1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ktrace.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/limits.h> 42 #include <sys/clock.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/sysproto.h> 46 #include <sys/eventhandler.h> 47 #include <sys/resourcevar.h> 48 #include <sys/signalvar.h> 49 #include <sys/kernel.h> 50 #include <sys/sleepqueue.h> 51 #include <sys/syscallsubr.h> 52 #include <sys/sysctl.h> 53 #include <sys/sysent.h> 54 #include <sys/priv.h> 55 #include <sys/proc.h> 56 #include <sys/posix4.h> 57 #include <sys/time.h> 58 #include <sys/timers.h> 59 #include <sys/timetc.h> 60 #include <sys/vnode.h> 61 #ifdef KTRACE 62 #include <sys/ktrace.h> 63 #endif 64 65 #include <vm/vm.h> 66 #include <vm/vm_extern.h> 67 68 #define MAX_CLOCKS (CLOCK_MONOTONIC+1) 69 #define CPUCLOCK_BIT 0x80000000 70 #define CPUCLOCK_PROCESS_BIT 0x40000000 71 #define CPUCLOCK_ID_MASK (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT)) 72 #define MAKE_THREAD_CPUCLOCK(tid) (CPUCLOCK_BIT|(tid)) 73 #define MAKE_PROCESS_CPUCLOCK(pid) \ 74 (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid)) 75 76 static struct kclock posix_clocks[MAX_CLOCKS]; 77 static uma_zone_t itimer_zone = NULL; 78 79 /* 80 * Time of day and interval timer support. 81 * 82 * These routines provide the kernel entry points to get and set 83 * the time-of-day and per-process interval timers. Subroutines 84 * here provide support for adding and subtracting timeval structures 85 * and decrementing interval timers, optionally reloading the interval 86 * timers when they expire. 87 */ 88 89 static int settime(struct thread *, struct timeval *); 90 static void timevalfix(struct timeval *); 91 static int user_clock_nanosleep(struct thread *td, clockid_t clock_id, 92 int flags, const struct timespec *ua_rqtp, 93 struct timespec *ua_rmtp); 94 95 static void itimer_start(void); 96 static int itimer_init(void *, int, int); 97 static void itimer_fini(void *, int); 98 static void itimer_enter(struct itimer *); 99 static void itimer_leave(struct itimer *); 100 static struct itimer *itimer_find(struct proc *, int); 101 static void itimers_alloc(struct proc *); 102 static void itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp); 103 static void itimers_event_hook_exit(void *arg, struct proc *p); 104 static int realtimer_create(struct itimer *); 105 static int realtimer_gettime(struct itimer *, struct itimerspec *); 106 static int realtimer_settime(struct itimer *, int, 107 struct itimerspec *, struct itimerspec *); 108 static int realtimer_delete(struct itimer *); 109 static void realtimer_clocktime(clockid_t, struct timespec *); 110 static void realtimer_expire(void *); 111 112 int register_posix_clock(int, struct kclock *); 113 void itimer_fire(struct itimer *it); 114 int itimespecfix(struct timespec *ts); 115 116 #define CLOCK_CALL(clock, call, arglist) \ 117 ((*posix_clocks[clock].call) arglist) 118 119 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL); 120 121 122 static int 123 settime(struct thread *td, struct timeval *tv) 124 { 125 struct timeval delta, tv1, tv2; 126 static struct timeval maxtime, laststep; 127 struct timespec ts; 128 129 microtime(&tv1); 130 delta = *tv; 131 timevalsub(&delta, &tv1); 132 133 /* 134 * If the system is secure, we do not allow the time to be 135 * set to a value earlier than 1 second less than the highest 136 * time we have yet seen. The worst a miscreant can do in 137 * this circumstance is "freeze" time. He couldn't go 138 * back to the past. 139 * 140 * We similarly do not allow the clock to be stepped more 141 * than one second, nor more than once per second. This allows 142 * a miscreant to make the clock march double-time, but no worse. 143 */ 144 if (securelevel_gt(td->td_ucred, 1) != 0) { 145 if (delta.tv_sec < 0 || delta.tv_usec < 0) { 146 /* 147 * Update maxtime to latest time we've seen. 148 */ 149 if (tv1.tv_sec > maxtime.tv_sec) 150 maxtime = tv1; 151 tv2 = *tv; 152 timevalsub(&tv2, &maxtime); 153 if (tv2.tv_sec < -1) { 154 tv->tv_sec = maxtime.tv_sec - 1; 155 printf("Time adjustment clamped to -1 second\n"); 156 } 157 } else { 158 if (tv1.tv_sec == laststep.tv_sec) 159 return (EPERM); 160 if (delta.tv_sec > 1) { 161 tv->tv_sec = tv1.tv_sec + 1; 162 printf("Time adjustment clamped to +1 second\n"); 163 } 164 laststep = *tv; 165 } 166 } 167 168 ts.tv_sec = tv->tv_sec; 169 ts.tv_nsec = tv->tv_usec * 1000; 170 tc_setclock(&ts); 171 resettodr(); 172 return (0); 173 } 174 175 #ifndef _SYS_SYSPROTO_H_ 176 struct clock_getcpuclockid2_args { 177 id_t id; 178 int which, 179 clockid_t *clock_id; 180 }; 181 #endif 182 /* ARGSUSED */ 183 int 184 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap) 185 { 186 clockid_t clk_id; 187 int error; 188 189 error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id); 190 if (error == 0) 191 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 192 return (error); 193 } 194 195 int 196 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which, 197 clockid_t *clk_id) 198 { 199 struct proc *p; 200 pid_t pid; 201 lwpid_t tid; 202 int error; 203 204 switch (which) { 205 case CPUCLOCK_WHICH_PID: 206 if (id != 0) { 207 error = pget(id, PGET_CANSEE | PGET_NOTID, &p); 208 if (error != 0) 209 return (error); 210 PROC_UNLOCK(p); 211 pid = id; 212 } else { 213 pid = td->td_proc->p_pid; 214 } 215 *clk_id = MAKE_PROCESS_CPUCLOCK(pid); 216 return (0); 217 case CPUCLOCK_WHICH_TID: 218 tid = id == 0 ? td->td_tid : id; 219 *clk_id = MAKE_THREAD_CPUCLOCK(tid); 220 return (0); 221 default: 222 return (EINVAL); 223 } 224 } 225 226 #ifndef _SYS_SYSPROTO_H_ 227 struct clock_gettime_args { 228 clockid_t clock_id; 229 struct timespec *tp; 230 }; 231 #endif 232 /* ARGSUSED */ 233 int 234 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap) 235 { 236 struct timespec ats; 237 int error; 238 239 error = kern_clock_gettime(td, uap->clock_id, &ats); 240 if (error == 0) 241 error = copyout(&ats, uap->tp, sizeof(ats)); 242 243 return (error); 244 } 245 246 static inline void 247 cputick2timespec(uint64_t runtime, struct timespec *ats) 248 { 249 runtime = cputick2usec(runtime); 250 ats->tv_sec = runtime / 1000000; 251 ats->tv_nsec = runtime % 1000000 * 1000; 252 } 253 254 static void 255 get_thread_cputime(struct thread *targettd, struct timespec *ats) 256 { 257 uint64_t runtime, curtime, switchtime; 258 259 if (targettd == NULL) { /* current thread */ 260 critical_enter(); 261 switchtime = PCPU_GET(switchtime); 262 curtime = cpu_ticks(); 263 runtime = curthread->td_runtime; 264 critical_exit(); 265 runtime += curtime - switchtime; 266 } else { 267 thread_lock(targettd); 268 runtime = targettd->td_runtime; 269 thread_unlock(targettd); 270 } 271 cputick2timespec(runtime, ats); 272 } 273 274 static void 275 get_process_cputime(struct proc *targetp, struct timespec *ats) 276 { 277 uint64_t runtime; 278 struct rusage ru; 279 280 PROC_STATLOCK(targetp); 281 rufetch(targetp, &ru); 282 runtime = targetp->p_rux.rux_runtime; 283 PROC_STATUNLOCK(targetp); 284 cputick2timespec(runtime, ats); 285 } 286 287 static int 288 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats) 289 { 290 struct proc *p, *p2; 291 struct thread *td2; 292 lwpid_t tid; 293 pid_t pid; 294 int error; 295 296 p = td->td_proc; 297 if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) { 298 tid = clock_id & CPUCLOCK_ID_MASK; 299 td2 = tdfind(tid, p->p_pid); 300 if (td2 == NULL) 301 return (EINVAL); 302 get_thread_cputime(td2, ats); 303 PROC_UNLOCK(td2->td_proc); 304 } else { 305 pid = clock_id & CPUCLOCK_ID_MASK; 306 error = pget(pid, PGET_CANSEE, &p2); 307 if (error != 0) 308 return (EINVAL); 309 get_process_cputime(p2, ats); 310 PROC_UNLOCK(p2); 311 } 312 return (0); 313 } 314 315 int 316 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats) 317 { 318 struct timeval sys, user; 319 struct proc *p; 320 321 p = td->td_proc; 322 switch (clock_id) { 323 case CLOCK_REALTIME: /* Default to precise. */ 324 case CLOCK_REALTIME_PRECISE: 325 nanotime(ats); 326 break; 327 case CLOCK_REALTIME_FAST: 328 getnanotime(ats); 329 break; 330 case CLOCK_VIRTUAL: 331 PROC_LOCK(p); 332 PROC_STATLOCK(p); 333 calcru(p, &user, &sys); 334 PROC_STATUNLOCK(p); 335 PROC_UNLOCK(p); 336 TIMEVAL_TO_TIMESPEC(&user, ats); 337 break; 338 case CLOCK_PROF: 339 PROC_LOCK(p); 340 PROC_STATLOCK(p); 341 calcru(p, &user, &sys); 342 PROC_STATUNLOCK(p); 343 PROC_UNLOCK(p); 344 timevaladd(&user, &sys); 345 TIMEVAL_TO_TIMESPEC(&user, ats); 346 break; 347 case CLOCK_MONOTONIC: /* Default to precise. */ 348 case CLOCK_MONOTONIC_PRECISE: 349 case CLOCK_UPTIME: 350 case CLOCK_UPTIME_PRECISE: 351 nanouptime(ats); 352 break; 353 case CLOCK_UPTIME_FAST: 354 case CLOCK_MONOTONIC_FAST: 355 getnanouptime(ats); 356 break; 357 case CLOCK_SECOND: 358 ats->tv_sec = time_second; 359 ats->tv_nsec = 0; 360 break; 361 case CLOCK_THREAD_CPUTIME_ID: 362 get_thread_cputime(NULL, ats); 363 break; 364 case CLOCK_PROCESS_CPUTIME_ID: 365 PROC_LOCK(p); 366 get_process_cputime(p, ats); 367 PROC_UNLOCK(p); 368 break; 369 default: 370 if ((int)clock_id >= 0) 371 return (EINVAL); 372 return (get_cputime(td, clock_id, ats)); 373 } 374 return (0); 375 } 376 377 #ifndef _SYS_SYSPROTO_H_ 378 struct clock_settime_args { 379 clockid_t clock_id; 380 const struct timespec *tp; 381 }; 382 #endif 383 /* ARGSUSED */ 384 int 385 sys_clock_settime(struct thread *td, struct clock_settime_args *uap) 386 { 387 struct timespec ats; 388 int error; 389 390 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0) 391 return (error); 392 return (kern_clock_settime(td, uap->clock_id, &ats)); 393 } 394 395 static int allow_insane_settime = 0; 396 SYSCTL_INT(_debug, OID_AUTO, allow_insane_settime, CTLFLAG_RWTUN, 397 &allow_insane_settime, 0, 398 "do not perform possibly restrictive checks on settime(2) args"); 399 400 int 401 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats) 402 { 403 struct timeval atv; 404 int error; 405 406 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 407 return (error); 408 if (clock_id != CLOCK_REALTIME) 409 return (EINVAL); 410 if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000 || 411 ats->tv_sec < 0) 412 return (EINVAL); 413 if (!allow_insane_settime && ats->tv_sec > 8000ULL * 365 * 24 * 60 * 60) 414 return (EINVAL); 415 /* XXX Don't convert nsec->usec and back */ 416 TIMESPEC_TO_TIMEVAL(&atv, ats); 417 error = settime(td, &atv); 418 return (error); 419 } 420 421 #ifndef _SYS_SYSPROTO_H_ 422 struct clock_getres_args { 423 clockid_t clock_id; 424 struct timespec *tp; 425 }; 426 #endif 427 int 428 sys_clock_getres(struct thread *td, struct clock_getres_args *uap) 429 { 430 struct timespec ts; 431 int error; 432 433 if (uap->tp == NULL) 434 return (0); 435 436 error = kern_clock_getres(td, uap->clock_id, &ts); 437 if (error == 0) 438 error = copyout(&ts, uap->tp, sizeof(ts)); 439 return (error); 440 } 441 442 int 443 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts) 444 { 445 446 ts->tv_sec = 0; 447 switch (clock_id) { 448 case CLOCK_REALTIME: 449 case CLOCK_REALTIME_FAST: 450 case CLOCK_REALTIME_PRECISE: 451 case CLOCK_MONOTONIC: 452 case CLOCK_MONOTONIC_FAST: 453 case CLOCK_MONOTONIC_PRECISE: 454 case CLOCK_UPTIME: 455 case CLOCK_UPTIME_FAST: 456 case CLOCK_UPTIME_PRECISE: 457 /* 458 * Round up the result of the division cheaply by adding 1. 459 * Rounding up is especially important if rounding down 460 * would give 0. Perfect rounding is unimportant. 461 */ 462 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1; 463 break; 464 case CLOCK_VIRTUAL: 465 case CLOCK_PROF: 466 /* Accurately round up here because we can do so cheaply. */ 467 ts->tv_nsec = howmany(1000000000, hz); 468 break; 469 case CLOCK_SECOND: 470 ts->tv_sec = 1; 471 ts->tv_nsec = 0; 472 break; 473 case CLOCK_THREAD_CPUTIME_ID: 474 case CLOCK_PROCESS_CPUTIME_ID: 475 cputime: 476 /* sync with cputick2usec */ 477 ts->tv_nsec = 1000000 / cpu_tickrate(); 478 if (ts->tv_nsec == 0) 479 ts->tv_nsec = 1000; 480 break; 481 default: 482 if ((int)clock_id < 0) 483 goto cputime; 484 return (EINVAL); 485 } 486 return (0); 487 } 488 489 int 490 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt) 491 { 492 493 return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt, 494 rmt)); 495 } 496 497 static uint8_t nanowait[MAXCPU]; 498 499 int 500 kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 501 const struct timespec *rqt, struct timespec *rmt) 502 { 503 struct timespec ts, now; 504 sbintime_t sbt, sbtt, prec, tmp; 505 time_t over; 506 int error; 507 bool is_abs_real; 508 509 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000) 510 return (EINVAL); 511 if ((flags & ~TIMER_ABSTIME) != 0) 512 return (EINVAL); 513 switch (clock_id) { 514 case CLOCK_REALTIME: 515 case CLOCK_REALTIME_PRECISE: 516 case CLOCK_REALTIME_FAST: 517 case CLOCK_SECOND: 518 is_abs_real = (flags & TIMER_ABSTIME) != 0; 519 break; 520 case CLOCK_MONOTONIC: 521 case CLOCK_MONOTONIC_PRECISE: 522 case CLOCK_MONOTONIC_FAST: 523 case CLOCK_UPTIME: 524 case CLOCK_UPTIME_PRECISE: 525 case CLOCK_UPTIME_FAST: 526 is_abs_real = false; 527 break; 528 case CLOCK_VIRTUAL: 529 case CLOCK_PROF: 530 case CLOCK_PROCESS_CPUTIME_ID: 531 return (ENOTSUP); 532 case CLOCK_THREAD_CPUTIME_ID: 533 default: 534 return (EINVAL); 535 } 536 do { 537 ts = *rqt; 538 if ((flags & TIMER_ABSTIME) != 0) { 539 if (is_abs_real) 540 td->td_rtcgen = 541 atomic_load_acq_int(&rtc_generation); 542 error = kern_clock_gettime(td, clock_id, &now); 543 KASSERT(error == 0, ("kern_clock_gettime: %d", error)); 544 timespecsub(&ts, &now); 545 } 546 if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) { 547 error = EWOULDBLOCK; 548 break; 549 } 550 if (ts.tv_sec > INT32_MAX / 2) { 551 over = ts.tv_sec - INT32_MAX / 2; 552 ts.tv_sec -= over; 553 } else 554 over = 0; 555 tmp = tstosbt(ts); 556 prec = tmp; 557 prec >>= tc_precexp; 558 if (TIMESEL(&sbt, tmp)) 559 sbt += tc_tick_sbt; 560 sbt += tmp; 561 error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp", 562 sbt, prec, C_ABSOLUTE); 563 } while (error == 0 && is_abs_real && td->td_rtcgen == 0); 564 td->td_rtcgen = 0; 565 if (error != EWOULDBLOCK) { 566 if (TIMESEL(&sbtt, tmp)) 567 sbtt += tc_tick_sbt; 568 if (sbtt >= sbt) 569 return (0); 570 if (error == ERESTART) 571 error = EINTR; 572 if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) { 573 ts = sbttots(sbt - sbtt); 574 ts.tv_sec += over; 575 if (ts.tv_sec < 0) 576 timespecclear(&ts); 577 *rmt = ts; 578 } 579 return (error); 580 } 581 return (0); 582 } 583 584 #ifndef _SYS_SYSPROTO_H_ 585 struct nanosleep_args { 586 struct timespec *rqtp; 587 struct timespec *rmtp; 588 }; 589 #endif 590 /* ARGSUSED */ 591 int 592 sys_nanosleep(struct thread *td, struct nanosleep_args *uap) 593 { 594 595 return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, 596 uap->rqtp, uap->rmtp)); 597 } 598 599 #ifndef _SYS_SYSPROTO_H_ 600 struct clock_nanosleep_args { 601 clockid_t clock_id; 602 int flags; 603 struct timespec *rqtp; 604 struct timespec *rmtp; 605 }; 606 #endif 607 /* ARGSUSED */ 608 int 609 sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap) 610 { 611 int error; 612 613 error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp, 614 uap->rmtp); 615 return (kern_posix_error(td, error)); 616 } 617 618 static int 619 user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 620 const struct timespec *ua_rqtp, struct timespec *ua_rmtp) 621 { 622 struct timespec rmt, rqt; 623 int error; 624 625 error = copyin(ua_rqtp, &rqt, sizeof(rqt)); 626 if (error) 627 return (error); 628 if (ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0 && 629 !useracc(ua_rmtp, sizeof(rmt), VM_PROT_WRITE)) 630 return (EFAULT); 631 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 632 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 633 int error2; 634 635 error2 = copyout(&rmt, ua_rmtp, sizeof(rmt)); 636 if (error2) 637 error = error2; 638 } 639 return (error); 640 } 641 642 #ifndef _SYS_SYSPROTO_H_ 643 struct gettimeofday_args { 644 struct timeval *tp; 645 struct timezone *tzp; 646 }; 647 #endif 648 /* ARGSUSED */ 649 int 650 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap) 651 { 652 struct timeval atv; 653 struct timezone rtz; 654 int error = 0; 655 656 if (uap->tp) { 657 microtime(&atv); 658 error = copyout(&atv, uap->tp, sizeof (atv)); 659 } 660 if (error == 0 && uap->tzp != NULL) { 661 rtz.tz_minuteswest = tz_minuteswest; 662 rtz.tz_dsttime = tz_dsttime; 663 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 664 } 665 return (error); 666 } 667 668 #ifndef _SYS_SYSPROTO_H_ 669 struct settimeofday_args { 670 struct timeval *tv; 671 struct timezone *tzp; 672 }; 673 #endif 674 /* ARGSUSED */ 675 int 676 sys_settimeofday(struct thread *td, struct settimeofday_args *uap) 677 { 678 struct timeval atv, *tvp; 679 struct timezone atz, *tzp; 680 int error; 681 682 if (uap->tv) { 683 error = copyin(uap->tv, &atv, sizeof(atv)); 684 if (error) 685 return (error); 686 tvp = &atv; 687 } else 688 tvp = NULL; 689 if (uap->tzp) { 690 error = copyin(uap->tzp, &atz, sizeof(atz)); 691 if (error) 692 return (error); 693 tzp = &atz; 694 } else 695 tzp = NULL; 696 return (kern_settimeofday(td, tvp, tzp)); 697 } 698 699 int 700 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp) 701 { 702 int error; 703 704 error = priv_check(td, PRIV_SETTIMEOFDAY); 705 if (error) 706 return (error); 707 /* Verify all parameters before changing time. */ 708 if (tv) { 709 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 || 710 tv->tv_sec < 0) 711 return (EINVAL); 712 error = settime(td, tv); 713 } 714 if (tzp && error == 0) { 715 tz_minuteswest = tzp->tz_minuteswest; 716 tz_dsttime = tzp->tz_dsttime; 717 } 718 return (error); 719 } 720 721 /* 722 * Get value of an interval timer. The process virtual and profiling virtual 723 * time timers are kept in the p_stats area, since they can be swapped out. 724 * These are kept internally in the way they are specified externally: in 725 * time until they expire. 726 * 727 * The real time interval timer is kept in the process table slot for the 728 * process, and its value (it_value) is kept as an absolute time rather than 729 * as a delta, so that it is easy to keep periodic real-time signals from 730 * drifting. 731 * 732 * Virtual time timers are processed in the hardclock() routine of 733 * kern_clock.c. The real time timer is processed by a timeout routine, 734 * called from the softclock() routine. Since a callout may be delayed in 735 * real time due to interrupt processing in the system, it is possible for 736 * the real time timeout routine (realitexpire, given below), to be delayed 737 * in real time past when it is supposed to occur. It does not suffice, 738 * therefore, to reload the real timer .it_value from the real time timers 739 * .it_interval. Rather, we compute the next time in absolute time the timer 740 * should go off. 741 */ 742 #ifndef _SYS_SYSPROTO_H_ 743 struct getitimer_args { 744 u_int which; 745 struct itimerval *itv; 746 }; 747 #endif 748 int 749 sys_getitimer(struct thread *td, struct getitimer_args *uap) 750 { 751 struct itimerval aitv; 752 int error; 753 754 error = kern_getitimer(td, uap->which, &aitv); 755 if (error != 0) 756 return (error); 757 return (copyout(&aitv, uap->itv, sizeof (struct itimerval))); 758 } 759 760 int 761 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv) 762 { 763 struct proc *p = td->td_proc; 764 struct timeval ctv; 765 766 if (which > ITIMER_PROF) 767 return (EINVAL); 768 769 if (which == ITIMER_REAL) { 770 /* 771 * Convert from absolute to relative time in .it_value 772 * part of real time timer. If time for real time timer 773 * has passed return 0, else return difference between 774 * current time and time for the timer to go off. 775 */ 776 PROC_LOCK(p); 777 *aitv = p->p_realtimer; 778 PROC_UNLOCK(p); 779 if (timevalisset(&aitv->it_value)) { 780 microuptime(&ctv); 781 if (timevalcmp(&aitv->it_value, &ctv, <)) 782 timevalclear(&aitv->it_value); 783 else 784 timevalsub(&aitv->it_value, &ctv); 785 } 786 } else { 787 PROC_ITIMLOCK(p); 788 *aitv = p->p_stats->p_timer[which]; 789 PROC_ITIMUNLOCK(p); 790 } 791 #ifdef KTRACE 792 if (KTRPOINT(td, KTR_STRUCT)) 793 ktritimerval(aitv); 794 #endif 795 return (0); 796 } 797 798 #ifndef _SYS_SYSPROTO_H_ 799 struct setitimer_args { 800 u_int which; 801 struct itimerval *itv, *oitv; 802 }; 803 #endif 804 int 805 sys_setitimer(struct thread *td, struct setitimer_args *uap) 806 { 807 struct itimerval aitv, oitv; 808 int error; 809 810 if (uap->itv == NULL) { 811 uap->itv = uap->oitv; 812 return (sys_getitimer(td, (struct getitimer_args *)uap)); 813 } 814 815 if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval)))) 816 return (error); 817 error = kern_setitimer(td, uap->which, &aitv, &oitv); 818 if (error != 0 || uap->oitv == NULL) 819 return (error); 820 return (copyout(&oitv, uap->oitv, sizeof(struct itimerval))); 821 } 822 823 int 824 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv, 825 struct itimerval *oitv) 826 { 827 struct proc *p = td->td_proc; 828 struct timeval ctv; 829 sbintime_t sbt, pr; 830 831 if (aitv == NULL) 832 return (kern_getitimer(td, which, oitv)); 833 834 if (which > ITIMER_PROF) 835 return (EINVAL); 836 #ifdef KTRACE 837 if (KTRPOINT(td, KTR_STRUCT)) 838 ktritimerval(aitv); 839 #endif 840 if (itimerfix(&aitv->it_value) || 841 aitv->it_value.tv_sec > INT32_MAX / 2) 842 return (EINVAL); 843 if (!timevalisset(&aitv->it_value)) 844 timevalclear(&aitv->it_interval); 845 else if (itimerfix(&aitv->it_interval) || 846 aitv->it_interval.tv_sec > INT32_MAX / 2) 847 return (EINVAL); 848 849 if (which == ITIMER_REAL) { 850 PROC_LOCK(p); 851 if (timevalisset(&p->p_realtimer.it_value)) 852 callout_stop(&p->p_itcallout); 853 microuptime(&ctv); 854 if (timevalisset(&aitv->it_value)) { 855 pr = tvtosbt(aitv->it_value) >> tc_precexp; 856 timevaladd(&aitv->it_value, &ctv); 857 sbt = tvtosbt(aitv->it_value); 858 callout_reset_sbt(&p->p_itcallout, sbt, pr, 859 realitexpire, p, C_ABSOLUTE); 860 } 861 *oitv = p->p_realtimer; 862 p->p_realtimer = *aitv; 863 PROC_UNLOCK(p); 864 if (timevalisset(&oitv->it_value)) { 865 if (timevalcmp(&oitv->it_value, &ctv, <)) 866 timevalclear(&oitv->it_value); 867 else 868 timevalsub(&oitv->it_value, &ctv); 869 } 870 } else { 871 if (aitv->it_interval.tv_sec == 0 && 872 aitv->it_interval.tv_usec != 0 && 873 aitv->it_interval.tv_usec < tick) 874 aitv->it_interval.tv_usec = tick; 875 if (aitv->it_value.tv_sec == 0 && 876 aitv->it_value.tv_usec != 0 && 877 aitv->it_value.tv_usec < tick) 878 aitv->it_value.tv_usec = tick; 879 PROC_ITIMLOCK(p); 880 *oitv = p->p_stats->p_timer[which]; 881 p->p_stats->p_timer[which] = *aitv; 882 PROC_ITIMUNLOCK(p); 883 } 884 #ifdef KTRACE 885 if (KTRPOINT(td, KTR_STRUCT)) 886 ktritimerval(oitv); 887 #endif 888 return (0); 889 } 890 891 /* 892 * Real interval timer expired: 893 * send process whose timer expired an alarm signal. 894 * If time is not set up to reload, then just return. 895 * Else compute next time timer should go off which is > current time. 896 * This is where delay in processing this timeout causes multiple 897 * SIGALRM calls to be compressed into one. 898 * tvtohz() always adds 1 to allow for the time until the next clock 899 * interrupt being strictly less than 1 clock tick, but we don't want 900 * that here since we want to appear to be in sync with the clock 901 * interrupt even when we're delayed. 902 */ 903 void 904 realitexpire(void *arg) 905 { 906 struct proc *p; 907 struct timeval ctv; 908 sbintime_t isbt; 909 910 p = (struct proc *)arg; 911 kern_psignal(p, SIGALRM); 912 if (!timevalisset(&p->p_realtimer.it_interval)) { 913 timevalclear(&p->p_realtimer.it_value); 914 if (p->p_flag & P_WEXIT) 915 wakeup(&p->p_itcallout); 916 return; 917 } 918 isbt = tvtosbt(p->p_realtimer.it_interval); 919 if (isbt >= sbt_timethreshold) 920 getmicrouptime(&ctv); 921 else 922 microuptime(&ctv); 923 do { 924 timevaladd(&p->p_realtimer.it_value, 925 &p->p_realtimer.it_interval); 926 } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=)); 927 callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value), 928 isbt >> tc_precexp, realitexpire, p, C_ABSOLUTE); 929 } 930 931 /* 932 * Check that a proposed value to load into the .it_value or 933 * .it_interval part of an interval timer is acceptable, and 934 * fix it to have at least minimal value (i.e. if it is less 935 * than the resolution of the clock, round it up.) 936 */ 937 int 938 itimerfix(struct timeval *tv) 939 { 940 941 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000) 942 return (EINVAL); 943 if (tv->tv_sec == 0 && tv->tv_usec != 0 && 944 tv->tv_usec < (u_int)tick / 16) 945 tv->tv_usec = (u_int)tick / 16; 946 return (0); 947 } 948 949 /* 950 * Decrement an interval timer by a specified number 951 * of microseconds, which must be less than a second, 952 * i.e. < 1000000. If the timer expires, then reload 953 * it. In this case, carry over (usec - old value) to 954 * reduce the value reloaded into the timer so that 955 * the timer does not drift. This routine assumes 956 * that it is called in a context where the timers 957 * on which it is operating cannot change in value. 958 */ 959 int 960 itimerdecr(struct itimerval *itp, int usec) 961 { 962 963 if (itp->it_value.tv_usec < usec) { 964 if (itp->it_value.tv_sec == 0) { 965 /* expired, and already in next interval */ 966 usec -= itp->it_value.tv_usec; 967 goto expire; 968 } 969 itp->it_value.tv_usec += 1000000; 970 itp->it_value.tv_sec--; 971 } 972 itp->it_value.tv_usec -= usec; 973 usec = 0; 974 if (timevalisset(&itp->it_value)) 975 return (1); 976 /* expired, exactly at end of interval */ 977 expire: 978 if (timevalisset(&itp->it_interval)) { 979 itp->it_value = itp->it_interval; 980 itp->it_value.tv_usec -= usec; 981 if (itp->it_value.tv_usec < 0) { 982 itp->it_value.tv_usec += 1000000; 983 itp->it_value.tv_sec--; 984 } 985 } else 986 itp->it_value.tv_usec = 0; /* sec is already 0 */ 987 return (0); 988 } 989 990 /* 991 * Add and subtract routines for timevals. 992 * N.B.: subtract routine doesn't deal with 993 * results which are before the beginning, 994 * it just gets very confused in this case. 995 * Caveat emptor. 996 */ 997 void 998 timevaladd(struct timeval *t1, const struct timeval *t2) 999 { 1000 1001 t1->tv_sec += t2->tv_sec; 1002 t1->tv_usec += t2->tv_usec; 1003 timevalfix(t1); 1004 } 1005 1006 void 1007 timevalsub(struct timeval *t1, const struct timeval *t2) 1008 { 1009 1010 t1->tv_sec -= t2->tv_sec; 1011 t1->tv_usec -= t2->tv_usec; 1012 timevalfix(t1); 1013 } 1014 1015 static void 1016 timevalfix(struct timeval *t1) 1017 { 1018 1019 if (t1->tv_usec < 0) { 1020 t1->tv_sec--; 1021 t1->tv_usec += 1000000; 1022 } 1023 if (t1->tv_usec >= 1000000) { 1024 t1->tv_sec++; 1025 t1->tv_usec -= 1000000; 1026 } 1027 } 1028 1029 /* 1030 * ratecheck(): simple time-based rate-limit checking. 1031 */ 1032 int 1033 ratecheck(struct timeval *lasttime, const struct timeval *mininterval) 1034 { 1035 struct timeval tv, delta; 1036 int rv = 0; 1037 1038 getmicrouptime(&tv); /* NB: 10ms precision */ 1039 delta = tv; 1040 timevalsub(&delta, lasttime); 1041 1042 /* 1043 * check for 0,0 is so that the message will be seen at least once, 1044 * even if interval is huge. 1045 */ 1046 if (timevalcmp(&delta, mininterval, >=) || 1047 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { 1048 *lasttime = tv; 1049 rv = 1; 1050 } 1051 1052 return (rv); 1053 } 1054 1055 /* 1056 * ppsratecheck(): packets (or events) per second limitation. 1057 * 1058 * Return 0 if the limit is to be enforced (e.g. the caller 1059 * should drop a packet because of the rate limitation). 1060 * 1061 * maxpps of 0 always causes zero to be returned. maxpps of -1 1062 * always causes 1 to be returned; this effectively defeats rate 1063 * limiting. 1064 * 1065 * Note that we maintain the struct timeval for compatibility 1066 * with other bsd systems. We reuse the storage and just monitor 1067 * clock ticks for minimal overhead. 1068 */ 1069 int 1070 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) 1071 { 1072 int now; 1073 1074 /* 1075 * Reset the last time and counter if this is the first call 1076 * or more than a second has passed since the last update of 1077 * lasttime. 1078 */ 1079 now = ticks; 1080 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) { 1081 lasttime->tv_sec = now; 1082 *curpps = 1; 1083 return (maxpps != 0); 1084 } else { 1085 (*curpps)++; /* NB: ignore potential overflow */ 1086 return (maxpps < 0 || *curpps <= maxpps); 1087 } 1088 } 1089 1090 static void 1091 itimer_start(void) 1092 { 1093 struct kclock rt_clock = { 1094 .timer_create = realtimer_create, 1095 .timer_delete = realtimer_delete, 1096 .timer_settime = realtimer_settime, 1097 .timer_gettime = realtimer_gettime, 1098 .event_hook = NULL 1099 }; 1100 1101 itimer_zone = uma_zcreate("itimer", sizeof(struct itimer), 1102 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0); 1103 register_posix_clock(CLOCK_REALTIME, &rt_clock); 1104 register_posix_clock(CLOCK_MONOTONIC, &rt_clock); 1105 p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L); 1106 p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX); 1107 p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX); 1108 EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit, 1109 (void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY); 1110 EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec, 1111 (void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY); 1112 } 1113 1114 int 1115 register_posix_clock(int clockid, struct kclock *clk) 1116 { 1117 if ((unsigned)clockid >= MAX_CLOCKS) { 1118 printf("%s: invalid clockid\n", __func__); 1119 return (0); 1120 } 1121 posix_clocks[clockid] = *clk; 1122 return (1); 1123 } 1124 1125 static int 1126 itimer_init(void *mem, int size, int flags) 1127 { 1128 struct itimer *it; 1129 1130 it = (struct itimer *)mem; 1131 mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF); 1132 return (0); 1133 } 1134 1135 static void 1136 itimer_fini(void *mem, int size) 1137 { 1138 struct itimer *it; 1139 1140 it = (struct itimer *)mem; 1141 mtx_destroy(&it->it_mtx); 1142 } 1143 1144 static void 1145 itimer_enter(struct itimer *it) 1146 { 1147 1148 mtx_assert(&it->it_mtx, MA_OWNED); 1149 it->it_usecount++; 1150 } 1151 1152 static void 1153 itimer_leave(struct itimer *it) 1154 { 1155 1156 mtx_assert(&it->it_mtx, MA_OWNED); 1157 KASSERT(it->it_usecount > 0, ("invalid it_usecount")); 1158 1159 if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0) 1160 wakeup(it); 1161 } 1162 1163 #ifndef _SYS_SYSPROTO_H_ 1164 struct ktimer_create_args { 1165 clockid_t clock_id; 1166 struct sigevent * evp; 1167 int * timerid; 1168 }; 1169 #endif 1170 int 1171 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap) 1172 { 1173 struct sigevent *evp, ev; 1174 int id; 1175 int error; 1176 1177 if (uap->evp == NULL) { 1178 evp = NULL; 1179 } else { 1180 error = copyin(uap->evp, &ev, sizeof(ev)); 1181 if (error != 0) 1182 return (error); 1183 evp = &ev; 1184 } 1185 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 1186 if (error == 0) { 1187 error = copyout(&id, uap->timerid, sizeof(int)); 1188 if (error != 0) 1189 kern_ktimer_delete(td, id); 1190 } 1191 return (error); 1192 } 1193 1194 int 1195 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp, 1196 int *timerid, int preset_id) 1197 { 1198 struct proc *p = td->td_proc; 1199 struct itimer *it; 1200 int id; 1201 int error; 1202 1203 if (clock_id < 0 || clock_id >= MAX_CLOCKS) 1204 return (EINVAL); 1205 1206 if (posix_clocks[clock_id].timer_create == NULL) 1207 return (EINVAL); 1208 1209 if (evp != NULL) { 1210 if (evp->sigev_notify != SIGEV_NONE && 1211 evp->sigev_notify != SIGEV_SIGNAL && 1212 evp->sigev_notify != SIGEV_THREAD_ID) 1213 return (EINVAL); 1214 if ((evp->sigev_notify == SIGEV_SIGNAL || 1215 evp->sigev_notify == SIGEV_THREAD_ID) && 1216 !_SIG_VALID(evp->sigev_signo)) 1217 return (EINVAL); 1218 } 1219 1220 if (p->p_itimers == NULL) 1221 itimers_alloc(p); 1222 1223 it = uma_zalloc(itimer_zone, M_WAITOK); 1224 it->it_flags = 0; 1225 it->it_usecount = 0; 1226 it->it_active = 0; 1227 timespecclear(&it->it_time.it_value); 1228 timespecclear(&it->it_time.it_interval); 1229 it->it_overrun = 0; 1230 it->it_overrun_last = 0; 1231 it->it_clockid = clock_id; 1232 it->it_timerid = -1; 1233 it->it_proc = p; 1234 ksiginfo_init(&it->it_ksi); 1235 it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT; 1236 error = CLOCK_CALL(clock_id, timer_create, (it)); 1237 if (error != 0) 1238 goto out; 1239 1240 PROC_LOCK(p); 1241 if (preset_id != -1) { 1242 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id")); 1243 id = preset_id; 1244 if (p->p_itimers->its_timers[id] != NULL) { 1245 PROC_UNLOCK(p); 1246 error = 0; 1247 goto out; 1248 } 1249 } else { 1250 /* 1251 * Find a free timer slot, skipping those reserved 1252 * for setitimer(). 1253 */ 1254 for (id = 3; id < TIMER_MAX; id++) 1255 if (p->p_itimers->its_timers[id] == NULL) 1256 break; 1257 if (id == TIMER_MAX) { 1258 PROC_UNLOCK(p); 1259 error = EAGAIN; 1260 goto out; 1261 } 1262 } 1263 it->it_timerid = id; 1264 p->p_itimers->its_timers[id] = it; 1265 if (evp != NULL) 1266 it->it_sigev = *evp; 1267 else { 1268 it->it_sigev.sigev_notify = SIGEV_SIGNAL; 1269 switch (clock_id) { 1270 default: 1271 case CLOCK_REALTIME: 1272 it->it_sigev.sigev_signo = SIGALRM; 1273 break; 1274 case CLOCK_VIRTUAL: 1275 it->it_sigev.sigev_signo = SIGVTALRM; 1276 break; 1277 case CLOCK_PROF: 1278 it->it_sigev.sigev_signo = SIGPROF; 1279 break; 1280 } 1281 it->it_sigev.sigev_value.sival_int = id; 1282 } 1283 1284 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1285 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1286 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo; 1287 it->it_ksi.ksi_code = SI_TIMER; 1288 it->it_ksi.ksi_value = it->it_sigev.sigev_value; 1289 it->it_ksi.ksi_timerid = id; 1290 } 1291 PROC_UNLOCK(p); 1292 *timerid = id; 1293 return (0); 1294 1295 out: 1296 ITIMER_LOCK(it); 1297 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1298 ITIMER_UNLOCK(it); 1299 uma_zfree(itimer_zone, it); 1300 return (error); 1301 } 1302 1303 #ifndef _SYS_SYSPROTO_H_ 1304 struct ktimer_delete_args { 1305 int timerid; 1306 }; 1307 #endif 1308 int 1309 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap) 1310 { 1311 1312 return (kern_ktimer_delete(td, uap->timerid)); 1313 } 1314 1315 static struct itimer * 1316 itimer_find(struct proc *p, int timerid) 1317 { 1318 struct itimer *it; 1319 1320 PROC_LOCK_ASSERT(p, MA_OWNED); 1321 if ((p->p_itimers == NULL) || 1322 (timerid < 0) || (timerid >= TIMER_MAX) || 1323 (it = p->p_itimers->its_timers[timerid]) == NULL) { 1324 return (NULL); 1325 } 1326 ITIMER_LOCK(it); 1327 if ((it->it_flags & ITF_DELETING) != 0) { 1328 ITIMER_UNLOCK(it); 1329 it = NULL; 1330 } 1331 return (it); 1332 } 1333 1334 int 1335 kern_ktimer_delete(struct thread *td, int timerid) 1336 { 1337 struct proc *p = td->td_proc; 1338 struct itimer *it; 1339 1340 PROC_LOCK(p); 1341 it = itimer_find(p, timerid); 1342 if (it == NULL) { 1343 PROC_UNLOCK(p); 1344 return (EINVAL); 1345 } 1346 PROC_UNLOCK(p); 1347 1348 it->it_flags |= ITF_DELETING; 1349 while (it->it_usecount > 0) { 1350 it->it_flags |= ITF_WANTED; 1351 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0); 1352 } 1353 it->it_flags &= ~ITF_WANTED; 1354 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1355 ITIMER_UNLOCK(it); 1356 1357 PROC_LOCK(p); 1358 if (KSI_ONQ(&it->it_ksi)) 1359 sigqueue_take(&it->it_ksi); 1360 p->p_itimers->its_timers[timerid] = NULL; 1361 PROC_UNLOCK(p); 1362 uma_zfree(itimer_zone, it); 1363 return (0); 1364 } 1365 1366 #ifndef _SYS_SYSPROTO_H_ 1367 struct ktimer_settime_args { 1368 int timerid; 1369 int flags; 1370 const struct itimerspec * value; 1371 struct itimerspec * ovalue; 1372 }; 1373 #endif 1374 int 1375 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap) 1376 { 1377 struct itimerspec val, oval, *ovalp; 1378 int error; 1379 1380 error = copyin(uap->value, &val, sizeof(val)); 1381 if (error != 0) 1382 return (error); 1383 ovalp = uap->ovalue != NULL ? &oval : NULL; 1384 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 1385 if (error == 0 && uap->ovalue != NULL) 1386 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp)); 1387 return (error); 1388 } 1389 1390 int 1391 kern_ktimer_settime(struct thread *td, int timer_id, int flags, 1392 struct itimerspec *val, struct itimerspec *oval) 1393 { 1394 struct proc *p; 1395 struct itimer *it; 1396 int error; 1397 1398 p = td->td_proc; 1399 PROC_LOCK(p); 1400 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1401 PROC_UNLOCK(p); 1402 error = EINVAL; 1403 } else { 1404 PROC_UNLOCK(p); 1405 itimer_enter(it); 1406 error = CLOCK_CALL(it->it_clockid, timer_settime, (it, 1407 flags, val, oval)); 1408 itimer_leave(it); 1409 ITIMER_UNLOCK(it); 1410 } 1411 return (error); 1412 } 1413 1414 #ifndef _SYS_SYSPROTO_H_ 1415 struct ktimer_gettime_args { 1416 int timerid; 1417 struct itimerspec * value; 1418 }; 1419 #endif 1420 int 1421 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap) 1422 { 1423 struct itimerspec val; 1424 int error; 1425 1426 error = kern_ktimer_gettime(td, uap->timerid, &val); 1427 if (error == 0) 1428 error = copyout(&val, uap->value, sizeof(val)); 1429 return (error); 1430 } 1431 1432 int 1433 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val) 1434 { 1435 struct proc *p; 1436 struct itimer *it; 1437 int error; 1438 1439 p = td->td_proc; 1440 PROC_LOCK(p); 1441 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1442 PROC_UNLOCK(p); 1443 error = EINVAL; 1444 } else { 1445 PROC_UNLOCK(p); 1446 itimer_enter(it); 1447 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val)); 1448 itimer_leave(it); 1449 ITIMER_UNLOCK(it); 1450 } 1451 return (error); 1452 } 1453 1454 #ifndef _SYS_SYSPROTO_H_ 1455 struct timer_getoverrun_args { 1456 int timerid; 1457 }; 1458 #endif 1459 int 1460 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap) 1461 { 1462 1463 return (kern_ktimer_getoverrun(td, uap->timerid)); 1464 } 1465 1466 int 1467 kern_ktimer_getoverrun(struct thread *td, int timer_id) 1468 { 1469 struct proc *p = td->td_proc; 1470 struct itimer *it; 1471 int error ; 1472 1473 PROC_LOCK(p); 1474 if (timer_id < 3 || 1475 (it = itimer_find(p, timer_id)) == NULL) { 1476 PROC_UNLOCK(p); 1477 error = EINVAL; 1478 } else { 1479 td->td_retval[0] = it->it_overrun_last; 1480 ITIMER_UNLOCK(it); 1481 PROC_UNLOCK(p); 1482 error = 0; 1483 } 1484 return (error); 1485 } 1486 1487 static int 1488 realtimer_create(struct itimer *it) 1489 { 1490 callout_init_mtx(&it->it_callout, &it->it_mtx, 0); 1491 return (0); 1492 } 1493 1494 static int 1495 realtimer_delete(struct itimer *it) 1496 { 1497 mtx_assert(&it->it_mtx, MA_OWNED); 1498 1499 /* 1500 * clear timer's value and interval to tell realtimer_expire 1501 * to not rearm the timer. 1502 */ 1503 timespecclear(&it->it_time.it_value); 1504 timespecclear(&it->it_time.it_interval); 1505 ITIMER_UNLOCK(it); 1506 callout_drain(&it->it_callout); 1507 ITIMER_LOCK(it); 1508 return (0); 1509 } 1510 1511 static int 1512 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue) 1513 { 1514 struct timespec cts; 1515 1516 mtx_assert(&it->it_mtx, MA_OWNED); 1517 1518 realtimer_clocktime(it->it_clockid, &cts); 1519 *ovalue = it->it_time; 1520 if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) { 1521 timespecsub(&ovalue->it_value, &cts); 1522 if (ovalue->it_value.tv_sec < 0 || 1523 (ovalue->it_value.tv_sec == 0 && 1524 ovalue->it_value.tv_nsec == 0)) { 1525 ovalue->it_value.tv_sec = 0; 1526 ovalue->it_value.tv_nsec = 1; 1527 } 1528 } 1529 return (0); 1530 } 1531 1532 static int 1533 realtimer_settime(struct itimer *it, int flags, 1534 struct itimerspec *value, struct itimerspec *ovalue) 1535 { 1536 struct timespec cts, ts; 1537 struct timeval tv; 1538 struct itimerspec val; 1539 1540 mtx_assert(&it->it_mtx, MA_OWNED); 1541 1542 val = *value; 1543 if (itimespecfix(&val.it_value)) 1544 return (EINVAL); 1545 1546 if (timespecisset(&val.it_value)) { 1547 if (itimespecfix(&val.it_interval)) 1548 return (EINVAL); 1549 } else { 1550 timespecclear(&val.it_interval); 1551 } 1552 1553 if (ovalue != NULL) 1554 realtimer_gettime(it, ovalue); 1555 1556 it->it_time = val; 1557 if (timespecisset(&val.it_value)) { 1558 realtimer_clocktime(it->it_clockid, &cts); 1559 ts = val.it_value; 1560 if ((flags & TIMER_ABSTIME) == 0) { 1561 /* Convert to absolute time. */ 1562 timespecadd(&it->it_time.it_value, &cts); 1563 } else { 1564 timespecsub(&ts, &cts); 1565 /* 1566 * We don't care if ts is negative, tztohz will 1567 * fix it. 1568 */ 1569 } 1570 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1571 callout_reset(&it->it_callout, tvtohz(&tv), 1572 realtimer_expire, it); 1573 } else { 1574 callout_stop(&it->it_callout); 1575 } 1576 1577 return (0); 1578 } 1579 1580 static void 1581 realtimer_clocktime(clockid_t id, struct timespec *ts) 1582 { 1583 if (id == CLOCK_REALTIME) 1584 getnanotime(ts); 1585 else /* CLOCK_MONOTONIC */ 1586 getnanouptime(ts); 1587 } 1588 1589 int 1590 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi) 1591 { 1592 struct itimer *it; 1593 1594 PROC_LOCK_ASSERT(p, MA_OWNED); 1595 it = itimer_find(p, timerid); 1596 if (it != NULL) { 1597 ksi->ksi_overrun = it->it_overrun; 1598 it->it_overrun_last = it->it_overrun; 1599 it->it_overrun = 0; 1600 ITIMER_UNLOCK(it); 1601 return (0); 1602 } 1603 return (EINVAL); 1604 } 1605 1606 int 1607 itimespecfix(struct timespec *ts) 1608 { 1609 1610 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1611 return (EINVAL); 1612 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000) 1613 ts->tv_nsec = tick * 1000; 1614 return (0); 1615 } 1616 1617 /* Timeout callback for realtime timer */ 1618 static void 1619 realtimer_expire(void *arg) 1620 { 1621 struct timespec cts, ts; 1622 struct timeval tv; 1623 struct itimer *it; 1624 1625 it = (struct itimer *)arg; 1626 1627 realtimer_clocktime(it->it_clockid, &cts); 1628 /* Only fire if time is reached. */ 1629 if (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1630 if (timespecisset(&it->it_time.it_interval)) { 1631 timespecadd(&it->it_time.it_value, 1632 &it->it_time.it_interval); 1633 while (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1634 if (it->it_overrun < INT_MAX) 1635 it->it_overrun++; 1636 else 1637 it->it_ksi.ksi_errno = ERANGE; 1638 timespecadd(&it->it_time.it_value, 1639 &it->it_time.it_interval); 1640 } 1641 } else { 1642 /* single shot timer ? */ 1643 timespecclear(&it->it_time.it_value); 1644 } 1645 if (timespecisset(&it->it_time.it_value)) { 1646 ts = it->it_time.it_value; 1647 timespecsub(&ts, &cts); 1648 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1649 callout_reset(&it->it_callout, tvtohz(&tv), 1650 realtimer_expire, it); 1651 } 1652 itimer_enter(it); 1653 ITIMER_UNLOCK(it); 1654 itimer_fire(it); 1655 ITIMER_LOCK(it); 1656 itimer_leave(it); 1657 } else if (timespecisset(&it->it_time.it_value)) { 1658 ts = it->it_time.it_value; 1659 timespecsub(&ts, &cts); 1660 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1661 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire, 1662 it); 1663 } 1664 } 1665 1666 void 1667 itimer_fire(struct itimer *it) 1668 { 1669 struct proc *p = it->it_proc; 1670 struct thread *td; 1671 1672 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1673 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1674 if (sigev_findtd(p, &it->it_sigev, &td) != 0) { 1675 ITIMER_LOCK(it); 1676 timespecclear(&it->it_time.it_value); 1677 timespecclear(&it->it_time.it_interval); 1678 callout_stop(&it->it_callout); 1679 ITIMER_UNLOCK(it); 1680 return; 1681 } 1682 if (!KSI_ONQ(&it->it_ksi)) { 1683 it->it_ksi.ksi_errno = 0; 1684 ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev); 1685 tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi); 1686 } else { 1687 if (it->it_overrun < INT_MAX) 1688 it->it_overrun++; 1689 else 1690 it->it_ksi.ksi_errno = ERANGE; 1691 } 1692 PROC_UNLOCK(p); 1693 } 1694 } 1695 1696 static void 1697 itimers_alloc(struct proc *p) 1698 { 1699 struct itimers *its; 1700 int i; 1701 1702 its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO); 1703 LIST_INIT(&its->its_virtual); 1704 LIST_INIT(&its->its_prof); 1705 TAILQ_INIT(&its->its_worklist); 1706 for (i = 0; i < TIMER_MAX; i++) 1707 its->its_timers[i] = NULL; 1708 PROC_LOCK(p); 1709 if (p->p_itimers == NULL) { 1710 p->p_itimers = its; 1711 PROC_UNLOCK(p); 1712 } 1713 else { 1714 PROC_UNLOCK(p); 1715 free(its, M_SUBPROC); 1716 } 1717 } 1718 1719 static void 1720 itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused) 1721 { 1722 itimers_event_hook_exit(arg, p); 1723 } 1724 1725 /* Clean up timers when some process events are being triggered. */ 1726 static void 1727 itimers_event_hook_exit(void *arg, struct proc *p) 1728 { 1729 struct itimers *its; 1730 struct itimer *it; 1731 int event = (int)(intptr_t)arg; 1732 int i; 1733 1734 if (p->p_itimers != NULL) { 1735 its = p->p_itimers; 1736 for (i = 0; i < MAX_CLOCKS; ++i) { 1737 if (posix_clocks[i].event_hook != NULL) 1738 CLOCK_CALL(i, event_hook, (p, i, event)); 1739 } 1740 /* 1741 * According to susv3, XSI interval timers should be inherited 1742 * by new image. 1743 */ 1744 if (event == ITIMER_EV_EXEC) 1745 i = 3; 1746 else if (event == ITIMER_EV_EXIT) 1747 i = 0; 1748 else 1749 panic("unhandled event"); 1750 for (; i < TIMER_MAX; ++i) { 1751 if ((it = its->its_timers[i]) != NULL) 1752 kern_ktimer_delete(curthread, i); 1753 } 1754 if (its->its_timers[0] == NULL && 1755 its->its_timers[1] == NULL && 1756 its->its_timers[2] == NULL) { 1757 free(its, M_SUBPROC); 1758 p->p_itimers = NULL; 1759 } 1760 } 1761 } 1762