xref: /freebsd/sys/kern/kern_time.c (revision 7660b554bc59a07be0431c17e0e33815818baa69)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  */
35 
36 #include <sys/cdefs.h>
37 __FBSDID("$FreeBSD$");
38 
39 #include "opt_mac.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 #include <sys/sysproto.h>
46 #include <sys/resourcevar.h>
47 #include <sys/signalvar.h>
48 #include <sys/kernel.h>
49 #include <sys/mac.h>
50 #include <sys/sysent.h>
51 #include <sys/proc.h>
52 #include <sys/time.h>
53 #include <sys/timetc.h>
54 #include <sys/vnode.h>
55 
56 #include <vm/vm.h>
57 #include <vm/vm_extern.h>
58 
59 int tz_minuteswest;
60 int tz_dsttime;
61 
62 /*
63  * Time of day and interval timer support.
64  *
65  * These routines provide the kernel entry points to get and set
66  * the time-of-day and per-process interval timers.  Subroutines
67  * here provide support for adding and subtracting timeval structures
68  * and decrementing interval timers, optionally reloading the interval
69  * timers when they expire.
70  */
71 
72 static int	nanosleep1(struct thread *td, struct timespec *rqt,
73 		    struct timespec *rmt);
74 static int	settime(struct thread *, struct timeval *);
75 static void	timevalfix(struct timeval *);
76 static void	no_lease_updatetime(int);
77 
78 static void
79 no_lease_updatetime(deltat)
80 	int deltat;
81 {
82 }
83 
84 void (*lease_updatetime)(int)  = no_lease_updatetime;
85 
86 static int
87 settime(struct thread *td, struct timeval *tv)
88 {
89 	struct timeval delta, tv1, tv2;
90 	static struct timeval maxtime, laststep;
91 	struct timespec ts;
92 	int s;
93 
94 	s = splclock();
95 	microtime(&tv1);
96 	delta = *tv;
97 	timevalsub(&delta, &tv1);
98 
99 	/*
100 	 * If the system is secure, we do not allow the time to be
101 	 * set to a value earlier than 1 second less than the highest
102 	 * time we have yet seen. The worst a miscreant can do in
103 	 * this circumstance is "freeze" time. He couldn't go
104 	 * back to the past.
105 	 *
106 	 * We similarly do not allow the clock to be stepped more
107 	 * than one second, nor more than once per second. This allows
108 	 * a miscreant to make the clock march double-time, but no worse.
109 	 */
110 	if (securelevel_gt(td->td_ucred, 1) != 0) {
111 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
112 			/*
113 			 * Update maxtime to latest time we've seen.
114 			 */
115 			if (tv1.tv_sec > maxtime.tv_sec)
116 				maxtime = tv1;
117 			tv2 = *tv;
118 			timevalsub(&tv2, &maxtime);
119 			if (tv2.tv_sec < -1) {
120 				tv->tv_sec = maxtime.tv_sec - 1;
121 				printf("Time adjustment clamped to -1 second\n");
122 			}
123 		} else {
124 			if (tv1.tv_sec == laststep.tv_sec) {
125 				splx(s);
126 				return (EPERM);
127 			}
128 			if (delta.tv_sec > 1) {
129 				tv->tv_sec = tv1.tv_sec + 1;
130 				printf("Time adjustment clamped to +1 second\n");
131 			}
132 			laststep = *tv;
133 		}
134 	}
135 
136 	ts.tv_sec = tv->tv_sec;
137 	ts.tv_nsec = tv->tv_usec * 1000;
138 	mtx_lock(&Giant);
139 	tc_setclock(&ts);
140 	(void) splsoftclock();
141 	lease_updatetime(delta.tv_sec);
142 	splx(s);
143 	resettodr();
144 	mtx_unlock(&Giant);
145 	return (0);
146 }
147 
148 #ifndef _SYS_SYSPROTO_H_
149 struct clock_gettime_args {
150 	clockid_t clock_id;
151 	struct	timespec *tp;
152 };
153 #endif
154 
155 /*
156  * MPSAFE
157  */
158 /* ARGSUSED */
159 int
160 clock_gettime(struct thread *td, struct clock_gettime_args *uap)
161 {
162 	struct timespec ats;
163 
164 	if (uap->clock_id == CLOCK_REALTIME)
165 		nanotime(&ats);
166 	else if (uap->clock_id == CLOCK_MONOTONIC)
167 		nanouptime(&ats);
168 	else
169 		return (EINVAL);
170 	return (copyout(&ats, uap->tp, sizeof(ats)));
171 }
172 
173 #ifndef _SYS_SYSPROTO_H_
174 struct clock_settime_args {
175 	clockid_t clock_id;
176 	const struct	timespec *tp;
177 };
178 #endif
179 
180 /*
181  * MPSAFE
182  */
183 /* ARGSUSED */
184 int
185 clock_settime(struct thread *td, struct clock_settime_args *uap)
186 {
187 	struct timeval atv;
188 	struct timespec ats;
189 	int error;
190 
191 #ifdef MAC
192 	error = mac_check_system_settime(td->td_ucred);
193 	if (error)
194 		return (error);
195 #endif
196 	if ((error = suser(td)) != 0)
197 		return (error);
198 	if (uap->clock_id != CLOCK_REALTIME)
199 		return (EINVAL);
200 	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
201 		return (error);
202 	if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
203 		return (EINVAL);
204 	/* XXX Don't convert nsec->usec and back */
205 	TIMESPEC_TO_TIMEVAL(&atv, &ats);
206 	error = settime(td, &atv);
207 	return (error);
208 }
209 
210 #ifndef _SYS_SYSPROTO_H_
211 struct clock_getres_args {
212 	clockid_t clock_id;
213 	struct	timespec *tp;
214 };
215 #endif
216 
217 int
218 clock_getres(struct thread *td, struct clock_getres_args *uap)
219 {
220 	struct timespec ts;
221 	int error;
222 
223 	if (uap->clock_id != CLOCK_REALTIME)
224 		return (EINVAL);
225 	error = 0;
226 	if (uap->tp) {
227 		ts.tv_sec = 0;
228 		/*
229 		 * Round up the result of the division cheaply by adding 1.
230 		 * Rounding up is especially important if rounding down
231 		 * would give 0.  Perfect rounding is unimportant.
232 		 */
233 		ts.tv_nsec = 1000000000 / tc_getfrequency() + 1;
234 		error = copyout(&ts, uap->tp, sizeof(ts));
235 	}
236 	return (error);
237 }
238 
239 static int nanowait;
240 
241 static int
242 nanosleep1(struct thread *td, struct timespec *rqt, struct timespec *rmt)
243 {
244 	struct timespec ts, ts2, ts3;
245 	struct timeval tv;
246 	int error;
247 
248 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
249 		return (EINVAL);
250 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
251 		return (0);
252 	getnanouptime(&ts);
253 	timespecadd(&ts, rqt);
254 	TIMESPEC_TO_TIMEVAL(&tv, rqt);
255 	for (;;) {
256 		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
257 		    tvtohz(&tv));
258 		getnanouptime(&ts2);
259 		if (error != EWOULDBLOCK) {
260 			if (error == ERESTART)
261 				error = EINTR;
262 			if (rmt != NULL) {
263 				timespecsub(&ts, &ts2);
264 				if (ts.tv_sec < 0)
265 					timespecclear(&ts);
266 				*rmt = ts;
267 			}
268 			return (error);
269 		}
270 		if (timespeccmp(&ts2, &ts, >=))
271 			return (0);
272 		ts3 = ts;
273 		timespecsub(&ts3, &ts2);
274 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
275 	}
276 }
277 
278 #ifndef _SYS_SYSPROTO_H_
279 struct nanosleep_args {
280 	struct	timespec *rqtp;
281 	struct	timespec *rmtp;
282 };
283 #endif
284 
285 /*
286  * MPSAFE
287  */
288 /* ARGSUSED */
289 int
290 nanosleep(struct thread *td, struct nanosleep_args *uap)
291 {
292 	struct timespec rmt, rqt;
293 	int error;
294 
295 	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
296 	if (error)
297 		return (error);
298 
299 	if (uap->rmtp &&
300 	    !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
301 			return (EFAULT);
302 	error = nanosleep1(td, &rqt, &rmt);
303 	if (error && uap->rmtp) {
304 		int error2;
305 
306 		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
307 		if (error2)
308 			error = error2;
309 	}
310 	return (error);
311 }
312 
313 #ifndef _SYS_SYSPROTO_H_
314 struct gettimeofday_args {
315 	struct	timeval *tp;
316 	struct	timezone *tzp;
317 };
318 #endif
319 /*
320  * MPSAFE
321  */
322 /* ARGSUSED */
323 int
324 gettimeofday(struct thread *td, struct gettimeofday_args *uap)
325 {
326 	struct timeval atv;
327 	struct timezone rtz;
328 	int error = 0;
329 
330 	if (uap->tp) {
331 		microtime(&atv);
332 		error = copyout(&atv, uap->tp, sizeof (atv));
333 	}
334 	if (error == 0 && uap->tzp != NULL) {
335 		rtz.tz_minuteswest = tz_minuteswest;
336 		rtz.tz_dsttime = tz_dsttime;
337 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
338 	}
339 	return (error);
340 }
341 
342 #ifndef _SYS_SYSPROTO_H_
343 struct settimeofday_args {
344 	struct	timeval *tv;
345 	struct	timezone *tzp;
346 };
347 #endif
348 /*
349  * MPSAFE
350  */
351 /* ARGSUSED */
352 int
353 settimeofday(struct thread *td, struct settimeofday_args *uap)
354 {
355 	struct timeval atv;
356 	struct timezone atz;
357 	int error = 0;
358 
359 #ifdef MAC
360 	error = mac_check_system_settime(td->td_ucred);
361 	if (error)
362 		return (error);
363 #endif
364 	if ((error = suser(td)))
365 		return (error);
366 	/* Verify all parameters before changing time. */
367 	if (uap->tv) {
368 		if ((error = copyin(uap->tv, &atv, sizeof(atv))))
369 			return (error);
370 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
371 			return (EINVAL);
372 	}
373 	if (uap->tzp &&
374 	    (error = copyin(uap->tzp, &atz, sizeof(atz))))
375 		return (error);
376 
377 	if (uap->tv && (error = settime(td, &atv)))
378 		return (error);
379 	if (uap->tzp) {
380 		tz_minuteswest = atz.tz_minuteswest;
381 		tz_dsttime = atz.tz_dsttime;
382 	}
383 	return (error);
384 }
385 /*
386  * Get value of an interval timer.  The process virtual and
387  * profiling virtual time timers are kept in the p_stats area, since
388  * they can be swapped out.  These are kept internally in the
389  * way they are specified externally: in time until they expire.
390  *
391  * The real time interval timer is kept in the process table slot
392  * for the process, and its value (it_value) is kept as an
393  * absolute time rather than as a delta, so that it is easy to keep
394  * periodic real-time signals from drifting.
395  *
396  * Virtual time timers are processed in the hardclock() routine of
397  * kern_clock.c.  The real time timer is processed by a timeout
398  * routine, called from the softclock() routine.  Since a callout
399  * may be delayed in real time due to interrupt processing in the system,
400  * it is possible for the real time timeout routine (realitexpire, given below),
401  * to be delayed in real time past when it is supposed to occur.  It
402  * does not suffice, therefore, to reload the real timer .it_value from the
403  * real time timers .it_interval.  Rather, we compute the next time in
404  * absolute time the timer should go off.
405  */
406 #ifndef _SYS_SYSPROTO_H_
407 struct getitimer_args {
408 	u_int	which;
409 	struct	itimerval *itv;
410 };
411 #endif
412 /*
413  * MPSAFE
414  */
415 int
416 getitimer(struct thread *td, struct getitimer_args *uap)
417 {
418 	struct proc *p = td->td_proc;
419 	struct timeval ctv;
420 	struct itimerval aitv;
421 
422 	if (uap->which > ITIMER_PROF)
423 		return (EINVAL);
424 
425 	if (uap->which == ITIMER_REAL) {
426 		/*
427 		 * Convert from absolute to relative time in .it_value
428 		 * part of real time timer.  If time for real time timer
429 		 * has passed return 0, else return difference between
430 		 * current time and time for the timer to go off.
431 		 */
432 		PROC_LOCK(p);
433 		aitv = p->p_realtimer;
434 		PROC_UNLOCK(p);
435 		if (timevalisset(&aitv.it_value)) {
436 			getmicrouptime(&ctv);
437 			if (timevalcmp(&aitv.it_value, &ctv, <))
438 				timevalclear(&aitv.it_value);
439 			else
440 				timevalsub(&aitv.it_value, &ctv);
441 		}
442 	} else {
443 		mtx_lock_spin(&sched_lock);
444 		aitv = p->p_stats->p_timer[uap->which];
445 		mtx_unlock_spin(&sched_lock);
446 	}
447 	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
448 }
449 
450 #ifndef _SYS_SYSPROTO_H_
451 struct setitimer_args {
452 	u_int	which;
453 	struct	itimerval *itv, *oitv;
454 };
455 #endif
456 /*
457  * MPSAFE
458  */
459 int
460 setitimer(struct thread *td, struct setitimer_args *uap)
461 {
462 	struct proc *p = td->td_proc;
463 	struct itimerval aitv, oitv;
464 	struct timeval ctv;
465 	int error;
466 
467 	if (uap->itv == NULL) {
468 		uap->itv = uap->oitv;
469 		return (getitimer(td, (struct getitimer_args *)uap));
470 	}
471 
472 	if (uap->which > ITIMER_PROF)
473 		return (EINVAL);
474 	if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
475 		return (error);
476 	if (itimerfix(&aitv.it_value))
477 		return (EINVAL);
478 	if (!timevalisset(&aitv.it_value))
479 		timevalclear(&aitv.it_interval);
480 	else if (itimerfix(&aitv.it_interval))
481 		return (EINVAL);
482 
483 	if (uap->which == ITIMER_REAL) {
484 		PROC_LOCK(p);
485 		if (timevalisset(&p->p_realtimer.it_value))
486 			callout_stop(&p->p_itcallout);
487 		getmicrouptime(&ctv);
488 		if (timevalisset(&aitv.it_value)) {
489 			callout_reset(&p->p_itcallout, tvtohz(&aitv.it_value),
490 			    realitexpire, p);
491 			timevaladd(&aitv.it_value, &ctv);
492 		}
493 		oitv = p->p_realtimer;
494 		p->p_realtimer = aitv;
495 		PROC_UNLOCK(p);
496 		if (timevalisset(&oitv.it_value)) {
497 			if (timevalcmp(&oitv.it_value, &ctv, <))
498 				timevalclear(&oitv.it_value);
499 			else
500 				timevalsub(&oitv.it_value, &ctv);
501 		}
502 	} else {
503 		mtx_lock_spin(&sched_lock);
504 		oitv = p->p_stats->p_timer[uap->which];
505 		p->p_stats->p_timer[uap->which] = aitv;
506 		mtx_unlock_spin(&sched_lock);
507 	}
508 	if (uap->oitv == NULL)
509 		return (0);
510 	return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
511 }
512 
513 /*
514  * Real interval timer expired:
515  * send process whose timer expired an alarm signal.
516  * If time is not set up to reload, then just return.
517  * Else compute next time timer should go off which is > current time.
518  * This is where delay in processing this timeout causes multiple
519  * SIGALRM calls to be compressed into one.
520  * tvtohz() always adds 1 to allow for the time until the next clock
521  * interrupt being strictly less than 1 clock tick, but we don't want
522  * that here since we want to appear to be in sync with the clock
523  * interrupt even when we're delayed.
524  */
525 void
526 realitexpire(void *arg)
527 {
528 	struct proc *p;
529 	struct timeval ctv, ntv;
530 
531 	p = (struct proc *)arg;
532 	PROC_LOCK(p);
533 	psignal(p, SIGALRM);
534 	if (!timevalisset(&p->p_realtimer.it_interval)) {
535 		timevalclear(&p->p_realtimer.it_value);
536 		if (p->p_flag & P_WEXIT)
537 			wakeup(&p->p_itcallout);
538 		PROC_UNLOCK(p);
539 		return;
540 	}
541 	for (;;) {
542 		timevaladd(&p->p_realtimer.it_value,
543 		    &p->p_realtimer.it_interval);
544 		getmicrouptime(&ctv);
545 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
546 			ntv = p->p_realtimer.it_value;
547 			timevalsub(&ntv, &ctv);
548 			callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
549 			    realitexpire, p);
550 			PROC_UNLOCK(p);
551 			return;
552 		}
553 	}
554 	/*NOTREACHED*/
555 }
556 
557 /*
558  * Check that a proposed value to load into the .it_value or
559  * .it_interval part of an interval timer is acceptable, and
560  * fix it to have at least minimal value (i.e. if it is less
561  * than the resolution of the clock, round it up.)
562  */
563 int
564 itimerfix(struct timeval *tv)
565 {
566 
567 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
568 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
569 		return (EINVAL);
570 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
571 		tv->tv_usec = tick;
572 	return (0);
573 }
574 
575 /*
576  * Decrement an interval timer by a specified number
577  * of microseconds, which must be less than a second,
578  * i.e. < 1000000.  If the timer expires, then reload
579  * it.  In this case, carry over (usec - old value) to
580  * reduce the value reloaded into the timer so that
581  * the timer does not drift.  This routine assumes
582  * that it is called in a context where the timers
583  * on which it is operating cannot change in value.
584  */
585 int
586 itimerdecr(struct itimerval *itp, int usec)
587 {
588 
589 	if (itp->it_value.tv_usec < usec) {
590 		if (itp->it_value.tv_sec == 0) {
591 			/* expired, and already in next interval */
592 			usec -= itp->it_value.tv_usec;
593 			goto expire;
594 		}
595 		itp->it_value.tv_usec += 1000000;
596 		itp->it_value.tv_sec--;
597 	}
598 	itp->it_value.tv_usec -= usec;
599 	usec = 0;
600 	if (timevalisset(&itp->it_value))
601 		return (1);
602 	/* expired, exactly at end of interval */
603 expire:
604 	if (timevalisset(&itp->it_interval)) {
605 		itp->it_value = itp->it_interval;
606 		itp->it_value.tv_usec -= usec;
607 		if (itp->it_value.tv_usec < 0) {
608 			itp->it_value.tv_usec += 1000000;
609 			itp->it_value.tv_sec--;
610 		}
611 	} else
612 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
613 	return (0);
614 }
615 
616 /*
617  * Add and subtract routines for timevals.
618  * N.B.: subtract routine doesn't deal with
619  * results which are before the beginning,
620  * it just gets very confused in this case.
621  * Caveat emptor.
622  */
623 void
624 timevaladd(struct timeval *t1, struct timeval *t2)
625 {
626 
627 	t1->tv_sec += t2->tv_sec;
628 	t1->tv_usec += t2->tv_usec;
629 	timevalfix(t1);
630 }
631 
632 void
633 timevalsub(struct timeval *t1, struct timeval *t2)
634 {
635 
636 	t1->tv_sec -= t2->tv_sec;
637 	t1->tv_usec -= t2->tv_usec;
638 	timevalfix(t1);
639 }
640 
641 static void
642 timevalfix(struct timeval *t1)
643 {
644 
645 	if (t1->tv_usec < 0) {
646 		t1->tv_sec--;
647 		t1->tv_usec += 1000000;
648 	}
649 	if (t1->tv_usec >= 1000000) {
650 		t1->tv_sec++;
651 		t1->tv_usec -= 1000000;
652 	}
653 }
654 
655 /*
656  * ratecheck(): simple time-based rate-limit checking.
657  */
658 int
659 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
660 {
661 	struct timeval tv, delta;
662 	int rv = 0;
663 
664 	getmicrouptime(&tv);		/* NB: 10ms precision */
665 	delta = tv;
666 	timevalsub(&delta, lasttime);
667 
668 	/*
669 	 * check for 0,0 is so that the message will be seen at least once,
670 	 * even if interval is huge.
671 	 */
672 	if (timevalcmp(&delta, mininterval, >=) ||
673 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
674 		*lasttime = tv;
675 		rv = 1;
676 	}
677 
678 	return (rv);
679 }
680 
681 /*
682  * ppsratecheck(): packets (or events) per second limitation.
683  *
684  * Return 0 if the limit is to be enforced (e.g. the caller
685  * should drop a packet because of the rate limitation).
686  *
687  * maxpps of 0 always causes zero to be returned.  maxpps of -1
688  * always causes 1 to be returned; this effectively defeats rate
689  * limiting.
690  *
691  * Note that we maintain the struct timeval for compatibility
692  * with other bsd systems.  We reuse the storage and just monitor
693  * clock ticks for minimal overhead.
694  */
695 int
696 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
697 {
698 	int now;
699 
700 	/*
701 	 * Reset the last time and counter if this is the first call
702 	 * or more than a second has passed since the last update of
703 	 * lasttime.
704 	 */
705 	now = ticks;
706 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
707 		lasttime->tv_sec = now;
708 		*curpps = 1;
709 		return (maxpps != 0);
710 	} else {
711 		(*curpps)++;		/* NB: ignore potential overflow */
712 		return (maxpps < 0 || *curpps < maxpps);
713 	}
714 }
715