1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ktrace.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/limits.h> 42 #include <sys/clock.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/sysproto.h> 46 #include <sys/eventhandler.h> 47 #include <sys/resourcevar.h> 48 #include <sys/signalvar.h> 49 #include <sys/kernel.h> 50 #include <sys/sleepqueue.h> 51 #include <sys/syscallsubr.h> 52 #include <sys/sysctl.h> 53 #include <sys/sysent.h> 54 #include <sys/priv.h> 55 #include <sys/proc.h> 56 #include <sys/posix4.h> 57 #include <sys/time.h> 58 #include <sys/timers.h> 59 #include <sys/timetc.h> 60 #include <sys/vnode.h> 61 #ifdef KTRACE 62 #include <sys/ktrace.h> 63 #endif 64 65 #include <vm/vm.h> 66 #include <vm/vm_extern.h> 67 68 #define MAX_CLOCKS (CLOCK_MONOTONIC+1) 69 #define CPUCLOCK_BIT 0x80000000 70 #define CPUCLOCK_PROCESS_BIT 0x40000000 71 #define CPUCLOCK_ID_MASK (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT)) 72 #define MAKE_THREAD_CPUCLOCK(tid) (CPUCLOCK_BIT|(tid)) 73 #define MAKE_PROCESS_CPUCLOCK(pid) \ 74 (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid)) 75 76 static struct kclock posix_clocks[MAX_CLOCKS]; 77 static uma_zone_t itimer_zone = NULL; 78 79 /* 80 * Time of day and interval timer support. 81 * 82 * These routines provide the kernel entry points to get and set 83 * the time-of-day and per-process interval timers. Subroutines 84 * here provide support for adding and subtracting timeval structures 85 * and decrementing interval timers, optionally reloading the interval 86 * timers when they expire. 87 */ 88 89 static int settime(struct thread *, struct timeval *); 90 static void timevalfix(struct timeval *); 91 static int user_clock_nanosleep(struct thread *td, clockid_t clock_id, 92 int flags, const struct timespec *ua_rqtp, 93 struct timespec *ua_rmtp); 94 95 static void itimer_start(void); 96 static int itimer_init(void *, int, int); 97 static void itimer_fini(void *, int); 98 static void itimer_enter(struct itimer *); 99 static void itimer_leave(struct itimer *); 100 static struct itimer *itimer_find(struct proc *, int); 101 static void itimers_alloc(struct proc *); 102 static void itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp); 103 static void itimers_event_hook_exit(void *arg, struct proc *p); 104 static int realtimer_create(struct itimer *); 105 static int realtimer_gettime(struct itimer *, struct itimerspec *); 106 static int realtimer_settime(struct itimer *, int, 107 struct itimerspec *, struct itimerspec *); 108 static int realtimer_delete(struct itimer *); 109 static void realtimer_clocktime(clockid_t, struct timespec *); 110 static void realtimer_expire(void *); 111 112 int register_posix_clock(int, struct kclock *); 113 void itimer_fire(struct itimer *it); 114 int itimespecfix(struct timespec *ts); 115 116 #define CLOCK_CALL(clock, call, arglist) \ 117 ((*posix_clocks[clock].call) arglist) 118 119 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL); 120 121 122 static int 123 settime(struct thread *td, struct timeval *tv) 124 { 125 struct timeval delta, tv1, tv2; 126 static struct timeval maxtime, laststep; 127 struct timespec ts; 128 129 microtime(&tv1); 130 delta = *tv; 131 timevalsub(&delta, &tv1); 132 133 /* 134 * If the system is secure, we do not allow the time to be 135 * set to a value earlier than 1 second less than the highest 136 * time we have yet seen. The worst a miscreant can do in 137 * this circumstance is "freeze" time. He couldn't go 138 * back to the past. 139 * 140 * We similarly do not allow the clock to be stepped more 141 * than one second, nor more than once per second. This allows 142 * a miscreant to make the clock march double-time, but no worse. 143 */ 144 if (securelevel_gt(td->td_ucred, 1) != 0) { 145 if (delta.tv_sec < 0 || delta.tv_usec < 0) { 146 /* 147 * Update maxtime to latest time we've seen. 148 */ 149 if (tv1.tv_sec > maxtime.tv_sec) 150 maxtime = tv1; 151 tv2 = *tv; 152 timevalsub(&tv2, &maxtime); 153 if (tv2.tv_sec < -1) { 154 tv->tv_sec = maxtime.tv_sec - 1; 155 printf("Time adjustment clamped to -1 second\n"); 156 } 157 } else { 158 if (tv1.tv_sec == laststep.tv_sec) 159 return (EPERM); 160 if (delta.tv_sec > 1) { 161 tv->tv_sec = tv1.tv_sec + 1; 162 printf("Time adjustment clamped to +1 second\n"); 163 } 164 laststep = *tv; 165 } 166 } 167 168 ts.tv_sec = tv->tv_sec; 169 ts.tv_nsec = tv->tv_usec * 1000; 170 tc_setclock(&ts); 171 resettodr(); 172 return (0); 173 } 174 175 #ifndef _SYS_SYSPROTO_H_ 176 struct clock_getcpuclockid2_args { 177 id_t id; 178 int which, 179 clockid_t *clock_id; 180 }; 181 #endif 182 /* ARGSUSED */ 183 int 184 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap) 185 { 186 clockid_t clk_id; 187 int error; 188 189 error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id); 190 if (error == 0) 191 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 192 return (error); 193 } 194 195 int 196 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which, 197 clockid_t *clk_id) 198 { 199 struct proc *p; 200 pid_t pid; 201 lwpid_t tid; 202 int error; 203 204 switch (which) { 205 case CPUCLOCK_WHICH_PID: 206 if (id != 0) { 207 error = pget(id, PGET_CANSEE | PGET_NOTID, &p); 208 if (error != 0) 209 return (error); 210 PROC_UNLOCK(p); 211 pid = id; 212 } else { 213 pid = td->td_proc->p_pid; 214 } 215 *clk_id = MAKE_PROCESS_CPUCLOCK(pid); 216 return (0); 217 case CPUCLOCK_WHICH_TID: 218 tid = id == 0 ? td->td_tid : id; 219 *clk_id = MAKE_THREAD_CPUCLOCK(tid); 220 return (0); 221 default: 222 return (EINVAL); 223 } 224 } 225 226 #ifndef _SYS_SYSPROTO_H_ 227 struct clock_gettime_args { 228 clockid_t clock_id; 229 struct timespec *tp; 230 }; 231 #endif 232 /* ARGSUSED */ 233 int 234 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap) 235 { 236 struct timespec ats; 237 int error; 238 239 error = kern_clock_gettime(td, uap->clock_id, &ats); 240 if (error == 0) 241 error = copyout(&ats, uap->tp, sizeof(ats)); 242 243 return (error); 244 } 245 246 static inline void 247 cputick2timespec(uint64_t runtime, struct timespec *ats) 248 { 249 runtime = cputick2usec(runtime); 250 ats->tv_sec = runtime / 1000000; 251 ats->tv_nsec = runtime % 1000000 * 1000; 252 } 253 254 static void 255 get_thread_cputime(struct thread *targettd, struct timespec *ats) 256 { 257 uint64_t runtime, curtime, switchtime; 258 259 if (targettd == NULL) { /* current thread */ 260 critical_enter(); 261 switchtime = PCPU_GET(switchtime); 262 curtime = cpu_ticks(); 263 runtime = curthread->td_runtime; 264 critical_exit(); 265 runtime += curtime - switchtime; 266 } else { 267 thread_lock(targettd); 268 runtime = targettd->td_runtime; 269 thread_unlock(targettd); 270 } 271 cputick2timespec(runtime, ats); 272 } 273 274 static void 275 get_process_cputime(struct proc *targetp, struct timespec *ats) 276 { 277 uint64_t runtime; 278 struct rusage ru; 279 280 PROC_STATLOCK(targetp); 281 rufetch(targetp, &ru); 282 runtime = targetp->p_rux.rux_runtime; 283 if (curthread->td_proc == targetp) 284 runtime += cpu_ticks() - PCPU_GET(switchtime); 285 PROC_STATUNLOCK(targetp); 286 cputick2timespec(runtime, ats); 287 } 288 289 static int 290 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats) 291 { 292 struct proc *p, *p2; 293 struct thread *td2; 294 lwpid_t tid; 295 pid_t pid; 296 int error; 297 298 p = td->td_proc; 299 if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) { 300 tid = clock_id & CPUCLOCK_ID_MASK; 301 td2 = tdfind(tid, p->p_pid); 302 if (td2 == NULL) 303 return (EINVAL); 304 get_thread_cputime(td2, ats); 305 PROC_UNLOCK(td2->td_proc); 306 } else { 307 pid = clock_id & CPUCLOCK_ID_MASK; 308 error = pget(pid, PGET_CANSEE, &p2); 309 if (error != 0) 310 return (EINVAL); 311 get_process_cputime(p2, ats); 312 PROC_UNLOCK(p2); 313 } 314 return (0); 315 } 316 317 int 318 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats) 319 { 320 struct timeval sys, user; 321 struct proc *p; 322 323 p = td->td_proc; 324 switch (clock_id) { 325 case CLOCK_REALTIME: /* Default to precise. */ 326 case CLOCK_REALTIME_PRECISE: 327 nanotime(ats); 328 break; 329 case CLOCK_REALTIME_FAST: 330 getnanotime(ats); 331 break; 332 case CLOCK_VIRTUAL: 333 PROC_LOCK(p); 334 PROC_STATLOCK(p); 335 calcru(p, &user, &sys); 336 PROC_STATUNLOCK(p); 337 PROC_UNLOCK(p); 338 TIMEVAL_TO_TIMESPEC(&user, ats); 339 break; 340 case CLOCK_PROF: 341 PROC_LOCK(p); 342 PROC_STATLOCK(p); 343 calcru(p, &user, &sys); 344 PROC_STATUNLOCK(p); 345 PROC_UNLOCK(p); 346 timevaladd(&user, &sys); 347 TIMEVAL_TO_TIMESPEC(&user, ats); 348 break; 349 case CLOCK_MONOTONIC: /* Default to precise. */ 350 case CLOCK_MONOTONIC_PRECISE: 351 case CLOCK_UPTIME: 352 case CLOCK_UPTIME_PRECISE: 353 nanouptime(ats); 354 break; 355 case CLOCK_UPTIME_FAST: 356 case CLOCK_MONOTONIC_FAST: 357 getnanouptime(ats); 358 break; 359 case CLOCK_SECOND: 360 ats->tv_sec = time_second; 361 ats->tv_nsec = 0; 362 break; 363 case CLOCK_THREAD_CPUTIME_ID: 364 get_thread_cputime(NULL, ats); 365 break; 366 case CLOCK_PROCESS_CPUTIME_ID: 367 PROC_LOCK(p); 368 get_process_cputime(p, ats); 369 PROC_UNLOCK(p); 370 break; 371 default: 372 if ((int)clock_id >= 0) 373 return (EINVAL); 374 return (get_cputime(td, clock_id, ats)); 375 } 376 return (0); 377 } 378 379 #ifndef _SYS_SYSPROTO_H_ 380 struct clock_settime_args { 381 clockid_t clock_id; 382 const struct timespec *tp; 383 }; 384 #endif 385 /* ARGSUSED */ 386 int 387 sys_clock_settime(struct thread *td, struct clock_settime_args *uap) 388 { 389 struct timespec ats; 390 int error; 391 392 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0) 393 return (error); 394 return (kern_clock_settime(td, uap->clock_id, &ats)); 395 } 396 397 static int allow_insane_settime = 0; 398 SYSCTL_INT(_debug, OID_AUTO, allow_insane_settime, CTLFLAG_RWTUN, 399 &allow_insane_settime, 0, 400 "do not perform possibly restrictive checks on settime(2) args"); 401 402 int 403 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats) 404 { 405 struct timeval atv; 406 int error; 407 408 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 409 return (error); 410 if (clock_id != CLOCK_REALTIME) 411 return (EINVAL); 412 if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000 || 413 ats->tv_sec < 0) 414 return (EINVAL); 415 if (!allow_insane_settime && ats->tv_sec > 8000ULL * 365 * 24 * 60 * 60) 416 return (EINVAL); 417 /* XXX Don't convert nsec->usec and back */ 418 TIMESPEC_TO_TIMEVAL(&atv, ats); 419 error = settime(td, &atv); 420 return (error); 421 } 422 423 #ifndef _SYS_SYSPROTO_H_ 424 struct clock_getres_args { 425 clockid_t clock_id; 426 struct timespec *tp; 427 }; 428 #endif 429 int 430 sys_clock_getres(struct thread *td, struct clock_getres_args *uap) 431 { 432 struct timespec ts; 433 int error; 434 435 if (uap->tp == NULL) 436 return (0); 437 438 error = kern_clock_getres(td, uap->clock_id, &ts); 439 if (error == 0) 440 error = copyout(&ts, uap->tp, sizeof(ts)); 441 return (error); 442 } 443 444 int 445 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts) 446 { 447 448 ts->tv_sec = 0; 449 switch (clock_id) { 450 case CLOCK_REALTIME: 451 case CLOCK_REALTIME_FAST: 452 case CLOCK_REALTIME_PRECISE: 453 case CLOCK_MONOTONIC: 454 case CLOCK_MONOTONIC_FAST: 455 case CLOCK_MONOTONIC_PRECISE: 456 case CLOCK_UPTIME: 457 case CLOCK_UPTIME_FAST: 458 case CLOCK_UPTIME_PRECISE: 459 /* 460 * Round up the result of the division cheaply by adding 1. 461 * Rounding up is especially important if rounding down 462 * would give 0. Perfect rounding is unimportant. 463 */ 464 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1; 465 break; 466 case CLOCK_VIRTUAL: 467 case CLOCK_PROF: 468 /* Accurately round up here because we can do so cheaply. */ 469 ts->tv_nsec = howmany(1000000000, hz); 470 break; 471 case CLOCK_SECOND: 472 ts->tv_sec = 1; 473 ts->tv_nsec = 0; 474 break; 475 case CLOCK_THREAD_CPUTIME_ID: 476 case CLOCK_PROCESS_CPUTIME_ID: 477 cputime: 478 /* sync with cputick2usec */ 479 ts->tv_nsec = 1000000 / cpu_tickrate(); 480 if (ts->tv_nsec == 0) 481 ts->tv_nsec = 1000; 482 break; 483 default: 484 if ((int)clock_id < 0) 485 goto cputime; 486 return (EINVAL); 487 } 488 return (0); 489 } 490 491 int 492 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt) 493 { 494 495 return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt, 496 rmt)); 497 } 498 499 static uint8_t nanowait[MAXCPU]; 500 501 int 502 kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 503 const struct timespec *rqt, struct timespec *rmt) 504 { 505 struct timespec ts, now; 506 sbintime_t sbt, sbtt, prec, tmp; 507 time_t over; 508 int error; 509 bool is_abs_real; 510 511 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000) 512 return (EINVAL); 513 if ((flags & ~TIMER_ABSTIME) != 0) 514 return (EINVAL); 515 switch (clock_id) { 516 case CLOCK_REALTIME: 517 case CLOCK_REALTIME_PRECISE: 518 case CLOCK_REALTIME_FAST: 519 case CLOCK_SECOND: 520 is_abs_real = (flags & TIMER_ABSTIME) != 0; 521 break; 522 case CLOCK_MONOTONIC: 523 case CLOCK_MONOTONIC_PRECISE: 524 case CLOCK_MONOTONIC_FAST: 525 case CLOCK_UPTIME: 526 case CLOCK_UPTIME_PRECISE: 527 case CLOCK_UPTIME_FAST: 528 is_abs_real = false; 529 break; 530 case CLOCK_VIRTUAL: 531 case CLOCK_PROF: 532 case CLOCK_PROCESS_CPUTIME_ID: 533 return (ENOTSUP); 534 case CLOCK_THREAD_CPUTIME_ID: 535 default: 536 return (EINVAL); 537 } 538 do { 539 ts = *rqt; 540 if ((flags & TIMER_ABSTIME) != 0) { 541 if (is_abs_real) 542 td->td_rtcgen = 543 atomic_load_acq_int(&rtc_generation); 544 error = kern_clock_gettime(td, clock_id, &now); 545 KASSERT(error == 0, ("kern_clock_gettime: %d", error)); 546 timespecsub(&ts, &now, &ts); 547 } 548 if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) { 549 error = EWOULDBLOCK; 550 break; 551 } 552 if (ts.tv_sec > INT32_MAX / 2) { 553 over = ts.tv_sec - INT32_MAX / 2; 554 ts.tv_sec -= over; 555 } else 556 over = 0; 557 tmp = tstosbt(ts); 558 prec = tmp; 559 prec >>= tc_precexp; 560 if (TIMESEL(&sbt, tmp)) 561 sbt += tc_tick_sbt; 562 sbt += tmp; 563 error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp", 564 sbt, prec, C_ABSOLUTE); 565 } while (error == 0 && is_abs_real && td->td_rtcgen == 0); 566 td->td_rtcgen = 0; 567 if (error != EWOULDBLOCK) { 568 if (TIMESEL(&sbtt, tmp)) 569 sbtt += tc_tick_sbt; 570 if (sbtt >= sbt) 571 return (0); 572 if (error == ERESTART) 573 error = EINTR; 574 if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) { 575 ts = sbttots(sbt - sbtt); 576 ts.tv_sec += over; 577 if (ts.tv_sec < 0) 578 timespecclear(&ts); 579 *rmt = ts; 580 } 581 return (error); 582 } 583 return (0); 584 } 585 586 #ifndef _SYS_SYSPROTO_H_ 587 struct nanosleep_args { 588 struct timespec *rqtp; 589 struct timespec *rmtp; 590 }; 591 #endif 592 /* ARGSUSED */ 593 int 594 sys_nanosleep(struct thread *td, struct nanosleep_args *uap) 595 { 596 597 return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, 598 uap->rqtp, uap->rmtp)); 599 } 600 601 #ifndef _SYS_SYSPROTO_H_ 602 struct clock_nanosleep_args { 603 clockid_t clock_id; 604 int flags; 605 struct timespec *rqtp; 606 struct timespec *rmtp; 607 }; 608 #endif 609 /* ARGSUSED */ 610 int 611 sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap) 612 { 613 int error; 614 615 error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp, 616 uap->rmtp); 617 return (kern_posix_error(td, error)); 618 } 619 620 static int 621 user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 622 const struct timespec *ua_rqtp, struct timespec *ua_rmtp) 623 { 624 struct timespec rmt, rqt; 625 int error; 626 627 error = copyin(ua_rqtp, &rqt, sizeof(rqt)); 628 if (error) 629 return (error); 630 if (ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0 && 631 !useracc(ua_rmtp, sizeof(rmt), VM_PROT_WRITE)) 632 return (EFAULT); 633 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 634 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 635 int error2; 636 637 error2 = copyout(&rmt, ua_rmtp, sizeof(rmt)); 638 if (error2) 639 error = error2; 640 } 641 return (error); 642 } 643 644 #ifndef _SYS_SYSPROTO_H_ 645 struct gettimeofday_args { 646 struct timeval *tp; 647 struct timezone *tzp; 648 }; 649 #endif 650 /* ARGSUSED */ 651 int 652 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap) 653 { 654 struct timeval atv; 655 struct timezone rtz; 656 int error = 0; 657 658 if (uap->tp) { 659 microtime(&atv); 660 error = copyout(&atv, uap->tp, sizeof (atv)); 661 } 662 if (error == 0 && uap->tzp != NULL) { 663 rtz.tz_minuteswest = 0; 664 rtz.tz_dsttime = 0; 665 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 666 } 667 return (error); 668 } 669 670 #ifndef _SYS_SYSPROTO_H_ 671 struct settimeofday_args { 672 struct timeval *tv; 673 struct timezone *tzp; 674 }; 675 #endif 676 /* ARGSUSED */ 677 int 678 sys_settimeofday(struct thread *td, struct settimeofday_args *uap) 679 { 680 struct timeval atv, *tvp; 681 struct timezone atz, *tzp; 682 int error; 683 684 if (uap->tv) { 685 error = copyin(uap->tv, &atv, sizeof(atv)); 686 if (error) 687 return (error); 688 tvp = &atv; 689 } else 690 tvp = NULL; 691 if (uap->tzp) { 692 error = copyin(uap->tzp, &atz, sizeof(atz)); 693 if (error) 694 return (error); 695 tzp = &atz; 696 } else 697 tzp = NULL; 698 return (kern_settimeofday(td, tvp, tzp)); 699 } 700 701 int 702 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp) 703 { 704 int error; 705 706 error = priv_check(td, PRIV_SETTIMEOFDAY); 707 if (error) 708 return (error); 709 /* Verify all parameters before changing time. */ 710 if (tv) { 711 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 || 712 tv->tv_sec < 0) 713 return (EINVAL); 714 error = settime(td, tv); 715 } 716 return (error); 717 } 718 719 /* 720 * Get value of an interval timer. The process virtual and profiling virtual 721 * time timers are kept in the p_stats area, since they can be swapped out. 722 * These are kept internally in the way they are specified externally: in 723 * time until they expire. 724 * 725 * The real time interval timer is kept in the process table slot for the 726 * process, and its value (it_value) is kept as an absolute time rather than 727 * as a delta, so that it is easy to keep periodic real-time signals from 728 * drifting. 729 * 730 * Virtual time timers are processed in the hardclock() routine of 731 * kern_clock.c. The real time timer is processed by a timeout routine, 732 * called from the softclock() routine. Since a callout may be delayed in 733 * real time due to interrupt processing in the system, it is possible for 734 * the real time timeout routine (realitexpire, given below), to be delayed 735 * in real time past when it is supposed to occur. It does not suffice, 736 * therefore, to reload the real timer .it_value from the real time timers 737 * .it_interval. Rather, we compute the next time in absolute time the timer 738 * should go off. 739 */ 740 #ifndef _SYS_SYSPROTO_H_ 741 struct getitimer_args { 742 u_int which; 743 struct itimerval *itv; 744 }; 745 #endif 746 int 747 sys_getitimer(struct thread *td, struct getitimer_args *uap) 748 { 749 struct itimerval aitv; 750 int error; 751 752 error = kern_getitimer(td, uap->which, &aitv); 753 if (error != 0) 754 return (error); 755 return (copyout(&aitv, uap->itv, sizeof (struct itimerval))); 756 } 757 758 int 759 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv) 760 { 761 struct proc *p = td->td_proc; 762 struct timeval ctv; 763 764 if (which > ITIMER_PROF) 765 return (EINVAL); 766 767 if (which == ITIMER_REAL) { 768 /* 769 * Convert from absolute to relative time in .it_value 770 * part of real time timer. If time for real time timer 771 * has passed return 0, else return difference between 772 * current time and time for the timer to go off. 773 */ 774 PROC_LOCK(p); 775 *aitv = p->p_realtimer; 776 PROC_UNLOCK(p); 777 if (timevalisset(&aitv->it_value)) { 778 microuptime(&ctv); 779 if (timevalcmp(&aitv->it_value, &ctv, <)) 780 timevalclear(&aitv->it_value); 781 else 782 timevalsub(&aitv->it_value, &ctv); 783 } 784 } else { 785 PROC_ITIMLOCK(p); 786 *aitv = p->p_stats->p_timer[which]; 787 PROC_ITIMUNLOCK(p); 788 } 789 #ifdef KTRACE 790 if (KTRPOINT(td, KTR_STRUCT)) 791 ktritimerval(aitv); 792 #endif 793 return (0); 794 } 795 796 #ifndef _SYS_SYSPROTO_H_ 797 struct setitimer_args { 798 u_int which; 799 struct itimerval *itv, *oitv; 800 }; 801 #endif 802 int 803 sys_setitimer(struct thread *td, struct setitimer_args *uap) 804 { 805 struct itimerval aitv, oitv; 806 int error; 807 808 if (uap->itv == NULL) { 809 uap->itv = uap->oitv; 810 return (sys_getitimer(td, (struct getitimer_args *)uap)); 811 } 812 813 if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval)))) 814 return (error); 815 error = kern_setitimer(td, uap->which, &aitv, &oitv); 816 if (error != 0 || uap->oitv == NULL) 817 return (error); 818 return (copyout(&oitv, uap->oitv, sizeof(struct itimerval))); 819 } 820 821 int 822 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv, 823 struct itimerval *oitv) 824 { 825 struct proc *p = td->td_proc; 826 struct timeval ctv; 827 sbintime_t sbt, pr; 828 829 if (aitv == NULL) 830 return (kern_getitimer(td, which, oitv)); 831 832 if (which > ITIMER_PROF) 833 return (EINVAL); 834 #ifdef KTRACE 835 if (KTRPOINT(td, KTR_STRUCT)) 836 ktritimerval(aitv); 837 #endif 838 if (itimerfix(&aitv->it_value) || 839 aitv->it_value.tv_sec > INT32_MAX / 2) 840 return (EINVAL); 841 if (!timevalisset(&aitv->it_value)) 842 timevalclear(&aitv->it_interval); 843 else if (itimerfix(&aitv->it_interval) || 844 aitv->it_interval.tv_sec > INT32_MAX / 2) 845 return (EINVAL); 846 847 if (which == ITIMER_REAL) { 848 PROC_LOCK(p); 849 if (timevalisset(&p->p_realtimer.it_value)) 850 callout_stop(&p->p_itcallout); 851 microuptime(&ctv); 852 if (timevalisset(&aitv->it_value)) { 853 pr = tvtosbt(aitv->it_value) >> tc_precexp; 854 timevaladd(&aitv->it_value, &ctv); 855 sbt = tvtosbt(aitv->it_value); 856 callout_reset_sbt(&p->p_itcallout, sbt, pr, 857 realitexpire, p, C_ABSOLUTE); 858 } 859 *oitv = p->p_realtimer; 860 p->p_realtimer = *aitv; 861 PROC_UNLOCK(p); 862 if (timevalisset(&oitv->it_value)) { 863 if (timevalcmp(&oitv->it_value, &ctv, <)) 864 timevalclear(&oitv->it_value); 865 else 866 timevalsub(&oitv->it_value, &ctv); 867 } 868 } else { 869 if (aitv->it_interval.tv_sec == 0 && 870 aitv->it_interval.tv_usec != 0 && 871 aitv->it_interval.tv_usec < tick) 872 aitv->it_interval.tv_usec = tick; 873 if (aitv->it_value.tv_sec == 0 && 874 aitv->it_value.tv_usec != 0 && 875 aitv->it_value.tv_usec < tick) 876 aitv->it_value.tv_usec = tick; 877 PROC_ITIMLOCK(p); 878 *oitv = p->p_stats->p_timer[which]; 879 p->p_stats->p_timer[which] = *aitv; 880 PROC_ITIMUNLOCK(p); 881 } 882 #ifdef KTRACE 883 if (KTRPOINT(td, KTR_STRUCT)) 884 ktritimerval(oitv); 885 #endif 886 return (0); 887 } 888 889 /* 890 * Real interval timer expired: 891 * send process whose timer expired an alarm signal. 892 * If time is not set up to reload, then just return. 893 * Else compute next time timer should go off which is > current time. 894 * This is where delay in processing this timeout causes multiple 895 * SIGALRM calls to be compressed into one. 896 * tvtohz() always adds 1 to allow for the time until the next clock 897 * interrupt being strictly less than 1 clock tick, but we don't want 898 * that here since we want to appear to be in sync with the clock 899 * interrupt even when we're delayed. 900 */ 901 void 902 realitexpire(void *arg) 903 { 904 struct proc *p; 905 struct timeval ctv; 906 sbintime_t isbt; 907 908 p = (struct proc *)arg; 909 kern_psignal(p, SIGALRM); 910 if (!timevalisset(&p->p_realtimer.it_interval)) { 911 timevalclear(&p->p_realtimer.it_value); 912 if (p->p_flag & P_WEXIT) 913 wakeup(&p->p_itcallout); 914 return; 915 } 916 isbt = tvtosbt(p->p_realtimer.it_interval); 917 if (isbt >= sbt_timethreshold) 918 getmicrouptime(&ctv); 919 else 920 microuptime(&ctv); 921 do { 922 timevaladd(&p->p_realtimer.it_value, 923 &p->p_realtimer.it_interval); 924 } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=)); 925 callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value), 926 isbt >> tc_precexp, realitexpire, p, C_ABSOLUTE); 927 } 928 929 /* 930 * Check that a proposed value to load into the .it_value or 931 * .it_interval part of an interval timer is acceptable, and 932 * fix it to have at least minimal value (i.e. if it is less 933 * than the resolution of the clock, round it up.) 934 */ 935 int 936 itimerfix(struct timeval *tv) 937 { 938 939 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000) 940 return (EINVAL); 941 if (tv->tv_sec == 0 && tv->tv_usec != 0 && 942 tv->tv_usec < (u_int)tick / 16) 943 tv->tv_usec = (u_int)tick / 16; 944 return (0); 945 } 946 947 /* 948 * Decrement an interval timer by a specified number 949 * of microseconds, which must be less than a second, 950 * i.e. < 1000000. If the timer expires, then reload 951 * it. In this case, carry over (usec - old value) to 952 * reduce the value reloaded into the timer so that 953 * the timer does not drift. This routine assumes 954 * that it is called in a context where the timers 955 * on which it is operating cannot change in value. 956 */ 957 int 958 itimerdecr(struct itimerval *itp, int usec) 959 { 960 961 if (itp->it_value.tv_usec < usec) { 962 if (itp->it_value.tv_sec == 0) { 963 /* expired, and already in next interval */ 964 usec -= itp->it_value.tv_usec; 965 goto expire; 966 } 967 itp->it_value.tv_usec += 1000000; 968 itp->it_value.tv_sec--; 969 } 970 itp->it_value.tv_usec -= usec; 971 usec = 0; 972 if (timevalisset(&itp->it_value)) 973 return (1); 974 /* expired, exactly at end of interval */ 975 expire: 976 if (timevalisset(&itp->it_interval)) { 977 itp->it_value = itp->it_interval; 978 itp->it_value.tv_usec -= usec; 979 if (itp->it_value.tv_usec < 0) { 980 itp->it_value.tv_usec += 1000000; 981 itp->it_value.tv_sec--; 982 } 983 } else 984 itp->it_value.tv_usec = 0; /* sec is already 0 */ 985 return (0); 986 } 987 988 /* 989 * Add and subtract routines for timevals. 990 * N.B.: subtract routine doesn't deal with 991 * results which are before the beginning, 992 * it just gets very confused in this case. 993 * Caveat emptor. 994 */ 995 void 996 timevaladd(struct timeval *t1, const struct timeval *t2) 997 { 998 999 t1->tv_sec += t2->tv_sec; 1000 t1->tv_usec += t2->tv_usec; 1001 timevalfix(t1); 1002 } 1003 1004 void 1005 timevalsub(struct timeval *t1, const struct timeval *t2) 1006 { 1007 1008 t1->tv_sec -= t2->tv_sec; 1009 t1->tv_usec -= t2->tv_usec; 1010 timevalfix(t1); 1011 } 1012 1013 static void 1014 timevalfix(struct timeval *t1) 1015 { 1016 1017 if (t1->tv_usec < 0) { 1018 t1->tv_sec--; 1019 t1->tv_usec += 1000000; 1020 } 1021 if (t1->tv_usec >= 1000000) { 1022 t1->tv_sec++; 1023 t1->tv_usec -= 1000000; 1024 } 1025 } 1026 1027 /* 1028 * ratecheck(): simple time-based rate-limit checking. 1029 */ 1030 int 1031 ratecheck(struct timeval *lasttime, const struct timeval *mininterval) 1032 { 1033 struct timeval tv, delta; 1034 int rv = 0; 1035 1036 getmicrouptime(&tv); /* NB: 10ms precision */ 1037 delta = tv; 1038 timevalsub(&delta, lasttime); 1039 1040 /* 1041 * check for 0,0 is so that the message will be seen at least once, 1042 * even if interval is huge. 1043 */ 1044 if (timevalcmp(&delta, mininterval, >=) || 1045 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { 1046 *lasttime = tv; 1047 rv = 1; 1048 } 1049 1050 return (rv); 1051 } 1052 1053 /* 1054 * ppsratecheck(): packets (or events) per second limitation. 1055 * 1056 * Return 0 if the limit is to be enforced (e.g. the caller 1057 * should drop a packet because of the rate limitation). 1058 * 1059 * maxpps of 0 always causes zero to be returned. maxpps of -1 1060 * always causes 1 to be returned; this effectively defeats rate 1061 * limiting. 1062 * 1063 * Note that we maintain the struct timeval for compatibility 1064 * with other bsd systems. We reuse the storage and just monitor 1065 * clock ticks for minimal overhead. 1066 */ 1067 int 1068 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) 1069 { 1070 int now; 1071 1072 /* 1073 * Reset the last time and counter if this is the first call 1074 * or more than a second has passed since the last update of 1075 * lasttime. 1076 */ 1077 now = ticks; 1078 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) { 1079 lasttime->tv_sec = now; 1080 *curpps = 1; 1081 return (maxpps != 0); 1082 } else { 1083 (*curpps)++; /* NB: ignore potential overflow */ 1084 return (maxpps < 0 || *curpps <= maxpps); 1085 } 1086 } 1087 1088 static void 1089 itimer_start(void) 1090 { 1091 struct kclock rt_clock = { 1092 .timer_create = realtimer_create, 1093 .timer_delete = realtimer_delete, 1094 .timer_settime = realtimer_settime, 1095 .timer_gettime = realtimer_gettime, 1096 .event_hook = NULL 1097 }; 1098 1099 itimer_zone = uma_zcreate("itimer", sizeof(struct itimer), 1100 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0); 1101 register_posix_clock(CLOCK_REALTIME, &rt_clock); 1102 register_posix_clock(CLOCK_MONOTONIC, &rt_clock); 1103 p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L); 1104 p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX); 1105 p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX); 1106 EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit, 1107 (void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY); 1108 EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec, 1109 (void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY); 1110 } 1111 1112 int 1113 register_posix_clock(int clockid, struct kclock *clk) 1114 { 1115 if ((unsigned)clockid >= MAX_CLOCKS) { 1116 printf("%s: invalid clockid\n", __func__); 1117 return (0); 1118 } 1119 posix_clocks[clockid] = *clk; 1120 return (1); 1121 } 1122 1123 static int 1124 itimer_init(void *mem, int size, int flags) 1125 { 1126 struct itimer *it; 1127 1128 it = (struct itimer *)mem; 1129 mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF); 1130 return (0); 1131 } 1132 1133 static void 1134 itimer_fini(void *mem, int size) 1135 { 1136 struct itimer *it; 1137 1138 it = (struct itimer *)mem; 1139 mtx_destroy(&it->it_mtx); 1140 } 1141 1142 static void 1143 itimer_enter(struct itimer *it) 1144 { 1145 1146 mtx_assert(&it->it_mtx, MA_OWNED); 1147 it->it_usecount++; 1148 } 1149 1150 static void 1151 itimer_leave(struct itimer *it) 1152 { 1153 1154 mtx_assert(&it->it_mtx, MA_OWNED); 1155 KASSERT(it->it_usecount > 0, ("invalid it_usecount")); 1156 1157 if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0) 1158 wakeup(it); 1159 } 1160 1161 #ifndef _SYS_SYSPROTO_H_ 1162 struct ktimer_create_args { 1163 clockid_t clock_id; 1164 struct sigevent * evp; 1165 int * timerid; 1166 }; 1167 #endif 1168 int 1169 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap) 1170 { 1171 struct sigevent *evp, ev; 1172 int id; 1173 int error; 1174 1175 if (uap->evp == NULL) { 1176 evp = NULL; 1177 } else { 1178 error = copyin(uap->evp, &ev, sizeof(ev)); 1179 if (error != 0) 1180 return (error); 1181 evp = &ev; 1182 } 1183 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 1184 if (error == 0) { 1185 error = copyout(&id, uap->timerid, sizeof(int)); 1186 if (error != 0) 1187 kern_ktimer_delete(td, id); 1188 } 1189 return (error); 1190 } 1191 1192 int 1193 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp, 1194 int *timerid, int preset_id) 1195 { 1196 struct proc *p = td->td_proc; 1197 struct itimer *it; 1198 int id; 1199 int error; 1200 1201 if (clock_id < 0 || clock_id >= MAX_CLOCKS) 1202 return (EINVAL); 1203 1204 if (posix_clocks[clock_id].timer_create == NULL) 1205 return (EINVAL); 1206 1207 if (evp != NULL) { 1208 if (evp->sigev_notify != SIGEV_NONE && 1209 evp->sigev_notify != SIGEV_SIGNAL && 1210 evp->sigev_notify != SIGEV_THREAD_ID) 1211 return (EINVAL); 1212 if ((evp->sigev_notify == SIGEV_SIGNAL || 1213 evp->sigev_notify == SIGEV_THREAD_ID) && 1214 !_SIG_VALID(evp->sigev_signo)) 1215 return (EINVAL); 1216 } 1217 1218 if (p->p_itimers == NULL) 1219 itimers_alloc(p); 1220 1221 it = uma_zalloc(itimer_zone, M_WAITOK); 1222 it->it_flags = 0; 1223 it->it_usecount = 0; 1224 it->it_active = 0; 1225 timespecclear(&it->it_time.it_value); 1226 timespecclear(&it->it_time.it_interval); 1227 it->it_overrun = 0; 1228 it->it_overrun_last = 0; 1229 it->it_clockid = clock_id; 1230 it->it_timerid = -1; 1231 it->it_proc = p; 1232 ksiginfo_init(&it->it_ksi); 1233 it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT; 1234 error = CLOCK_CALL(clock_id, timer_create, (it)); 1235 if (error != 0) 1236 goto out; 1237 1238 PROC_LOCK(p); 1239 if (preset_id != -1) { 1240 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id")); 1241 id = preset_id; 1242 if (p->p_itimers->its_timers[id] != NULL) { 1243 PROC_UNLOCK(p); 1244 error = 0; 1245 goto out; 1246 } 1247 } else { 1248 /* 1249 * Find a free timer slot, skipping those reserved 1250 * for setitimer(). 1251 */ 1252 for (id = 3; id < TIMER_MAX; id++) 1253 if (p->p_itimers->its_timers[id] == NULL) 1254 break; 1255 if (id == TIMER_MAX) { 1256 PROC_UNLOCK(p); 1257 error = EAGAIN; 1258 goto out; 1259 } 1260 } 1261 it->it_timerid = id; 1262 p->p_itimers->its_timers[id] = it; 1263 if (evp != NULL) 1264 it->it_sigev = *evp; 1265 else { 1266 it->it_sigev.sigev_notify = SIGEV_SIGNAL; 1267 switch (clock_id) { 1268 default: 1269 case CLOCK_REALTIME: 1270 it->it_sigev.sigev_signo = SIGALRM; 1271 break; 1272 case CLOCK_VIRTUAL: 1273 it->it_sigev.sigev_signo = SIGVTALRM; 1274 break; 1275 case CLOCK_PROF: 1276 it->it_sigev.sigev_signo = SIGPROF; 1277 break; 1278 } 1279 it->it_sigev.sigev_value.sival_int = id; 1280 } 1281 1282 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1283 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1284 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo; 1285 it->it_ksi.ksi_code = SI_TIMER; 1286 it->it_ksi.ksi_value = it->it_sigev.sigev_value; 1287 it->it_ksi.ksi_timerid = id; 1288 } 1289 PROC_UNLOCK(p); 1290 *timerid = id; 1291 return (0); 1292 1293 out: 1294 ITIMER_LOCK(it); 1295 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1296 ITIMER_UNLOCK(it); 1297 uma_zfree(itimer_zone, it); 1298 return (error); 1299 } 1300 1301 #ifndef _SYS_SYSPROTO_H_ 1302 struct ktimer_delete_args { 1303 int timerid; 1304 }; 1305 #endif 1306 int 1307 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap) 1308 { 1309 1310 return (kern_ktimer_delete(td, uap->timerid)); 1311 } 1312 1313 static struct itimer * 1314 itimer_find(struct proc *p, int timerid) 1315 { 1316 struct itimer *it; 1317 1318 PROC_LOCK_ASSERT(p, MA_OWNED); 1319 if ((p->p_itimers == NULL) || 1320 (timerid < 0) || (timerid >= TIMER_MAX) || 1321 (it = p->p_itimers->its_timers[timerid]) == NULL) { 1322 return (NULL); 1323 } 1324 ITIMER_LOCK(it); 1325 if ((it->it_flags & ITF_DELETING) != 0) { 1326 ITIMER_UNLOCK(it); 1327 it = NULL; 1328 } 1329 return (it); 1330 } 1331 1332 int 1333 kern_ktimer_delete(struct thread *td, int timerid) 1334 { 1335 struct proc *p = td->td_proc; 1336 struct itimer *it; 1337 1338 PROC_LOCK(p); 1339 it = itimer_find(p, timerid); 1340 if (it == NULL) { 1341 PROC_UNLOCK(p); 1342 return (EINVAL); 1343 } 1344 PROC_UNLOCK(p); 1345 1346 it->it_flags |= ITF_DELETING; 1347 while (it->it_usecount > 0) { 1348 it->it_flags |= ITF_WANTED; 1349 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0); 1350 } 1351 it->it_flags &= ~ITF_WANTED; 1352 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1353 ITIMER_UNLOCK(it); 1354 1355 PROC_LOCK(p); 1356 if (KSI_ONQ(&it->it_ksi)) 1357 sigqueue_take(&it->it_ksi); 1358 p->p_itimers->its_timers[timerid] = NULL; 1359 PROC_UNLOCK(p); 1360 uma_zfree(itimer_zone, it); 1361 return (0); 1362 } 1363 1364 #ifndef _SYS_SYSPROTO_H_ 1365 struct ktimer_settime_args { 1366 int timerid; 1367 int flags; 1368 const struct itimerspec * value; 1369 struct itimerspec * ovalue; 1370 }; 1371 #endif 1372 int 1373 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap) 1374 { 1375 struct itimerspec val, oval, *ovalp; 1376 int error; 1377 1378 error = copyin(uap->value, &val, sizeof(val)); 1379 if (error != 0) 1380 return (error); 1381 ovalp = uap->ovalue != NULL ? &oval : NULL; 1382 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 1383 if (error == 0 && uap->ovalue != NULL) 1384 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp)); 1385 return (error); 1386 } 1387 1388 int 1389 kern_ktimer_settime(struct thread *td, int timer_id, int flags, 1390 struct itimerspec *val, struct itimerspec *oval) 1391 { 1392 struct proc *p; 1393 struct itimer *it; 1394 int error; 1395 1396 p = td->td_proc; 1397 PROC_LOCK(p); 1398 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1399 PROC_UNLOCK(p); 1400 error = EINVAL; 1401 } else { 1402 PROC_UNLOCK(p); 1403 itimer_enter(it); 1404 error = CLOCK_CALL(it->it_clockid, timer_settime, (it, 1405 flags, val, oval)); 1406 itimer_leave(it); 1407 ITIMER_UNLOCK(it); 1408 } 1409 return (error); 1410 } 1411 1412 #ifndef _SYS_SYSPROTO_H_ 1413 struct ktimer_gettime_args { 1414 int timerid; 1415 struct itimerspec * value; 1416 }; 1417 #endif 1418 int 1419 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap) 1420 { 1421 struct itimerspec val; 1422 int error; 1423 1424 error = kern_ktimer_gettime(td, uap->timerid, &val); 1425 if (error == 0) 1426 error = copyout(&val, uap->value, sizeof(val)); 1427 return (error); 1428 } 1429 1430 int 1431 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val) 1432 { 1433 struct proc *p; 1434 struct itimer *it; 1435 int error; 1436 1437 p = td->td_proc; 1438 PROC_LOCK(p); 1439 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1440 PROC_UNLOCK(p); 1441 error = EINVAL; 1442 } else { 1443 PROC_UNLOCK(p); 1444 itimer_enter(it); 1445 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val)); 1446 itimer_leave(it); 1447 ITIMER_UNLOCK(it); 1448 } 1449 return (error); 1450 } 1451 1452 #ifndef _SYS_SYSPROTO_H_ 1453 struct timer_getoverrun_args { 1454 int timerid; 1455 }; 1456 #endif 1457 int 1458 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap) 1459 { 1460 1461 return (kern_ktimer_getoverrun(td, uap->timerid)); 1462 } 1463 1464 int 1465 kern_ktimer_getoverrun(struct thread *td, int timer_id) 1466 { 1467 struct proc *p = td->td_proc; 1468 struct itimer *it; 1469 int error ; 1470 1471 PROC_LOCK(p); 1472 if (timer_id < 3 || 1473 (it = itimer_find(p, timer_id)) == NULL) { 1474 PROC_UNLOCK(p); 1475 error = EINVAL; 1476 } else { 1477 td->td_retval[0] = it->it_overrun_last; 1478 ITIMER_UNLOCK(it); 1479 PROC_UNLOCK(p); 1480 error = 0; 1481 } 1482 return (error); 1483 } 1484 1485 static int 1486 realtimer_create(struct itimer *it) 1487 { 1488 callout_init_mtx(&it->it_callout, &it->it_mtx, 0); 1489 return (0); 1490 } 1491 1492 static int 1493 realtimer_delete(struct itimer *it) 1494 { 1495 mtx_assert(&it->it_mtx, MA_OWNED); 1496 1497 /* 1498 * clear timer's value and interval to tell realtimer_expire 1499 * to not rearm the timer. 1500 */ 1501 timespecclear(&it->it_time.it_value); 1502 timespecclear(&it->it_time.it_interval); 1503 ITIMER_UNLOCK(it); 1504 callout_drain(&it->it_callout); 1505 ITIMER_LOCK(it); 1506 return (0); 1507 } 1508 1509 static int 1510 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue) 1511 { 1512 struct timespec cts; 1513 1514 mtx_assert(&it->it_mtx, MA_OWNED); 1515 1516 realtimer_clocktime(it->it_clockid, &cts); 1517 *ovalue = it->it_time; 1518 if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) { 1519 timespecsub(&ovalue->it_value, &cts, &ovalue->it_value); 1520 if (ovalue->it_value.tv_sec < 0 || 1521 (ovalue->it_value.tv_sec == 0 && 1522 ovalue->it_value.tv_nsec == 0)) { 1523 ovalue->it_value.tv_sec = 0; 1524 ovalue->it_value.tv_nsec = 1; 1525 } 1526 } 1527 return (0); 1528 } 1529 1530 static int 1531 realtimer_settime(struct itimer *it, int flags, 1532 struct itimerspec *value, struct itimerspec *ovalue) 1533 { 1534 struct timespec cts, ts; 1535 struct timeval tv; 1536 struct itimerspec val; 1537 1538 mtx_assert(&it->it_mtx, MA_OWNED); 1539 1540 val = *value; 1541 if (itimespecfix(&val.it_value)) 1542 return (EINVAL); 1543 1544 if (timespecisset(&val.it_value)) { 1545 if (itimespecfix(&val.it_interval)) 1546 return (EINVAL); 1547 } else { 1548 timespecclear(&val.it_interval); 1549 } 1550 1551 if (ovalue != NULL) 1552 realtimer_gettime(it, ovalue); 1553 1554 it->it_time = val; 1555 if (timespecisset(&val.it_value)) { 1556 realtimer_clocktime(it->it_clockid, &cts); 1557 ts = val.it_value; 1558 if ((flags & TIMER_ABSTIME) == 0) { 1559 /* Convert to absolute time. */ 1560 timespecadd(&it->it_time.it_value, &cts, 1561 &it->it_time.it_value); 1562 } else { 1563 timespecsub(&ts, &cts, &ts); 1564 /* 1565 * We don't care if ts is negative, tztohz will 1566 * fix it. 1567 */ 1568 } 1569 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1570 callout_reset(&it->it_callout, tvtohz(&tv), 1571 realtimer_expire, it); 1572 } else { 1573 callout_stop(&it->it_callout); 1574 } 1575 1576 return (0); 1577 } 1578 1579 static void 1580 realtimer_clocktime(clockid_t id, struct timespec *ts) 1581 { 1582 if (id == CLOCK_REALTIME) 1583 getnanotime(ts); 1584 else /* CLOCK_MONOTONIC */ 1585 getnanouptime(ts); 1586 } 1587 1588 int 1589 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi) 1590 { 1591 struct itimer *it; 1592 1593 PROC_LOCK_ASSERT(p, MA_OWNED); 1594 it = itimer_find(p, timerid); 1595 if (it != NULL) { 1596 ksi->ksi_overrun = it->it_overrun; 1597 it->it_overrun_last = it->it_overrun; 1598 it->it_overrun = 0; 1599 ITIMER_UNLOCK(it); 1600 return (0); 1601 } 1602 return (EINVAL); 1603 } 1604 1605 int 1606 itimespecfix(struct timespec *ts) 1607 { 1608 1609 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1610 return (EINVAL); 1611 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000) 1612 ts->tv_nsec = tick * 1000; 1613 return (0); 1614 } 1615 1616 /* Timeout callback for realtime timer */ 1617 static void 1618 realtimer_expire(void *arg) 1619 { 1620 struct timespec cts, ts; 1621 struct timeval tv; 1622 struct itimer *it; 1623 1624 it = (struct itimer *)arg; 1625 1626 realtimer_clocktime(it->it_clockid, &cts); 1627 /* Only fire if time is reached. */ 1628 if (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1629 if (timespecisset(&it->it_time.it_interval)) { 1630 timespecadd(&it->it_time.it_value, 1631 &it->it_time.it_interval, 1632 &it->it_time.it_value); 1633 while (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1634 if (it->it_overrun < INT_MAX) 1635 it->it_overrun++; 1636 else 1637 it->it_ksi.ksi_errno = ERANGE; 1638 timespecadd(&it->it_time.it_value, 1639 &it->it_time.it_interval, 1640 &it->it_time.it_value); 1641 } 1642 } else { 1643 /* single shot timer ? */ 1644 timespecclear(&it->it_time.it_value); 1645 } 1646 if (timespecisset(&it->it_time.it_value)) { 1647 timespecsub(&it->it_time.it_value, &cts, &ts); 1648 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1649 callout_reset(&it->it_callout, tvtohz(&tv), 1650 realtimer_expire, it); 1651 } 1652 itimer_enter(it); 1653 ITIMER_UNLOCK(it); 1654 itimer_fire(it); 1655 ITIMER_LOCK(it); 1656 itimer_leave(it); 1657 } else if (timespecisset(&it->it_time.it_value)) { 1658 ts = it->it_time.it_value; 1659 timespecsub(&ts, &cts, &ts); 1660 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1661 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire, 1662 it); 1663 } 1664 } 1665 1666 void 1667 itimer_fire(struct itimer *it) 1668 { 1669 struct proc *p = it->it_proc; 1670 struct thread *td; 1671 1672 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1673 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1674 if (sigev_findtd(p, &it->it_sigev, &td) != 0) { 1675 ITIMER_LOCK(it); 1676 timespecclear(&it->it_time.it_value); 1677 timespecclear(&it->it_time.it_interval); 1678 callout_stop(&it->it_callout); 1679 ITIMER_UNLOCK(it); 1680 return; 1681 } 1682 if (!KSI_ONQ(&it->it_ksi)) { 1683 it->it_ksi.ksi_errno = 0; 1684 ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev); 1685 tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi); 1686 } else { 1687 if (it->it_overrun < INT_MAX) 1688 it->it_overrun++; 1689 else 1690 it->it_ksi.ksi_errno = ERANGE; 1691 } 1692 PROC_UNLOCK(p); 1693 } 1694 } 1695 1696 static void 1697 itimers_alloc(struct proc *p) 1698 { 1699 struct itimers *its; 1700 int i; 1701 1702 its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO); 1703 LIST_INIT(&its->its_virtual); 1704 LIST_INIT(&its->its_prof); 1705 TAILQ_INIT(&its->its_worklist); 1706 for (i = 0; i < TIMER_MAX; i++) 1707 its->its_timers[i] = NULL; 1708 PROC_LOCK(p); 1709 if (p->p_itimers == NULL) { 1710 p->p_itimers = its; 1711 PROC_UNLOCK(p); 1712 } 1713 else { 1714 PROC_UNLOCK(p); 1715 free(its, M_SUBPROC); 1716 } 1717 } 1718 1719 static void 1720 itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused) 1721 { 1722 itimers_event_hook_exit(arg, p); 1723 } 1724 1725 /* Clean up timers when some process events are being triggered. */ 1726 static void 1727 itimers_event_hook_exit(void *arg, struct proc *p) 1728 { 1729 struct itimers *its; 1730 struct itimer *it; 1731 int event = (int)(intptr_t)arg; 1732 int i; 1733 1734 if (p->p_itimers != NULL) { 1735 its = p->p_itimers; 1736 for (i = 0; i < MAX_CLOCKS; ++i) { 1737 if (posix_clocks[i].event_hook != NULL) 1738 CLOCK_CALL(i, event_hook, (p, i, event)); 1739 } 1740 /* 1741 * According to susv3, XSI interval timers should be inherited 1742 * by new image. 1743 */ 1744 if (event == ITIMER_EV_EXEC) 1745 i = 3; 1746 else if (event == ITIMER_EV_EXIT) 1747 i = 0; 1748 else 1749 panic("unhandled event"); 1750 for (; i < TIMER_MAX; ++i) { 1751 if ((it = its->its_timers[i]) != NULL) 1752 kern_ktimer_delete(curthread, i); 1753 } 1754 if (its->its_timers[0] == NULL && 1755 its->its_timers[1] == NULL && 1756 its->its_timers[2] == NULL) { 1757 free(its, M_SUBPROC); 1758 p->p_itimers = NULL; 1759 } 1760 } 1761 } 1762