xref: /freebsd/sys/kern/kern_time.c (revision 6af83ee0d2941d18880b6aaa2b4facd1d30c6106)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_mac.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/mac.h>
46 #include <sys/syscallsubr.h>
47 #include <sys/sysent.h>
48 #include <sys/proc.h>
49 #include <sys/time.h>
50 #include <sys/timetc.h>
51 #include <sys/vnode.h>
52 
53 #include <vm/vm.h>
54 #include <vm/vm_extern.h>
55 
56 int tz_minuteswest;
57 int tz_dsttime;
58 
59 /*
60  * Time of day and interval timer support.
61  *
62  * These routines provide the kernel entry points to get and set
63  * the time-of-day and per-process interval timers.  Subroutines
64  * here provide support for adding and subtracting timeval structures
65  * and decrementing interval timers, optionally reloading the interval
66  * timers when they expire.
67  */
68 
69 static int	settime(struct thread *, struct timeval *);
70 static void	timevalfix(struct timeval *);
71 static void	no_lease_updatetime(int);
72 
73 static void
74 no_lease_updatetime(deltat)
75 	int deltat;
76 {
77 }
78 
79 void (*lease_updatetime)(int)  = no_lease_updatetime;
80 
81 static int
82 settime(struct thread *td, struct timeval *tv)
83 {
84 	struct timeval delta, tv1, tv2;
85 	static struct timeval maxtime, laststep;
86 	struct timespec ts;
87 	int s;
88 
89 	s = splclock();
90 	microtime(&tv1);
91 	delta = *tv;
92 	timevalsub(&delta, &tv1);
93 
94 	/*
95 	 * If the system is secure, we do not allow the time to be
96 	 * set to a value earlier than 1 second less than the highest
97 	 * time we have yet seen. The worst a miscreant can do in
98 	 * this circumstance is "freeze" time. He couldn't go
99 	 * back to the past.
100 	 *
101 	 * We similarly do not allow the clock to be stepped more
102 	 * than one second, nor more than once per second. This allows
103 	 * a miscreant to make the clock march double-time, but no worse.
104 	 */
105 	if (securelevel_gt(td->td_ucred, 1) != 0) {
106 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
107 			/*
108 			 * Update maxtime to latest time we've seen.
109 			 */
110 			if (tv1.tv_sec > maxtime.tv_sec)
111 				maxtime = tv1;
112 			tv2 = *tv;
113 			timevalsub(&tv2, &maxtime);
114 			if (tv2.tv_sec < -1) {
115 				tv->tv_sec = maxtime.tv_sec - 1;
116 				printf("Time adjustment clamped to -1 second\n");
117 			}
118 		} else {
119 			if (tv1.tv_sec == laststep.tv_sec) {
120 				splx(s);
121 				return (EPERM);
122 			}
123 			if (delta.tv_sec > 1) {
124 				tv->tv_sec = tv1.tv_sec + 1;
125 				printf("Time adjustment clamped to +1 second\n");
126 			}
127 			laststep = *tv;
128 		}
129 	}
130 
131 	ts.tv_sec = tv->tv_sec;
132 	ts.tv_nsec = tv->tv_usec * 1000;
133 	mtx_lock(&Giant);
134 	tc_setclock(&ts);
135 	(void) splsoftclock();
136 	lease_updatetime(delta.tv_sec);
137 	splx(s);
138 	resettodr();
139 	mtx_unlock(&Giant);
140 	return (0);
141 }
142 
143 #ifndef _SYS_SYSPROTO_H_
144 struct clock_gettime_args {
145 	clockid_t clock_id;
146 	struct	timespec *tp;
147 };
148 #endif
149 
150 /*
151  * MPSAFE
152  */
153 /* ARGSUSED */
154 int
155 clock_gettime(struct thread *td, struct clock_gettime_args *uap)
156 {
157 	struct timespec ats;
158 	struct timeval sys, user;
159 	struct proc *p;
160 
161 	p = td->td_proc;
162 	switch (uap->clock_id) {
163 	case CLOCK_REALTIME:
164 		nanotime(&ats);
165 		break;
166 	case CLOCK_VIRTUAL:
167 		PROC_LOCK(p);
168 		calcru(p, &user, &sys);
169 		PROC_UNLOCK(p);
170 		TIMEVAL_TO_TIMESPEC(&user, &ats);
171 		break;
172 	case CLOCK_PROF:
173 		PROC_LOCK(p);
174 		calcru(p, &user, &sys);
175 		PROC_UNLOCK(p);
176 		timevaladd(&user, &sys);
177 		TIMEVAL_TO_TIMESPEC(&user, &ats);
178 		break;
179 	case CLOCK_MONOTONIC:
180 		nanouptime(&ats);
181 		break;
182 	default:
183 		return (EINVAL);
184 	}
185 	return (copyout(&ats, uap->tp, sizeof(ats)));
186 }
187 
188 #ifndef _SYS_SYSPROTO_H_
189 struct clock_settime_args {
190 	clockid_t clock_id;
191 	const struct	timespec *tp;
192 };
193 #endif
194 
195 /*
196  * MPSAFE
197  */
198 /* ARGSUSED */
199 int
200 clock_settime(struct thread *td, struct clock_settime_args *uap)
201 {
202 	struct timeval atv;
203 	struct timespec ats;
204 	int error;
205 
206 #ifdef MAC
207 	error = mac_check_system_settime(td->td_ucred);
208 	if (error)
209 		return (error);
210 #endif
211 	if ((error = suser(td)) != 0)
212 		return (error);
213 	if (uap->clock_id != CLOCK_REALTIME)
214 		return (EINVAL);
215 	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
216 		return (error);
217 	if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
218 		return (EINVAL);
219 	/* XXX Don't convert nsec->usec and back */
220 	TIMESPEC_TO_TIMEVAL(&atv, &ats);
221 	error = settime(td, &atv);
222 	return (error);
223 }
224 
225 #ifndef _SYS_SYSPROTO_H_
226 struct clock_getres_args {
227 	clockid_t clock_id;
228 	struct	timespec *tp;
229 };
230 #endif
231 
232 int
233 clock_getres(struct thread *td, struct clock_getres_args *uap)
234 {
235 	struct timespec ts;
236 
237 	ts.tv_sec = 0;
238 	switch (uap->clock_id) {
239 	case CLOCK_REALTIME:
240 	case CLOCK_MONOTONIC:
241 		/*
242 		 * Round up the result of the division cheaply by adding 1.
243 		 * Rounding up is especially important if rounding down
244 		 * would give 0.  Perfect rounding is unimportant.
245 		 */
246 		ts.tv_nsec = 1000000000 / tc_getfrequency() + 1;
247 		break;
248 	case CLOCK_VIRTUAL:
249 	case CLOCK_PROF:
250 		/* Accurately round up here because we can do so cheaply. */
251 		ts.tv_nsec = (1000000000 + hz - 1) / hz;
252 		break;
253 	default:
254 		return (EINVAL);
255 	}
256 	if (uap->tp == NULL)
257 		return (0);
258 	return (copyout(&ts, uap->tp, sizeof(ts)));
259 }
260 
261 static int nanowait;
262 
263 int
264 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
265 {
266 	struct timespec ts, ts2, ts3;
267 	struct timeval tv;
268 	int error;
269 
270 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
271 		return (EINVAL);
272 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
273 		return (0);
274 	getnanouptime(&ts);
275 	timespecadd(&ts, rqt);
276 	TIMESPEC_TO_TIMEVAL(&tv, rqt);
277 	for (;;) {
278 		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
279 		    tvtohz(&tv));
280 		getnanouptime(&ts2);
281 		if (error != EWOULDBLOCK) {
282 			if (error == ERESTART)
283 				error = EINTR;
284 			if (rmt != NULL) {
285 				timespecsub(&ts, &ts2);
286 				if (ts.tv_sec < 0)
287 					timespecclear(&ts);
288 				*rmt = ts;
289 			}
290 			return (error);
291 		}
292 		if (timespeccmp(&ts2, &ts, >=))
293 			return (0);
294 		ts3 = ts;
295 		timespecsub(&ts3, &ts2);
296 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
297 	}
298 }
299 
300 #ifndef _SYS_SYSPROTO_H_
301 struct nanosleep_args {
302 	struct	timespec *rqtp;
303 	struct	timespec *rmtp;
304 };
305 #endif
306 
307 /*
308  * MPSAFE
309  */
310 /* ARGSUSED */
311 int
312 nanosleep(struct thread *td, struct nanosleep_args *uap)
313 {
314 	struct timespec rmt, rqt;
315 	int error;
316 
317 	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
318 	if (error)
319 		return (error);
320 
321 	if (uap->rmtp &&
322 	    !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
323 			return (EFAULT);
324 	error = kern_nanosleep(td, &rqt, &rmt);
325 	if (error && uap->rmtp) {
326 		int error2;
327 
328 		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
329 		if (error2)
330 			error = error2;
331 	}
332 	return (error);
333 }
334 
335 #ifndef _SYS_SYSPROTO_H_
336 struct gettimeofday_args {
337 	struct	timeval *tp;
338 	struct	timezone *tzp;
339 };
340 #endif
341 /*
342  * MPSAFE
343  */
344 /* ARGSUSED */
345 int
346 gettimeofday(struct thread *td, struct gettimeofday_args *uap)
347 {
348 	struct timeval atv;
349 	struct timezone rtz;
350 	int error = 0;
351 
352 	if (uap->tp) {
353 		microtime(&atv);
354 		error = copyout(&atv, uap->tp, sizeof (atv));
355 	}
356 	if (error == 0 && uap->tzp != NULL) {
357 		rtz.tz_minuteswest = tz_minuteswest;
358 		rtz.tz_dsttime = tz_dsttime;
359 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
360 	}
361 	return (error);
362 }
363 
364 #ifndef _SYS_SYSPROTO_H_
365 struct settimeofday_args {
366 	struct	timeval *tv;
367 	struct	timezone *tzp;
368 };
369 #endif
370 /*
371  * MPSAFE
372  */
373 /* ARGSUSED */
374 int
375 settimeofday(struct thread *td, struct settimeofday_args *uap)
376 {
377 	struct timeval atv;
378 	struct timezone atz;
379 	int error = 0;
380 
381 #ifdef MAC
382 	error = mac_check_system_settime(td->td_ucred);
383 	if (error)
384 		return (error);
385 #endif
386 	if ((error = suser(td)))
387 		return (error);
388 	/* Verify all parameters before changing time. */
389 	if (uap->tv) {
390 		if ((error = copyin(uap->tv, &atv, sizeof(atv))))
391 			return (error);
392 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
393 			return (EINVAL);
394 	}
395 	if (uap->tzp &&
396 	    (error = copyin(uap->tzp, &atz, sizeof(atz))))
397 		return (error);
398 
399 	if (uap->tv && (error = settime(td, &atv)))
400 		return (error);
401 	if (uap->tzp) {
402 		tz_minuteswest = atz.tz_minuteswest;
403 		tz_dsttime = atz.tz_dsttime;
404 	}
405 	return (error);
406 }
407 /*
408  * Get value of an interval timer.  The process virtual and
409  * profiling virtual time timers are kept in the p_stats area, since
410  * they can be swapped out.  These are kept internally in the
411  * way they are specified externally: in time until they expire.
412  *
413  * The real time interval timer is kept in the process table slot
414  * for the process, and its value (it_value) is kept as an
415  * absolute time rather than as a delta, so that it is easy to keep
416  * periodic real-time signals from drifting.
417  *
418  * Virtual time timers are processed in the hardclock() routine of
419  * kern_clock.c.  The real time timer is processed by a timeout
420  * routine, called from the softclock() routine.  Since a callout
421  * may be delayed in real time due to interrupt processing in the system,
422  * it is possible for the real time timeout routine (realitexpire, given below),
423  * to be delayed in real time past when it is supposed to occur.  It
424  * does not suffice, therefore, to reload the real timer .it_value from the
425  * real time timers .it_interval.  Rather, we compute the next time in
426  * absolute time the timer should go off.
427  */
428 #ifndef _SYS_SYSPROTO_H_
429 struct getitimer_args {
430 	u_int	which;
431 	struct	itimerval *itv;
432 };
433 #endif
434 /*
435  * MPSAFE
436  */
437 int
438 getitimer(struct thread *td, struct getitimer_args *uap)
439 {
440 	struct itimerval aitv;
441 	int error;
442 
443 	error = kern_getitimer(td, uap->which, &aitv);
444 	if (error != 0)
445 		return (error);
446 	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
447 }
448 
449 int
450 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
451 {
452 	struct proc *p = td->td_proc;
453 	struct timeval ctv;
454 
455 	if (which > ITIMER_PROF)
456 		return (EINVAL);
457 
458 	if (which == ITIMER_REAL) {
459 		/*
460 		 * Convert from absolute to relative time in .it_value
461 		 * part of real time timer.  If time for real time timer
462 		 * has passed return 0, else return difference between
463 		 * current time and time for the timer to go off.
464 		 */
465 		PROC_LOCK(p);
466 		*aitv = p->p_realtimer;
467 		PROC_UNLOCK(p);
468 		if (timevalisset(&aitv->it_value)) {
469 			getmicrouptime(&ctv);
470 			if (timevalcmp(&aitv->it_value, &ctv, <))
471 				timevalclear(&aitv->it_value);
472 			else
473 				timevalsub(&aitv->it_value, &ctv);
474 		}
475 	} else {
476 		mtx_lock_spin(&sched_lock);
477 		*aitv = p->p_stats->p_timer[which];
478 		mtx_unlock_spin(&sched_lock);
479 	}
480 	return (0);
481 }
482 
483 #ifndef _SYS_SYSPROTO_H_
484 struct setitimer_args {
485 	u_int	which;
486 	struct	itimerval *itv, *oitv;
487 };
488 #endif
489 
490 /*
491  * MPSAFE
492  */
493 int
494 setitimer(struct thread *td, struct setitimer_args *uap)
495 {
496 	struct itimerval aitv, oitv;
497 	int error;
498 
499 	if (uap->itv == NULL) {
500 		uap->itv = uap->oitv;
501 		return (getitimer(td, (struct getitimer_args *)uap));
502 	}
503 
504 	if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
505 		return (error);
506 	error = kern_setitimer(td, uap->which, &aitv, &oitv);
507 	if (error != 0 || uap->oitv == NULL)
508 		return (error);
509 	return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
510 }
511 
512 int
513 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
514     struct itimerval *oitv)
515 {
516 	struct proc *p = td->td_proc;
517 	struct timeval ctv;
518 
519 	if (aitv == NULL)
520 		return (kern_getitimer(td, which, oitv));
521 
522 	if (which > ITIMER_PROF)
523 		return (EINVAL);
524 	if (itimerfix(&aitv->it_value))
525 		return (EINVAL);
526 	if (!timevalisset(&aitv->it_value))
527 		timevalclear(&aitv->it_interval);
528 	else if (itimerfix(&aitv->it_interval))
529 		return (EINVAL);
530 
531 	if (which == ITIMER_REAL) {
532 		PROC_LOCK(p);
533 		if (timevalisset(&p->p_realtimer.it_value))
534 			callout_stop(&p->p_itcallout);
535 		getmicrouptime(&ctv);
536 		if (timevalisset(&aitv->it_value)) {
537 			callout_reset(&p->p_itcallout, tvtohz(&aitv->it_value),
538 			    realitexpire, p);
539 			timevaladd(&aitv->it_value, &ctv);
540 		}
541 		*oitv = p->p_realtimer;
542 		p->p_realtimer = *aitv;
543 		PROC_UNLOCK(p);
544 		if (timevalisset(&oitv->it_value)) {
545 			if (timevalcmp(&oitv->it_value, &ctv, <))
546 				timevalclear(&oitv->it_value);
547 			else
548 				timevalsub(&oitv->it_value, &ctv);
549 		}
550 	} else {
551 		mtx_lock_spin(&sched_lock);
552 		*oitv = p->p_stats->p_timer[which];
553 		p->p_stats->p_timer[which] = *aitv;
554 		mtx_unlock_spin(&sched_lock);
555 	}
556 	return (0);
557 }
558 
559 /*
560  * Real interval timer expired:
561  * send process whose timer expired an alarm signal.
562  * If time is not set up to reload, then just return.
563  * Else compute next time timer should go off which is > current time.
564  * This is where delay in processing this timeout causes multiple
565  * SIGALRM calls to be compressed into one.
566  * tvtohz() always adds 1 to allow for the time until the next clock
567  * interrupt being strictly less than 1 clock tick, but we don't want
568  * that here since we want to appear to be in sync with the clock
569  * interrupt even when we're delayed.
570  */
571 void
572 realitexpire(void *arg)
573 {
574 	struct proc *p;
575 	struct timeval ctv, ntv;
576 
577 	p = (struct proc *)arg;
578 	PROC_LOCK(p);
579 	psignal(p, SIGALRM);
580 	if (!timevalisset(&p->p_realtimer.it_interval)) {
581 		timevalclear(&p->p_realtimer.it_value);
582 		if (p->p_flag & P_WEXIT)
583 			wakeup(&p->p_itcallout);
584 		PROC_UNLOCK(p);
585 		return;
586 	}
587 	for (;;) {
588 		timevaladd(&p->p_realtimer.it_value,
589 		    &p->p_realtimer.it_interval);
590 		getmicrouptime(&ctv);
591 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
592 			ntv = p->p_realtimer.it_value;
593 			timevalsub(&ntv, &ctv);
594 			callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
595 			    realitexpire, p);
596 			PROC_UNLOCK(p);
597 			return;
598 		}
599 	}
600 	/*NOTREACHED*/
601 }
602 
603 /*
604  * Check that a proposed value to load into the .it_value or
605  * .it_interval part of an interval timer is acceptable, and
606  * fix it to have at least minimal value (i.e. if it is less
607  * than the resolution of the clock, round it up.)
608  */
609 int
610 itimerfix(struct timeval *tv)
611 {
612 
613 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
614 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
615 		return (EINVAL);
616 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
617 		tv->tv_usec = tick;
618 	return (0);
619 }
620 
621 /*
622  * Decrement an interval timer by a specified number
623  * of microseconds, which must be less than a second,
624  * i.e. < 1000000.  If the timer expires, then reload
625  * it.  In this case, carry over (usec - old value) to
626  * reduce the value reloaded into the timer so that
627  * the timer does not drift.  This routine assumes
628  * that it is called in a context where the timers
629  * on which it is operating cannot change in value.
630  */
631 int
632 itimerdecr(struct itimerval *itp, int usec)
633 {
634 
635 	if (itp->it_value.tv_usec < usec) {
636 		if (itp->it_value.tv_sec == 0) {
637 			/* expired, and already in next interval */
638 			usec -= itp->it_value.tv_usec;
639 			goto expire;
640 		}
641 		itp->it_value.tv_usec += 1000000;
642 		itp->it_value.tv_sec--;
643 	}
644 	itp->it_value.tv_usec -= usec;
645 	usec = 0;
646 	if (timevalisset(&itp->it_value))
647 		return (1);
648 	/* expired, exactly at end of interval */
649 expire:
650 	if (timevalisset(&itp->it_interval)) {
651 		itp->it_value = itp->it_interval;
652 		itp->it_value.tv_usec -= usec;
653 		if (itp->it_value.tv_usec < 0) {
654 			itp->it_value.tv_usec += 1000000;
655 			itp->it_value.tv_sec--;
656 		}
657 	} else
658 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
659 	return (0);
660 }
661 
662 /*
663  * Add and subtract routines for timevals.
664  * N.B.: subtract routine doesn't deal with
665  * results which are before the beginning,
666  * it just gets very confused in this case.
667  * Caveat emptor.
668  */
669 void
670 timevaladd(struct timeval *t1, const struct timeval *t2)
671 {
672 
673 	t1->tv_sec += t2->tv_sec;
674 	t1->tv_usec += t2->tv_usec;
675 	timevalfix(t1);
676 }
677 
678 void
679 timevalsub(struct timeval *t1, const struct timeval *t2)
680 {
681 
682 	t1->tv_sec -= t2->tv_sec;
683 	t1->tv_usec -= t2->tv_usec;
684 	timevalfix(t1);
685 }
686 
687 static void
688 timevalfix(struct timeval *t1)
689 {
690 
691 	if (t1->tv_usec < 0) {
692 		t1->tv_sec--;
693 		t1->tv_usec += 1000000;
694 	}
695 	if (t1->tv_usec >= 1000000) {
696 		t1->tv_sec++;
697 		t1->tv_usec -= 1000000;
698 	}
699 }
700 
701 /*
702  * ratecheck(): simple time-based rate-limit checking.
703  */
704 int
705 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
706 {
707 	struct timeval tv, delta;
708 	int rv = 0;
709 
710 	getmicrouptime(&tv);		/* NB: 10ms precision */
711 	delta = tv;
712 	timevalsub(&delta, lasttime);
713 
714 	/*
715 	 * check for 0,0 is so that the message will be seen at least once,
716 	 * even if interval is huge.
717 	 */
718 	if (timevalcmp(&delta, mininterval, >=) ||
719 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
720 		*lasttime = tv;
721 		rv = 1;
722 	}
723 
724 	return (rv);
725 }
726 
727 /*
728  * ppsratecheck(): packets (or events) per second limitation.
729  *
730  * Return 0 if the limit is to be enforced (e.g. the caller
731  * should drop a packet because of the rate limitation).
732  *
733  * maxpps of 0 always causes zero to be returned.  maxpps of -1
734  * always causes 1 to be returned; this effectively defeats rate
735  * limiting.
736  *
737  * Note that we maintain the struct timeval for compatibility
738  * with other bsd systems.  We reuse the storage and just monitor
739  * clock ticks for minimal overhead.
740  */
741 int
742 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
743 {
744 	int now;
745 
746 	/*
747 	 * Reset the last time and counter if this is the first call
748 	 * or more than a second has passed since the last update of
749 	 * lasttime.
750 	 */
751 	now = ticks;
752 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
753 		lasttime->tv_sec = now;
754 		*curpps = 1;
755 		return (maxpps != 0);
756 	} else {
757 		(*curpps)++;		/* NB: ignore potential overflow */
758 		return (maxpps < 0 || *curpps < maxpps);
759 	}
760 }
761