist) 118 119 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL); 120 121 122 static int 123 settime(struct thread *td, struct timeval *tv) 124 { 125 struct timeval delta, tv1, tv2; 126 static struct timeval maxtime, laststep; 127 struct timespec ts; 128 129 microtime(&tv1); 130 delta = *tv; 131 timevalsub(&delta, &tv1); 132 133 /* 134 * If the system is secure, we do not allow the time to be 135 * set to a value earlier than 1 second less than the highest 136 * time we have yet seen. The worst a miscreant can do in 137 * this circumstance is "freeze" time. He couldn't go 138 * back to the past. 139 * 140 * We similarly do not allow the clock to be stepped more 141 * than one second, nor more than once per second. This allows 142 * a miscreant to make the clock march double-time, but no worse. 143 */ 144 if (securelevel_gt(td->td_ucred, 1) != 0) { 145 if (delta.tv_sec < 0 || delta.tv_usec < 0) { 146 /* 147 * Update maxtime to latest time we've seen. 148 */ 149 if (tv1.tv_sec > maxtime.tv_sec) 150 maxtime = tv1; 151 tv2 = *tv; 152 timevalsub(&tv2, &maxtime); 153 if (tv2.tv_sec < -1) { 154 tv->tv_sec = maxtime.tv_sec - 1; 155 printf("Time adjustment clamped to -1 second\n"); 156 } 157 } else { 158 if (tv1.tv_sec == laststep.tv_sec) 159 return (EPERM); 160 if (delta.tv_sec > 1) { 161 tv->tv_sec = tv1.tv_sec + 1; 162 printf("Time adjustment clamped to +1 second\n"); 163 } 164 laststep = *tv; 165 } 166 } 167 168 ts.tv_sec = tv->tv_sec; 169 ts.tv_nsec = tv->tv_usec * 1000; 170 tc_setclock(&ts); 171 resettodr(); 172 return (0); 173 } 174 175 #ifndef _SYS_SYSPROTO_H_ 176 struct clock_getcpuclockid2_args { 177 id_t id; 178 int which, 179 clockid_t *clock_id; 180 }; 181 #endif 182 /* ARGSUSED */ 183 int 184 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap) 185 { 186 clockid_t clk_id; 187 int error; 188 189 error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id); 190 if (error == 0) 191 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 192 return (error); 193 } 194 195 int 196 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which, 197 clockid_t *clk_id) 198 { 199 struct proc *p; 200 pid_t pid; 201 lwpid_t tid; 202 int error; 203 204 switch (which) { 205 case CPUCLOCK_WHICH_PID: 206 if (id != 0) { 207 error = pget(id, PGET_CANSEE | PGET_NOTID, &p); 208 if (error != 0) 209 return (error); 210 PROC_UNLOCK(p); 211 pid = id; 212 } else { 213 pid = td->td_proc->p_pid; 214 } 215 *clk_id = MAKE_PROCESS_CPUCLOCK(pid); 216 return (0); 217 case CPUCLOCK_WHICH_TID: 218 tid = id == 0 ? td->td_tid : id; 219 *clk_id = MAKE_THREAD_CPUCLOCK(tid); 220 return (0); 221 default: 222 return (EINVAL); 223 } 224 } 225 226 #ifndef _SYS_SYSPROTO_H_ 227 struct clock_gettime_args { 228 clockid_t clock_id; 229 struct timespec *tp; 230 }; 231 #endif 232 /* ARGSUSED */ 233 int 234 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap) 235 { 236 struct timespec ats; 237 int error; 238 239 error = kern_clock_gettime(td, uap->clock_id, &ats); 240 if (error == 0) 241 error = copyout(&ats, uap->tp, sizeof(ats)); 242 243 return (error); 244 } 245 246 static inline void 247 cputick2timespec(uint64_t runtime, struct timespec *ats) 248 { 249 runtime = cputick2usec(runtime); 250 ats->tv_sec = runtime / 1000000; 251 ats->tv_nsec = runtime % 1000000 * 1000; 252 } 253 254 static void 255 get_thread_cputime(struct thread *targettd, struct timespec *ats) 256 { 257 uint64_t runtime, curtime, switchtime; 258 259 if (targettd == NULL) { /* current thread */ 260 critical_enter(); 261 switchtime = PCPU_GET(switchtime); 262 curtime = cpu_ticks(); 263 runtime = curthread->td_runtime; 264 critical_exit(); 265 runtime += curtime - switchtime; 266 } else { 267 thread_lock(targettd); 268 runtime = targettd->td_runtime; 269 thread_unlock(targettd); 270 } 271 cputick2timespec(runtime, ats); 272 } 273 274 static void 275 get_process_cputime(struct proc *targetp, struct timespec *ats) 276 { 277 uint64_t runtime; 278 struct rusage ru; 279 280 PROC_STATLOCK(targetp); 281 rufetch(targetp, &ru); 282 runtime = targetp->p_rux.rux_runtime; 283 if (curthread->td_proc == targetp) 284 runtime += cpu_ticks() - PCPU_GET(switchtime); 285 PROC_STATUNLOCK(targetp); 286 cputick2timespec(runtime, ats); 287 } 288 289 static int 290 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats) 291 { 292 struct proc *p, *p2; 293 struct thread *td2; 294 lwpid_t tid; 295 pid_t pid; 296 int error; 297 298 p = td->td_proc; 299 if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) { 300 tid = clock_id & CPUCLOCK_ID_MASK; 301 td2 = tdfind(tid, p->p_pid); 302 if (td2 == NULL) 303 return (EINVAL); 304 get_thread_cputime(td2, ats); 305 PROC_UNLOCK(td2->td_proc); 306 } else { 307 pid = clock_id & CPUCLOCK_ID_MASK; 308 error = pget(pid, PGET_CANSEE, &p2); 309 if (error != 0) 310 return (EINVAL); 311 get_process_cputime(p2, ats); 312 PROC_UNLOCK(p2); 313 } 314 return (0); 315 } 316 317 int 318 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats) 319 { 320 struct timeval sys, user; 321 struct proc *p; 322 323 p = td->td_proc; 324 switch (clock_id) { 325 case CLOCK_REALTIME: /* Default to precise. */ 326 case CLOCK_REALTIME_PRECISE: 327 nanotime(ats); 328 break; 329 case CLOCK_REALTIME_FAST: 330 getnanotime(ats); 331 break; 332 case CLOCK_VIRTUAL: 333 PROC_LOCK(p); 334 PROC_STATLOCK(p); 335 calcru(p, &user, &sys); 336 PROC_STATUNLOCK(p); 337 PROC_UNLOCK(p); 338 TIMEVAL_TO_TIMESPEC(&user, ats); 339 break; 340 case CLOCK_PROF: 341 PROC_LOCK(p); 342 PROC_STATLOCK(p); 343 calcru(p, &user, &sys); 344 PROC_STATUNLOCK(p); 345 PROC_UNLOCK(p); 346 timevaladd(&user, &sys); 347 TIMEVAL_TO_TIMESPEC(&user, ats); 348 break; 349 case CLOCK_MONOTONIC: /* Default to precise. */ 350 case CLOCK_MONOTONIC_PRECISE: 351 case CLOCK_UPTIME: 352 case CLOCK_UPTIME_PRECISE: 353 nanouptime(ats); 354 break; 355 case CLOCK_UPTIME_FAST: 356 case CLOCK_MONOTONIC_FAST: 357 getnanouptime(ats); 358 break; 359 case CLOCK_SECOND: 360 ats->tv_sec = time_second; 361 ats->tv_nsec = 0; 362 break; 363 case CLOCK_THREAD_CPUTIME_ID: 364 get_thread_cputime(NULL, ats); 365 break; 366 case CLOCK_PROCESS_CPUTIME_ID: 367 PROC_LOCK(p); 368 get_process_cputime(p, ats); 369 PROC_UNLOCK(p); 370 break; 371 default: 372 if ((int)clock_id >= 0) 373 return (EINVAL); 374 return (get_cputime(td, clock_id, ats)); 375 } 376 return (0); 377 } 378 379 #ifndef _SYS_SYSPROTO_H_ 380 struct clock_settime_args { 381 clockid_t clock_id; 382 const struct timespec *tp; 383 }; 384 #endif 385 /* ARGSUSED */ 386 int 387 sys_clock_settime(struct thread *td, struct clock_settime_args *uap) 388 { 389 struct timespec ats; 390 int error; 391 392 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0) 393 return (error); 394 return (kern_clock_settime(td, uap->clock_id, &ats)); 395 } 396 397 static int allow_insane_settime = 0; 398 SYSCTL_INT(_debug, OID_AUTO, allow_insane_settime, CTLFLAG_RWTUN, 399 &allow_insane_settime, 0, 400 "do not perform possibly restrictive checks on settime(2) args"); 401 402 int 403 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats) 404 { 405 struct timeval atv; 406 int error; 407 408 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 409 return (error); 410 if (clock_id != CLOCK_REALTIME) 411 return (EINVAL); 412 if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000 || 413 ats->tv_sec < 0) 414 return (EINVAL); 415 if (!allow_insane_settime && ats->tv_sec > 8000ULL * 365 * 24 * 60 * 60) 416 return (EINVAL); 417 /* XXX Don't convert nsec->usec and back */ 418 TIMESPEC_TO_TIMEVAL(&atv, ats); 419 error = settime(td, &atv); 420 return (error); 421 } 422 423 #ifndef _SYS_SYSPROTO_H_ 424 struct clock_getres_args { 425 clockid_t clock_id; 426 struct timespec *tp; 427 }; 428 #endif 429 int 430 sys_clock_getres(struct thread *td, struct clock_getres_args *uap) 431 { 432 struct timespec ts; 433 int error; 434 435 if (uap->tp == NULL) 436 return (0); 437 438 error = kern_clock_getres(td, uap->clock_id, &ts); 439 if (error == 0) 440 error = copyout(&ts, uap->tp, sizeof(ts)); 441 return (error); 442 } 443 444 int 445 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts) 446 { 447 448 ts->tv_sec = 0; 449 switch (clock_id) { 450 case CLOCK_REALTIME: 451 case CLOCK_REALTIME_FAST: 452 case CLOCK_REALTIME_PRECISE: 453 case CLOCK_MONOTONIC: 454 case CLOCK_MONOTONIC_FAST: 455 case CLOCK_MONOTONIC_PRECISE: 456 case CLOCK_UPTIME: 457 case CLOCK_UPTIME_FAST: 458 case CLOCK_UPTIME_PRECISE: 459 /* 460 * Round up the result of the division cheaply by adding 1. 461 * Rounding up is especially important if rounding down 462 * would give 0. Perfect rounding is unimportant. 463 */ 464 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1; 465 break; 466 case CLOCK_VIRTUAL: 467 case CLOCK_PROF: 468 /* Accurately round up here because we can do so cheaply. */ 469 ts->tv_nsec = howmany(1000000000, hz); 470 break; 471 case CLOCK_SECOND: 472 ts->tv_sec = 1; 473 ts->tv_nsec = 0; 474 break; 475 case CLOCK_THREAD_CPUTIME_ID: 476 case CLOCK_PROCESS_CPUTIME_ID: 477 cputime: 478 /* sync with cputick2usec */ 479 ts->tv_nsec = 1000000 / cpu_tickrate(); 480 if (ts->tv_nsec == 0) 481 ts->tv_nsec = 1000; 482 break; 483 default: 484 if ((int)clock_id < 0) 485 goto cputime; 486 return (EINVAL); 487 } 488 return (0); 489 } 490 491 int 492 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt) 493 { 494 495 return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt, 496 rmt)); 497 } 498 499 static uint8_t nanowait[MAXCPU]; 500 501 int 502 kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 503 const struct timespec *rqt, struct timespec *rmt) 504 { 505 struct timespec ts, now; 506 sbintime_t sbt, sbtt, prec, tmp; 507 time_t over; 508 int error; 509 bool is_abs_real; 510 511 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000) 512 return (EINVAL); 513 if ((flags & ~TIMER_ABSTIME) != 0) 514 return (EINVAL); 515 switch (clock_id) { 516 case CLOCK_REALTIME: 517 case CLOCK_REALTIME_PRECISE: 518 case CLOCK_REALTIME_FAST: 519 case CLOCK_SECOND: 520 is_abs_real = (flags & TIMER_ABSTIME) != 0; 521 break; 522 case CLOCK_MONOTONIC: 523 case CLOCK_MONOTONIC_PRECISE: 524 case CLOCK_MONOTONIC_FAST: 525 case CLOCK_UPTIME: 526 case CLOCK_UPTIME_PRECISE: 527 case CLOCK_UPTIME_FAST: 528 is_abs_real = false; 529 break; 530 case CLOCK_VIRTUAL: 531 case CLOCK_PROF: 532 case CLOCK_PROCESS_CPUTIME_ID: 533 return (ENOTSUP); 534 case CLOCK_THREAD_CPUTIME_ID: 535 default: 536 return (EINVAL); 537 } 538 do { 539 ts = *rqt; 540 if ((flags & TIMER_ABSTIME) != 0) { 541 if (is_abs_real) 542 td->td_rtcgen = 543 atomic_load_acq_int(&rtc_generation); 544 error = kern_clock_gettime(td, clock_id, &now); 545 KASSERT(error == 0, ("kern_clock_gettime: %d", error)); 546 timespecsub(&ts, &now); 547 } 548 if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) { 549 error = EWOULDBLOCK; 550 break; 551 } 552 if (ts.tv_sec > INT32_MAX / 2) { 553 over = ts.tv_sec - INT32_MAX / 2; 554 ts.tv_sec -= over; 555 } else 556 over = 0; 557 tmp = tstosbt(ts); 558 prec = tmp; 559 prec >>= tc_precexp; 560 if (TIMESEL(&sbt, tmp)) 561 sbt += tc_tick_sbt; 562 sbt += tmp; 563 error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp", 564 sbt, prec, C_ABSOLUTE); 565 } while (error == 0 && is_abs_real && td->td_rtcgen == 0); 566 td->td_rtcgen = 0; 567 if (error != EWOULDBLOCK) { 568 if (TIMESEL(&sbtt, tmp)) 569 sbtt += tc_tick_sbt; 570 if (sbtt >= sbt) 571 return (0); 572 if (error == ERESTART) 573 error = EINTR; 574 if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) { 575 ts = sbttots(sbt - sbtt); 576 ts.tv_sec += over; 577 if (ts.tv_sec < 0) 578 timespecclear(&ts); 579 *rmt = ts; 580 } 581 return (error); 582 } 583 return (0); 584 } 585 586 #ifndef _SYS_SYSPROTO_H_ 587 struct nanosleep_args { 588 struct timespec *rqtp; 589 struct timespec *rmtp; 590 }; 591 #endif 592 /* ARGSUSED */ 593 int 594 sys_nanosleep(struct thread *td, struct nanosleep_args *uap) 595 { 596 597 return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, 598 uap->rqtp, uap->rmtp)); 599 } 600 601 #ifndef _SYS_SYSPROTO_H_ 602 struct clock_nanosleep_args { 603 clockid_t clock_id; 604 int flags; 605 struct timespec *rqtp; 606 struct timespec *rmtp; 607 }; 608 #endif 609 /* ARGSUSED */ 610 int 611 sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap) 612 { 613 int error; 614 615 error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp, 616 uap->rmtp); 617 return (kern_posix_error(td, error)); 618 } 619 620 static int 621 user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 622 const struct timespec *ua_rqtp, struct timespec *ua_rmtp) 623 { 624 struct timespec rmt, rqt; 625 int error; 626 627 error = copyin(ua_rqtp, &rqt, sizeof(rqt)); 628 if (error) 629 return (error); 630 if (ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0 && 631 !useracc(ua_rmtp, sizeof(rmt), VM_PROT_WRITE)) 632 return (EFAULT); 633 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 634 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 635 int error2; 636 637 error2 = copyout(&rmt, ua_rmtp, sizeof(rmt)); 638 if (error2) 639 error = error2; 640 } 641 return (error); 642 } 643 644 #ifndef _SYS_SYSPROTO_H_ 645 struct gettimeofday_args { 646 struct timeval *tp; 647 struct timezone *tzp; 648 }; 649 #endif 650 /* ARGSUSED */ 651 int 652 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap) 653 { 654 struct timeval atv; 655 struct timezone rtz; 656 int error = 0; 657 658 if (uap->tp) { 659 microtime(&atv); 660 error = copyout(&atv, uap->tp, sizeof (atv)); 661 } 662 if (error == 0 && uap->tzp != NULL) { 663 rtz.tz_minuteswest = tz_minuteswest; 664 rtz.tz_dsttime = tz_dsttime; 665 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 666 } 667 return (error); 668 } 669 670 #ifndef _SYS_SYSPROTO_H_ 671 struct settimeofday_args { 672 struct timeval *tv; 673 struct timezone *tzp; 674 }; 675 #endif 676 /* ARGSUSED */ 677 int 678 sys_settimeofday(struct thread *td, struct settimeofday_args *uap) 679 { 680 struct timeval atv, *tvp; 681 struct timezone atz, *tzp; 682 int error; 683 684 if (uap->tv) { 685 error = copyin(uap->tv, &atv, sizeof(atv)); 686 if (error) 687 return (error); 688 tvp = &atv; 689 } else 690 tvp = NULL; 691 if (uap->tzp) { 692 error = copyin(uap->tzp, &atz, sizeof(atz)); 693 if (error) 694 return (error); 695 tzp = &atz; 696 } else 697 tzp = NULL; 698 return (kern_settimeofday(td, tvp, tzp)); 699 } 700 701 int 702 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp) 703 { 704 int error; 705 706 error = priv_check(td, PRIV_SETTIMEOFDAY); 707 if (error) 708 return (error); 709 /* Verify all parameters before changing time. */ 710 if (tv) { 711 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 || 712 tv->tv_sec < 0) 713 return (EINVAL); 714 error = settime(td, tv); 715 } 716 if (tzp && error == 0) { 717 tz_minuteswest = tzp->tz_minuteswest; 718 tz_dsttime = tzp->tz_dsttime; 719 } 720 return (error); 721 } 722 723 /* 724 * Get value of an interval timer. The process virtual and profiling virtual 725 * time timers are kept in the p_stats area, since they can be swapped out. 726 * These are kept internally in the way they are specified externally: in 727 * time until they expire. 728 * 729 * The real time interval timer is kept in the process table slot for the 730 * process, and its value (it_value) is kept as an absolute time rather than 731 * as a delta, so that it is easy to keep periodic real-time signals from 732 * drifting. 733 * 734 * Virtual time timers are processed in the hardclock() routine of 735 * kern_clock.c. The real time timer is processed by a timeout routine, 736 * called from the softclock() routine. Since a callout may be delayed in 737 * real time due to interrupt processing in the system, it is possible for 738 * the real time timeout routine (realitexpire, given below), to be delayed 739 * in real time past when it is supposed to occur. It does not suffice, 740 * therefore, to reload the real timer .it_value from the real time timers 741 * .it_interval. Rather, we compute the next time in absolute time the timer 742 * should go off. 743 */ 744 #ifndef _SYS_SYSPROTO_H_ 745 struct getitimer_args { 746 u_int which; 747 struct itimerval *itv; 748 }; 749 #endif 750 int 751 sys_getitimer(struct thread *td, struct getitimer_args *uap) 752 { 753 struct itimerval aitv; 754 int error; 755 756 error = kern_getitimer(td, uap->which, &aitv); 757 if (error != 0) 758 return (error); 759 return (copyout(&aitv, uap->itv, sizeof (struct itimerval))); 760 } 761 762 int 763 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv) 764 { 765 struct proc *p = td->td_proc; 766 struct timeval ctv; 767 768 if (which > ITIMER_PROF) 769 return (EINVAL); 770 771 if (which == ITIMER_REAL) { 772 /* 773 * Convert from absolute to relative time in .it_value 774 * part of real time timer. If time for real time timer 775 * has passed return 0, else return difference between 776 * current time and time for the timer to go off. 777 */ 778 PROC_LOCK(p); 779 *aitv = p->p_realtimer; 780 PROC_UNLOCK(p); 781 if (timevalisset(&aitv->it_value)) { 782 microuptime(&ctv); 783 if (timevalcmp(&aitv->it_value, &ctv, <)) 784 timevalclear(&aitv->it_value); 785 else 786 timevalsub(&aitv->it_value, &ctv); 787 } 788 } else { 789 PROC_ITIMLOCK(p); 790 *aitv = p->p_stats->p_timer[which]; 791 PROC_ITIMUNLOCK(p); 792 } 793 #ifdef KTRACE 794 if (KTRPOINT(td, KTR_STRUCT)) 795 ktritimerval(aitv); 796 #endif 797 return (0); 798 } 799 800 #ifndef _SYS_SYSPROTO_H_ 801 struct setitimer_args { 802 u_int which; 803 struct itimerval *itv, *oitv; 804 }; 805 #endif 806 int 807 sys_setitimer(struct thread *td, struct setitimer_args *uap) 808 { 809 struct itimerval aitv, oitv; 810 int error; 811 812 if (uap->itv == NULL) { 813 uap->itv = uap->oitv; 814 return (sys_getitimer(td, (struct getitimer_args *)uap)); 815 } 816 817 if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval)))) 818 return (error); 819 error = kern_setitimer(td, uap->which, &aitv, &oitv); 820 if (error != 0 || uap->oitv == NULL) 821 return (error); 822 return (copyout(&oitv, uap->oitv, sizeof(struct itimerval))); 823 } 824 825 int 826 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv, 827 struct itimerval *oitv) 828 { 829 struct proc *p = td->td_proc; 830 struct timeval ctv; 831 sbintime_t sbt, pr; 832 833 if (aitv == NULL) 834 return (kern_getitimer(td, which, oitv)); 835 836 if (which > ITIMER_PROF) 837 return (EINVAL); 838 #ifdef KTRACE 839 if (KTRPOINT(td, KTR_STRUCT)) 840 ktritimerval(aitv); 841 #endif 842 if (itimerfix(&aitv->it_value) || 843 aitv->it_value.tv_sec > INT32_MAX / 2) 844 return (EINVAL); 845 if (!timevalisset(&aitv->it_value)) 846 timevalclear(&aitv->it_interval); 847 else if (itimerfix(&aitv->it_interval) || 848 aitv->it_interval.tv_sec > INT32_MAX / 2) 849 return (EINVAL); 850 851 if (which == ITIMER_REAL) { 852 PROC_LOCK(p); 853 if (timevalisset(&p->p_realtimer.it_value)) 854 callout_stop(&p->p_itcallout); 855 microuptime(&ctv); 856 if (timevalisset(&aitv->it_value)) { 857 pr = tvtosbt(aitv->it_value) >> tc_precexp; 858 timevaladd(&aitv->it_value, &ctv); 859 sbt = tvtosbt(aitv->it_value); 860 callout_reset_sbt(&p->p_itcallout, sbt, pr, 861 realitexpire, p, C_ABSOLUTE); 862 } 863 *oitv = p->p_realtimer; 864 p->p_realtimer = *aitv; 865 PROC_UNLOCK(p); 866 if (timevalisset(&oitv->it_value)) { 867 if (timevalcmp(&oitv->it_value, &ctv, <)) 868 timevalclear(&oitv->it_value); 869 else 870 timevalsub(&oitv->it_value, &ctv); 871 } 872 } else { 873 if (aitv->it_interval.tv_sec == 0 && 874 aitv->it_interval.tv_usec != 0 && 875 aitv->it_interval.tv_usec < tick) 876 aitv->it_interval.tv_usec = tick; 877 if (aitv->it_value.tv_sec == 0 && 878 aitv->it_value.tv_usec != 0 && 879 aitv->it_value.tv_usec < tick) 880 aitv->it_value.tv_usec = tick; 881 PROC_ITIMLOCK(p); 882 *oitv = p->p_stats->p_timer[which]; 883 p->p_stats->p_timer[which] = *aitv; 884 PROC_ITIMUNLOCK(p); 885 } 886 #ifdef KTRACE 887 if (KTRPOINT(td, KTR_STRUCT)) 888 ktritimerval(oitv); 889 #endif 890 return (0); 891 } 892 893 /* 894 * Real interval timer expired: 895 * send process whose timer expired an alarm signal. 896 * If time is not set up to reload, then just return. 897 * Else compute next time timer should go off which is > current time. 898 * This is where delay in processing this timeout causes multiple 899 * SIGALRM calls to be compressed into one. 900 * tvtohz() always adds 1 to allow for the time until the next clock 901 * interrupt being strictly less than 1 clock tick, but we don't want 902 * that here since we want to appear to be in sync with the clock 903 * interrupt even when we're delayed. 904 */ 905 void 906 realitexpire(void *arg) 907 { 908 struct proc *p; 909 struct timeval ctv; 910 sbintime_t isbt; 911 912 p = (struct proc *)arg; 913 kern_psignal(p, SIGALRM); 914 if (!timevalisset(&p->p_realtimer.it_interval)) { 915 timevalclear(&p->p_realtimer.it_value); 916 if (p->p_flag & P_WEXIT) 917 wakeup(&p->p_itcallout); 918 return; 919 } 920 isbt = tvtosbt(p->p_realtimer.it_interval); 921 if (isbt >= sbt_timethreshold) 922 getmicrouptime(&ctv); 923 else 924 microuptime(&ctv); 925 do { 926 timevaladd(&p->p_realtimer.it_value, 927 &p->p_realtimer.it_interval); 928 } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=)); 929 callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value), 930 isbt >> tc_precexp, realitexpire, p, C_ABSOLUTE); 931 } 932 933 /* 934 * Check that a proposed value to load into the .it_value or 935 * .it_interval part of an interval timer is acceptable, and 936 * fix it to have at least minimal value (i.e. if it is less 937 * than the resolution of the clock, round it up.) 938 */ 939 int 940 itimerfix(struct timeval *tv) 941 { 942 943 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000) 944 return (EINVAL); 945 if (tv->tv_sec == 0 && tv->tv_usec != 0 && 946 tv->tv_usec < (u_int)tick / 16) 947 tv->tv_usec = (u_int)tick / 16; 948 return (0); 949 } 950 951 /* 952 * Decrement an interval timer by a specified number 953 * of microseconds, which must be less than a second, 954 * i.e. < 1000000. If the timer expires, then reload 955 * it. In this case, carry over (usec - old value) to 956 * reduce the value reloaded into the timer so that 957 * the timer does not drift. This routine assumes 958 * that it is called in a context where the timers 959 * on which it is operating cannot change in value. 960 */ 961 int 962 itimerdecr(struct itimerval *itp, int usec) 963 { 964 965 if (itp->it_value.tv_usec < usec) { 966 if (itp->it_value.tv_sec == 0) { 967 /* expired, and already in next interval */ 968 usec -= itp->it_value.tv_usec; 969 goto expire; 970 } 971 itp->it_value.tv_usec += 1000000; 972 itp->it_value.tv_sec--; 973 } 974 itp->it_value.tv_usec -= usec; 975 usec = 0; 976 if (timevalisset(&itp->it_value)) 977 return (1); 978 /* expired, exactly at end of interval */ 979 expire: 980 if (timevalisset(&itp->it_interval)) { 981 itp->it_value = itp->it_interval; 982 itp->it_value.tv_usec -= usec; 983 if (itp->it_value.tv_usec < 0) { 984 itp->it_value.tv_usec += 1000000; 985 itp->it_value.tv_sec--; 986 } 987 } else 988 itp->it_value.tv_usec = 0; /* sec is already 0 */ 989 return (0); 990 } 991 992 /* 993 * Add and subtract routines for timevals. 994 * N.B.: subtract routine doesn't deal with 995 * results which are before the beginning, 996 * it just gets very confused in this case. 997 * Caveat emptor. 998 */ 999 void 1000 timevaladd(struct timeval *t1, const struct timeval *t2) 1001 { 1002 1003 t1->tv_sec += t2->tv_sec; 1004 t1->tv_usec += t2->tv_usec; 1005 timevalfix(t1); 1006 } 1007 1008 void 1009 timevalsub(struct timeval *t1, const struct timeval *t2) 1010 { 1011 1012 t1->tv_sec -= t2->tv_sec; 1013 t1->tv_usec -= t2->tv_usec; 1014 timevalfix(t1); 1015 } 1016 1017 static void 1018 timevalfix(struct timeval *t1) 1019 { 1020 1021 if (t1->tv_usec < 0) { 1022 t1->tv_sec--; 1023 t1->tv_usec += 1000000; 1024 } 1025 if (t1->tv_usec >= 1000000) { 1026 t1->tv_sec++; 1027 t1->tv_usec -= 1000000; 1028 } 1029 } 1030 1031 /* 1032 * ratecheck(): simple time-based rate-limit checking. 1033 */ 1034 int 1035 ratecheck(struct timeval *lasttime, const struct timeval *mininterval) 1036 { 1037 struct timeval tv, delta; 1038 int rv = 0; 1039 1040 getmicrouptime(&tv); /* NB: 10ms precision */ 1041 delta = tv; 1042 timevalsub(&delta, lasttime); 1043 1044 /* 1045 * check for 0,0 is so that the message will be seen at least once, 1046 * even if interval is huge. 1047 */ 1048 if (timevalcmp(&delta, mininterval, >=) || 1049 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { 1050 *lasttime = tv; 1051 rv = 1; 1052 } 1053 1054 return (rv); 1055 } 1056 1057 /* 1058 * ppsratecheck(): packets (or events) per second limitation. 1059 * 1060 * Return 0 if the limit is to be enforced (e.g. the caller 1061 * should drop a packet because of the rate limitation). 1062 * 1063 * maxpps of 0 always causes zero to be returned. maxpps of -1 1064 * always causes 1 to be returned; this effectively defeats rate 1065 * limiting. 1066 * 1067 * Note that we maintain the struct timeval for compatibility 1068 * with other bsd systems. We reuse the storage and just monitor 1069 * clock ticks for minimal overhead. 1070 */ 1071 int 1072 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) 1073 { 1074 int now; 1075 1076 /* 1077 * Reset the last time and counter if this is the first call 1078 * or more than a second has passed since the last update of 1079 * lasttime. 1080 */ 1081 now = ticks; 1082 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) { 1083 lasttime->tv_sec = now; 1084 *curpps = 1; 1085 return (maxpps != 0); 1086 } else { 1087 (*curpps)++; /* NB: ignore potential overflow */ 1088 return (maxpps < 0 || *curpps <= maxpps); 1089 } 1090 } 1091 1092 static void 1093 itimer_start(void) 1094 { 1095 struct kclock rt_clock = { 1096 .timer_create = realtimer_create, 1097 .timer_delete = realtimer_delete, 1098 .timer_settime = realtimer_settime, 1099 .timer_gettime = realtimer_gettime, 1100 .event_hook = NULL 1101 }; 1102 1103 itimer_zone = uma_zcreate("itimer", sizeof(struct itimer), 1104 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0); 1105 register_posix_clock(CLOCK_REALTIME, &rt_clock); 1106 register_posix_clock(CLOCK_MONOTONIC, &rt_clock); 1107 p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L); 1108 p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX); 1109 p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX); 1110 EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit, 1111 (void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY); 1112 EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec, 1113 (void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY); 1114 } 1115 1116 int 1117 register_posix_clock(int clockid, struct kclock *clk) 1118 { 1119 if ((unsigned)clockid >= MAX_CLOCKS) { 1120 printf("%s: invalid clockid\n", __func__); 1121 return (0); 1122 } 1123 posix_clocks[clockid] = *clk; 1124 return (1); 1125 } 1126 1127 static int 1128 itimer_init(void *mem, int size, int flags) 1129 { 1130 struct itimer *it; 1131 1132 it = (struct itimer *)mem; 1133 mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF); 1134 return (0); 1135 } 1136 1137 static void 1138 itimer_fini(void *mem, int size) 1139 { 1140 struct itimer *it; 1141 1142 it = (struct itimer *)mem; 1143 mtx_destroy(&it->it_mtx); 1144 } 1145 1146 static void 1147 itimer_enter(struct itimer *it) 1148 { 1149 1150 mtx_assert(&it->it_mtx, MA_OWNED); 1151 it->it_usecount++; 1152 } 1153 1154 static void 1155 itimer_leave(struct itimer *it) 1156 { 1157 1158 mtx_assert(&it->it_mtx, MA_OWNED); 1159 KASSERT(it->it_usecount > 0, ("invalid it_usecount")); 1160 1161 if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0) 1162 wakeup(it); 1163 } 1164 1165 #ifndef _SYS_SYSPROTO_H_ 1166 struct ktimer_create_args { 1167 clockid_t clock_id; 1168 struct sigevent * evp; 1169 int * timerid; 1170 }; 1171 #endif 1172 int 1173 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap) 1174 { 1175 struct sigevent *evp, ev; 1176 int id; 1177 int error; 1178 1179 if (uap->evp == NULL) { 1180 evp = NULL; 1181 } else { 1182 error = copyin(uap->evp, &ev, sizeof(ev)); 1183 if (error != 0) 1184 return (error); 1185 evp = &ev; 1186 } 1187 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 1188 if (error == 0) { 1189 error = copyout(&id, uap->timerid, sizeof(int)); 1190 if (error != 0) 1191 kern_ktimer_delete(td, id); 1192 } 1193 return (error); 1194 } 1195 1196 int 1197 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp, 1198 int *timerid, int preset_id) 1199 { 1200 struct proc *p = td->td_proc; 1201 struct itimer *it; 1202 int id; 1203 int error; 1204 1205 if (clock_id < 0 || clock_id >= MAX_CLOCKS) 1206 return (EINVAL); 1207 1208 if (posix_clocks[clock_id].timer_create == NULL) 1209 return (EINVAL); 1210 1211 if (evp != NULL) { 1212 if (evp->sigev_notify != SIGEV_NONE && 1213 evp->sigev_notify != SIGEV_SIGNAL && 1214 evp->sigev_notify != SIGEV_THREAD_ID) 1215 return (EINVAL); 1216 if ((evp->sigev_notify == SIGEV_SIGNAL || 1217 evp->sigev_notify == SIGEV_THREAD_ID) && 1218 !_SIG_VALID(evp->sigev_signo)) 1219 return (EINVAL); 1220 } 1221 1222 if (p->p_itimers == NULL) 1223 itimers_alloc(p); 1224 1225 it = uma_zalloc(itimer_zone, M_WAITOK); 1226 it->it_flags = 0; 1227 it->it_usecount = 0; 1228 it->it_active = 0; 1229 timespecclear(&it->it_time.it_value); 1230 timespecclear(&it->it_time.it_interval); 1231 it->it_overrun = 0; 1232 it->it_overrun_last = 0; 1233 it->it_clockid = clock_id; 1234 it->it_timerid = -1; 1235 it->it_proc = p; 1236 ksiginfo_init(&it->it_ksi); 1237 it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT; 1238 error = CLOCK_CALL(clock_id, timer_create, (it)); 1239 if (error != 0) 1240 goto out; 1241 1242 PROC_LOCK(p); 1243 if (preset_id != -1) { 1244 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id")); 1245 id = preset_id; 1246 if (p->p_itimers->its_timers[id] != NULL) { 1247 PROC_UNLOCK(p); 1248 error = 0; 1249 goto out; 1250 } 1251 } else { 1252 /* 1253 * Find a free timer slot, skipping those reserved 1254 * for setitimer(). 1255 */ 1256 for (id = 3; id < TIMER_MAX; id++) 1257 if (p->p_itimers->its_timers[id] == NULL) 1258 break; 1259 if (id == TIMER_MAX) { 1260 PROC_UNLOCK(p); 1261 error = EAGAIN; 1262 goto out; 1263 } 1264 } 1265 it->it_timerid = id; 1266 p->p_itimers->its_timers[id] = it; 1267 if (evp != NULL) 1268 it->it_sigev = *evp; 1269 else { 1270 it->it_sigev.sigev_notify = SIGEV_SIGNAL; 1271 switch (clock_id) { 1272 default: 1273 case CLOCK_REALTIME: 1274 it->it_sigev.sigev_signo = SIGALRM; 1275 break; 1276 case CLOCK_VIRTUAL: 1277 it->it_sigev.sigev_signo = SIGVTALRM; 1278 break; 1279 case CLOCK_PROF: 1280 it->it_sigev.sigev_signo = SIGPROF; 1281 break; 1282 } 1283 it->it_sigev.sigev_value.sival_int = id; 1284 } 1285 1286 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1287 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1288 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo; 1289 it->it_ksi.ksi_code = SI_TIMER; 1290 it->it_ksi.ksi_value = it->it_sigev.sigev_value; 1291 it->it_ksi.ksi_timerid = id; 1292 } 1293 PROC_UNLOCK(p); 1294 *timerid = id; 1295 return (0); 1296 1297 out: 1298 ITIMER_LOCK(it); 1299 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1300 ITIMER_UNLOCK(it); 1301 uma_zfree(itimer_zone, it); 1302 return (error); 1303 } 1304 1305 #ifndef _SYS_SYSPROTO_H_ 1306 struct ktimer_delete_args { 1307 int timerid; 1308 }; 1309 #endif 1310 int 1311 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap) 1312 { 1313 1314 return (kern_ktimer_delete(td, uap->timerid)); 1315 } 1316 1317 static struct itimer * 1318 itimer_find(struct proc *p, int timerid) 1319 { 1320 struct itimer *it; 1321 1322 PROC_LOCK_ASSERT(p, MA_OWNED); 1323 if ((p->p_itimers == NULL) || 1324 (timerid < 0) || (timerid >= TIMER_MAX) || 1325 (it = p->p_itimers->its_timers[timerid]) == NULL) { 1326 return (NULL); 1327 } 1328 ITIMER_LOCK(it); 1329 if ((it->it_flags & ITF_DELETING) != 0) { 1330 ITIMER_UNLOCK(it); 1331 it = NULL; 1332 } 1333 return (it); 1334 } 1335 1336 int 1337 kern_ktimer_delete(struct thread *td, int timerid) 1338 { 1339 struct proc *p = td->td_proc; 1340 struct itimer *it; 1341 1342 PROC_LOCK(p); 1343 it = itimer_find(p, timerid); 1344 if (it == NULL) { 1345 PROC_UNLOCK(p); 1346 return (EINVAL); 1347 } 1348 PROC_UNLOCK(p); 1349 1350 it->it_flags |= ITF_DELETING; 1351 while (it->it_usecount > 0) { 1352 it->it_flags |= ITF_WANTED; 1353 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0); 1354 } 1355 it->it_flags &= ~ITF_WANTED; 1356 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1357 ITIMER_UNLOCK(it); 1358 1359 PROC_LOCK(p); 1360 if (KSI_ONQ(&it->it_ksi)) 1361 sigqueue_take(&it->it_ksi); 1362 p->p_itimers->its_timers[timerid] = NULL; 1363 PROC_UNLOCK(p); 1364 uma_zfree(itimer_zone, it); 1365 return (0); 1366 } 1367 1368 #ifndef _SYS_SYSPROTO_H_ 1369 struct ktimer_settime_args { 1370 int timerid; 1371 int flags; 1372 const struct itimerspec * value; 1373 struct itimerspec * ovalue; 1374 }; 1375 #endif 1376 int 1377 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap) 1378 { 1379 struct itimerspec val, oval, *ovalp; 1380 int error; 1381 1382 error = copyin(uap->value, &val, sizeof(val)); 1383 if (error != 0) 1384 return (error); 1385 ovalp = uap->ovalue != NULL ? &oval : NULL; 1386 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 1387 if (error == 0 && uap->ovalue != NULL) 1388 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp)); 1389 return (error); 1390 } 1391 1392 int 1393 kern_ktimer_settime(struct thread *td, int timer_id, int flags, 1394 struct itimerspec *val, struct itimerspec *oval) 1395 { 1396 struct proc *p; 1397 struct itimer *it; 1398 int error; 1399 1400 p = td->td_proc; 1401 PROC_LOCK(p); 1402 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1403 PROC_UNLOCK(p); 1404 error = EINVAL; 1405 } else { 1406 PROC_UNLOCK(p); 1407 itimer_enter(it); 1408 error = CLOCK_CALL(it->it_clockid, timer_settime, (it, 1409 flags, val, oval)); 1410 itimer_leave(it); 1411 ITIMER_UNLOCK(it); 1412 } 1413 return (error); 1414 } 1415 1416 #ifndef _SYS_SYSPROTO_H_ 1417 struct ktimer_gettime_args { 1418 int timerid; 1419 struct itimerspec * value; 1420 }; 1421 #endif 1422 int 1423 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap) 1424 { 1425 struct itimerspec val; 1426 int error; 1427 1428 error = kern_ktimer_gettime(td, uap->timerid, &val); 1429 if (error == 0) 1430 error = copyout(&val, uap->value, sizeof(val)); 1431 return (error); 1432 } 1433 1434 int 1435 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val) 1436 { 1437 struct proc *p; 1438 struct itimer *it; 1439 int error; 1440 1441 p = td->td_proc; 1442 PROC_LOCK(p); 1443 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1444 PROC_UNLOCK(p); 1445 error = EINVAL; 1446 } else { 1447 PROC_UNLOCK(p); 1448 itimer_enter(it); 1449 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val)); 1450 itimer_leave(it); 1451 ITIMER_UNLOCK(it); 1452 } 1453 return (error); 1454 } 1455 1456 #ifndef _SYS_SYSPROTO_H_ 1457 struct timer_getoverrun_args { 1458 int timerid; 1459 }; 1460 #endif 1461 int 1462 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap) 1463 { 1464 1465 return (kern_ktimer_getoverrun(td, uap->timerid)); 1466 } 1467 1468 int 1469 kern_ktimer_getoverrun(struct thread *td, int timer_id) 1470 { 1471 struct proc *p = td->td_proc; 1472 struct itimer *it; 1473 int error ; 1474 1475 PROC_LOCK(p); 1476 if (timer_id < 3 || 1477 (it = itimer_find(p, timer_id)) == NULL) { 1478 PROC_UNLOCK(p); 1479 error = EINVAL; 1480 } else { 1481 td->td_retval[0] = it->it_overrun_last; 1482 ITIMER_UNLOCK(it); 1483 PROC_UNLOCK(p); 1484 error = 0; 1485 } 1486 return (error); 1487 } 1488 1489 static int 1490 realtimer_create(struct itimer *it) 1491 { 1492 callout_init_mtx(&it->it_callout, &it->it_mtx, 0); 1493 return (0); 1494 } 1495 1496 static int 1497 realtimer_delete(struct itimer *it) 1498 { 1499 mtx_assert(&it->it_mtx, MA_OWNED); 1500 1501 /* 1502 * clear timer's value and interval to tell realtimer_expire 1503 * to not rearm the timer. 1504 */ 1505 timespecclear(&it->it_time.it_value); 1506 timespecclear(&it->it_time.it_interval); 1507 ITIMER_UNLOCK(it); 1508 callout_drain(&it->it_callout); 1509 ITIMER_LOCK(it); 1510 return (0); 1511 } 1512 1513 static int 1514 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue) 1515 { 1516 struct timespec cts; 1517 1518 mtx_assert(&it->it_mtx, MA_OWNED); 1519 1520 realtimer_clocktime(it->it_clockid, &cts); 1521 *ovalue = it->it_time; 1522 if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) { 1523 timespecsub(&ovalue->it_value, &cts); 1524 if (ovalue->it_value.tv_sec < 0 || 1525 (ovalue->it_value.tv_sec == 0 && 1526 ovalue->it_value.tv_nsec == 0)) { 1527 ovalue->it_value.tv_sec = 0; 1528 ovalue->it_value.tv_nsec = 1; 1529 } 1530 } 1531 return (0); 1532 } 1533 1534 static int 1535 realtimer_settime(struct itimer *it, int flags, 1536 struct itimerspec *value, struct itimerspec *ovalue) 1537 { 1538 struct timespec cts, ts; 1539 struct timeval tv; 1540 struct itimerspec val; 1541 1542 mtx_assert(&it->it_mtx, MA_OWNED); 1543 1544 val = *value; 1545 if (itimespecfix(&val.it_value)) 1546 return (EINVAL); 1547 1548 if (timespecisset(&val.it_value)) { 1549 if (itimespecfix(&val.it_interval)) 1550 return (EINVAL); 1551 } else { 1552 timespecclear(&val.it_interval); 1553 } 1554 1555 if (ovalue != NULL) 1556 realtimer_gettime(it, ovalue); 1557 1558 it->it_time = val; 1559 if (timespecisset(&val.it_value)) { 1560 realtimer_clocktime(it->it_clockid, &cts); 1561 ts = val.it_value; 1562 if ((flags & TIMER_ABSTIME) == 0) { 1563 /* Convert to absolute time. */ 1564 timespecadd(&it->it_time.it_value, &cts); 1565 } else { 1566 timespecsub(&ts, &cts); 1567 /* 1568 * We don't care if ts is negative, tztohz will 1569 * fix it. 1570 */ 1571 } 1572 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1573 callout_reset(&it->it_callout, tvtohz(&tv), 1574 realtimer_expire, it); 1575 } else { 1576 callout_stop(&it->it_callout); 1577 } 1578 1579 return (0); 1580 } 1581 1582 static void 1583 realtimer_clocktime(clockid_t id, struct timespec *ts) 1584 { 1585 if (id == CLOCK_REALTIME) 1586 getnanotime(ts); 1587 else /* CLOCK_MONOTONIC */ 1588 getnanouptime(ts); 1589 } 1590 1591 int 1592 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi) 1593 { 1594 struct itimer *it; 1595 1596 PROC_LOCK_ASSERT(p, MA_OWNED); 1597 it = itimer_find(p, timerid); 1598 if (it != NULL) { 1599 ksi->ksi_overrun = it->it_overrun; 1600 it->it_overrun_last = it->it_overrun; 1601 it->it_overrun = 0; 1602 ITIMER_UNLOCK(it); 1603 return (0); 1604 } 1605 return (EINVAL); 1606 } 1607 1608 int 1609 itimespecfix(struct timespec *ts) 1610 { 1611 1612 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1613 return (EINVAL); 1614 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000) 1615 ts->tv_nsec = tick * 1000; 1616 return (0); 1617 } 1618 1619 /* Timeout callback for realtime timer */ 1620 static void 1621 realtimer_expire(void *arg) 1622 { 1623 struct timespec cts, ts; 1624 struct timeval tv; 1625 struct itimer *it; 1626 1627 it = (struct itimer *)arg; 1628 1629 realtimer_clocktime(it->it_clockid, &cts); 1630 /* Only fire if time is reached. */ 1631 if (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1632 if (timespecisset(&it->it_time.it_interval)) { 1633 timespecadd(&it->it_time.it_value, 1634 &it->it_time.it_interval); 1635 while (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1636 if (it->it_overrun < INT_MAX) 1637 it->it_overrun++; 1638 else 1639 it->it_ksi.ksi_errno = ERANGE; 1640 timespecadd(&it->it_time.it_value, 1641 &it->it_time.it_interval); 1642 } 1643 } else { 1644 /* single shot timer ? */ 1645 timespecclear(&it->it_time.it_value); 1646 } 1647 if (timespecisset(&it->it_time.it_value)) { 1648 ts = it->it_time.it_value; 1649 timespecsub(&ts, &cts); 1650 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1651 callout_reset(&it->it_callout, tvtohz(&tv), 1652 realtimer_expire, it); 1653 } 1654 itimer_enter(it); 1655 ITIMER_UNLOCK(it); 1656 itimer_fire(it); 1657 ITIMER_LOCK(it); 1658 itimer_leave(it); 1659 } else if (timespecisset(&it->it_time.it_value)) { 1660 ts = it->it_time.it_value; 1661 timespecsub(&ts, &cts); 1662 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1663 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire, 1664 it); 1665 } 1666 } 1667 1668 void 1669 itimer_fire(struct itimer *it) 1670 { 1671 struct proc *p = it->it_proc; 1672 struct thread *td; 1673 1674 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1675 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1676 if (sigev_findtd(p, &it->it_sigev, &td) != 0) { 1677 ITIMER_LOCK(it); 1678 timespecclear(&it->it_time.it_value); 1679 timespecclear(&it->it_time.it_interval); 1680 callout_stop(&it->it_callout); 1681 ITIMER_UNLOCK(it); 1682 return; 1683 } 1684 if (!KSI_ONQ(&it->it_ksi)) { 1685 it->it_ksi.ksi_errno = 0; 1686 ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev); 1687 tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi); 1688 } else { 1689 if (it->it_overrun < INT_MAX) 1690 it->it_overrun++; 1691 else 1692 it->it_ksi.ksi_errno = ERANGE; 1693 } 1694 PROC_UNLOCK(p); 1695 } 1696 } 1697 1698 static void 1699 itimers_alloc(struct proc *p) 1700 { 1701 struct itimers *its; 1702 int i; 1703 1704 its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO); 1705 LIST_INIT(&its->its_virtual); 1706 LIST_INIT(&its->its_prof); 1707 TAILQ_INIT(&its->its_worklist); 1708 for (i = 0; i < TIMER_MAX; i++) 1709 its->its_timers[i] = NULL; 1710 PROC_LOCK(p); 1711 if (p->p_itimers == NULL) { 1712 p->p_itimers = its; 1713 PROC_UNLOCK(p); 1714 } 1715 else { 1716 PROC_UNLOCK(p); 1717 free(its, M_SUBPROC); 1718 } 1719 } 1720 1721 static void 1722 itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused) 1723 { 1724 itimers_event_hook_exit(arg, p); 1725 } 1726 1727 /* Clean up timers when some process events are being triggered. */ 1728 static void 1729 itimers_event_hook_exit(void *arg, struct proc *p) 1730 { 1731 struct itimers *its; 1732 struct itimer *it; 1733 int event = (int)(intptr_t)arg; 1734 int i; 1735 1736 if (p->p_itimers != NULL) { 1737 its = p->p_itimers; 1738 for (i = 0; i < MAX_CLOCKS; ++i) { 1739 if (posix_clocks[i].event_hook != NULL) 1740 CLOCK_CALL(i, event_hook, (p, i, event)); 1741 } 1742 /* 1743 * According to susv3, XSI interval timers should be inherited 1744 * by new image. 1745 */ 1746 if (event == ITIMER_EV_EXEC) 1747 i = 3; 1748 else if (event == ITIMER_EV_EXIT) 1749 i = 0; 1750 else 1751 panic("unhandled event"); 1752 for (; i < TIMER_MAX; ++i) { 1753 if ((it = its->its_timers[i]) != NULL) 1754 kern_ktimer_delete(curthread, i); 1755 } 1756 if (its->its_timers[0] == NULL && 1757 its->its_timers[1] == NULL && 1758 its->its_timers[2] == NULL) { 1759 free(its, M_SUBPROC); 1760 p->p_itimers = NULL; 1761 } 1762 } 1763 } 1764