xref: /freebsd/sys/kern/kern_time.c (revision 5521ff5a4d1929056e7ffc982fac3341ca54df7c)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD$
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/systm.h>
46 #include <sys/sysent.h>
47 #include <sys/proc.h>
48 #include <sys/time.h>
49 #include <sys/timetc.h>
50 #include <sys/vnode.h>
51 
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 
55 struct timezone tz;
56 
57 /*
58  * Time of day and interval timer support.
59  *
60  * These routines provide the kernel entry points to get and set
61  * the time-of-day and per-process interval timers.  Subroutines
62  * here provide support for adding and subtracting timeval structures
63  * and decrementing interval timers, optionally reloading the interval
64  * timers when they expire.
65  */
66 
67 static int	nanosleep1 __P((struct proc *p, struct timespec *rqt,
68 		    struct timespec *rmt));
69 static int	settime __P((struct timeval *));
70 static void	timevalfix __P((struct timeval *));
71 static void	no_lease_updatetime __P((int));
72 
73 static void
74 no_lease_updatetime(deltat)
75 	int deltat;
76 {
77 }
78 
79 void (*lease_updatetime) __P((int))  = no_lease_updatetime;
80 
81 static int
82 settime(tv)
83 	struct timeval *tv;
84 {
85 	struct timeval delta, tv1, tv2;
86 	static struct timeval maxtime, laststep;
87 	struct timespec ts;
88 	int s;
89 
90 	s = splclock();
91 	microtime(&tv1);
92 	delta = *tv;
93 	timevalsub(&delta, &tv1);
94 
95 	/*
96 	 * If the system is secure, we do not allow the time to be
97 	 * set to a value earlier than 1 second less than the highest
98 	 * time we have yet seen. The worst a miscreant can do in
99 	 * this circumstance is "freeze" time. He couldn't go
100 	 * back to the past.
101 	 *
102 	 * We similarly do not allow the clock to be stepped more
103 	 * than one second, nor more than once per second. This allows
104 	 * a miscreant to make the clock march double-time, but no worse.
105 	 */
106 	if (securelevel > 1) {
107 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
108 			/*
109 			 * Update maxtime to latest time we've seen.
110 			 */
111 			if (tv1.tv_sec > maxtime.tv_sec)
112 				maxtime = tv1;
113 			tv2 = *tv;
114 			timevalsub(&tv2, &maxtime);
115 			if (tv2.tv_sec < -1) {
116 				tv->tv_sec = maxtime.tv_sec - 1;
117 				printf("Time adjustment clamped to -1 second\n");
118 			}
119 		} else {
120 			if (tv1.tv_sec == laststep.tv_sec) {
121 				splx(s);
122 				return (EPERM);
123 			}
124 			if (delta.tv_sec > 1) {
125 				tv->tv_sec = tv1.tv_sec + 1;
126 				printf("Time adjustment clamped to +1 second\n");
127 			}
128 			laststep = *tv;
129 		}
130 	}
131 
132 	ts.tv_sec = tv->tv_sec;
133 	ts.tv_nsec = tv->tv_usec * 1000;
134 	tc_setclock(&ts);
135 	(void) splsoftclock();
136 	lease_updatetime(delta.tv_sec);
137 	splx(s);
138 	resettodr();
139 	return (0);
140 }
141 
142 #ifndef _SYS_SYSPROTO_H_
143 struct clock_gettime_args {
144 	clockid_t clock_id;
145 	struct	timespec *tp;
146 };
147 #endif
148 
149 /* ARGSUSED */
150 int
151 clock_gettime(p, uap)
152 	struct proc *p;
153 	struct clock_gettime_args *uap;
154 {
155 	struct timespec ats;
156 
157 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
158 		return (EINVAL);
159 	nanotime(&ats);
160 	return (copyout(&ats, SCARG(uap, tp), sizeof(ats)));
161 }
162 
163 #ifndef _SYS_SYSPROTO_H_
164 struct clock_settime_args {
165 	clockid_t clock_id;
166 	const struct	timespec *tp;
167 };
168 #endif
169 
170 /* ARGSUSED */
171 int
172 clock_settime(p, uap)
173 	struct proc *p;
174 	struct clock_settime_args *uap;
175 {
176 	struct timeval atv;
177 	struct timespec ats;
178 	int error;
179 
180 	if ((error = suser(p)) != 0)
181 		return (error);
182 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
183 		return (EINVAL);
184 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
185 		return (error);
186 	if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
187 		return (EINVAL);
188 	/* XXX Don't convert nsec->usec and back */
189 	TIMESPEC_TO_TIMEVAL(&atv, &ats);
190 	if ((error = settime(&atv)))
191 		return (error);
192 	return (0);
193 }
194 
195 #ifndef _SYS_SYSPROTO_H_
196 struct clock_getres_args {
197 	clockid_t clock_id;
198 	struct	timespec *tp;
199 };
200 #endif
201 
202 int
203 clock_getres(p, uap)
204 	struct proc *p;
205 	struct clock_getres_args *uap;
206 {
207 	struct timespec ts;
208 	int error;
209 
210 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
211 		return (EINVAL);
212 	error = 0;
213 	if (SCARG(uap, tp)) {
214 		ts.tv_sec = 0;
215 		ts.tv_nsec = 1000000000 / timecounter->tc_frequency;
216 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
217 	}
218 	return (error);
219 }
220 
221 static int nanowait;
222 
223 static int
224 nanosleep1(p, rqt, rmt)
225 	struct proc *p;
226 	struct timespec *rqt, *rmt;
227 {
228 	struct timespec ts, ts2, ts3;
229 	struct timeval tv;
230 	int error;
231 
232 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
233 		return (EINVAL);
234 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
235 		return (0);
236 	getnanouptime(&ts);
237 	timespecadd(&ts, rqt);
238 	TIMESPEC_TO_TIMEVAL(&tv, rqt);
239 	for (;;) {
240 		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
241 		    tvtohz(&tv));
242 		getnanouptime(&ts2);
243 		if (error != EWOULDBLOCK) {
244 			if (error == ERESTART)
245 				error = EINTR;
246 			if (rmt != NULL) {
247 				timespecsub(&ts, &ts2);
248 				if (ts.tv_sec < 0)
249 					timespecclear(&ts);
250 				*rmt = ts;
251 			}
252 			return (error);
253 		}
254 		if (timespeccmp(&ts2, &ts, >=))
255 			return (0);
256 		ts3 = ts;
257 		timespecsub(&ts3, &ts2);
258 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
259 	}
260 }
261 
262 #ifndef _SYS_SYSPROTO_H_
263 struct nanosleep_args {
264 	struct	timespec *rqtp;
265 	struct	timespec *rmtp;
266 };
267 #endif
268 
269 /* ARGSUSED */
270 int
271 nanosleep(p, uap)
272 	struct proc *p;
273 	struct nanosleep_args *uap;
274 {
275 	struct timespec rmt, rqt;
276 	int error, error2;
277 
278 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(rqt));
279 	if (error)
280 		return (error);
281 	if (SCARG(uap, rmtp))
282 		if (!useracc((caddr_t)SCARG(uap, rmtp), sizeof(rmt),
283 		    VM_PROT_WRITE))
284 			return (EFAULT);
285 	error = nanosleep1(p, &rqt, &rmt);
286 	if (error && SCARG(uap, rmtp)) {
287 		error2 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
288 		if (error2)	/* XXX shouldn't happen, did useracc() above */
289 			return (error2);
290 	}
291 	return (error);
292 }
293 
294 #ifndef _SYS_SYSPROTO_H_
295 struct gettimeofday_args {
296 	struct	timeval *tp;
297 	struct	timezone *tzp;
298 };
299 #endif
300 /* ARGSUSED */
301 int
302 gettimeofday(p, uap)
303 	struct proc *p;
304 	register struct gettimeofday_args *uap;
305 {
306 	struct timeval atv;
307 	int error = 0;
308 
309 	if (uap->tp) {
310 		microtime(&atv);
311 		if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
312 		    sizeof (atv))))
313 			return (error);
314 	}
315 	if (uap->tzp)
316 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
317 		    sizeof (tz));
318 	return (error);
319 }
320 
321 #ifndef _SYS_SYSPROTO_H_
322 struct settimeofday_args {
323 	struct	timeval *tv;
324 	struct	timezone *tzp;
325 };
326 #endif
327 /* ARGSUSED */
328 int
329 settimeofday(p, uap)
330 	struct proc *p;
331 	struct settimeofday_args *uap;
332 {
333 	struct timeval atv;
334 	struct timezone atz;
335 	int error;
336 
337 	if ((error = suser(p)))
338 		return (error);
339 	/* Verify all parameters before changing time. */
340 	if (uap->tv) {
341 		if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
342 		    sizeof(atv))))
343 			return (error);
344 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
345 			return (EINVAL);
346 	}
347 	if (uap->tzp &&
348 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
349 		return (error);
350 	if (uap->tv && (error = settime(&atv)))
351 		return (error);
352 	if (uap->tzp)
353 		tz = atz;
354 	return (0);
355 }
356 
357 int	tickdelta;			/* current clock skew, us. per tick */
358 long	timedelta;			/* unapplied time correction, us. */
359 static long	bigadj = 1000000;	/* use 10x skew above bigadj us. */
360 
361 #ifndef _SYS_SYSPROTO_H_
362 struct adjtime_args {
363 	struct timeval *delta;
364 	struct timeval *olddelta;
365 };
366 #endif
367 /* ARGSUSED */
368 int
369 adjtime(p, uap)
370 	struct proc *p;
371 	register struct adjtime_args *uap;
372 {
373 	struct timeval atv;
374 	register long ndelta, ntickdelta, odelta;
375 	int s, error;
376 
377 	if ((error = suser(p)))
378 		return (error);
379 	if ((error =
380 	    copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval))))
381 		return (error);
382 
383 	/*
384 	 * Compute the total correction and the rate at which to apply it.
385 	 * Round the adjustment down to a whole multiple of the per-tick
386 	 * delta, so that after some number of incremental changes in
387 	 * hardclock(), tickdelta will become zero, lest the correction
388 	 * overshoot and start taking us away from the desired final time.
389 	 */
390 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
391 	if (ndelta > bigadj || ndelta < -bigadj)
392 		ntickdelta = 10 * tickadj;
393 	else
394 		ntickdelta = tickadj;
395 	if (ndelta % ntickdelta)
396 		ndelta = ndelta / ntickdelta * ntickdelta;
397 
398 	/*
399 	 * To make hardclock()'s job easier, make the per-tick delta negative
400 	 * if we want time to run slower; then hardclock can simply compute
401 	 * tick + tickdelta, and subtract tickdelta from timedelta.
402 	 */
403 	if (ndelta < 0)
404 		ntickdelta = -ntickdelta;
405 	s = splclock();
406 	odelta = timedelta;
407 	timedelta = ndelta;
408 	tickdelta = ntickdelta;
409 	splx(s);
410 
411 	if (uap->olddelta) {
412 		atv.tv_sec = odelta / 1000000;
413 		atv.tv_usec = odelta % 1000000;
414 		(void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
415 		    sizeof(struct timeval));
416 	}
417 	return (0);
418 }
419 
420 /*
421  * Get value of an interval timer.  The process virtual and
422  * profiling virtual time timers are kept in the p_stats area, since
423  * they can be swapped out.  These are kept internally in the
424  * way they are specified externally: in time until they expire.
425  *
426  * The real time interval timer is kept in the process table slot
427  * for the process, and its value (it_value) is kept as an
428  * absolute time rather than as a delta, so that it is easy to keep
429  * periodic real-time signals from drifting.
430  *
431  * Virtual time timers are processed in the hardclock() routine of
432  * kern_clock.c.  The real time timer is processed by a timeout
433  * routine, called from the softclock() routine.  Since a callout
434  * may be delayed in real time due to interrupt processing in the system,
435  * it is possible for the real time timeout routine (realitexpire, given below),
436  * to be delayed in real time past when it is supposed to occur.  It
437  * does not suffice, therefore, to reload the real timer .it_value from the
438  * real time timers .it_interval.  Rather, we compute the next time in
439  * absolute time the timer should go off.
440  */
441 #ifndef _SYS_SYSPROTO_H_
442 struct getitimer_args {
443 	u_int	which;
444 	struct	itimerval *itv;
445 };
446 #endif
447 /* ARGSUSED */
448 int
449 getitimer(p, uap)
450 	struct proc *p;
451 	register struct getitimer_args *uap;
452 {
453 	struct timeval ctv;
454 	struct itimerval aitv;
455 	int s;
456 
457 	if (uap->which > ITIMER_PROF)
458 		return (EINVAL);
459 	s = splclock(); /* XXX still needed ? */
460 	if (uap->which == ITIMER_REAL) {
461 		/*
462 		 * Convert from absolute to relative time in .it_value
463 		 * part of real time timer.  If time for real time timer
464 		 * has passed return 0, else return difference between
465 		 * current time and time for the timer to go off.
466 		 */
467 		aitv = p->p_realtimer;
468 		if (timevalisset(&aitv.it_value)) {
469 			getmicrouptime(&ctv);
470 			if (timevalcmp(&aitv.it_value, &ctv, <))
471 				timevalclear(&aitv.it_value);
472 			else
473 				timevalsub(&aitv.it_value, &ctv);
474 		}
475 	} else
476 		aitv = p->p_stats->p_timer[uap->which];
477 	splx(s);
478 	return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
479 	    sizeof (struct itimerval)));
480 }
481 
482 #ifndef _SYS_SYSPROTO_H_
483 struct setitimer_args {
484 	u_int	which;
485 	struct	itimerval *itv, *oitv;
486 };
487 #endif
488 /* ARGSUSED */
489 int
490 setitimer(p, uap)
491 	struct proc *p;
492 	register struct setitimer_args *uap;
493 {
494 	struct itimerval aitv;
495 	struct timeval ctv;
496 	register struct itimerval *itvp;
497 	int s, error;
498 
499 	if (uap->which > ITIMER_PROF)
500 		return (EINVAL);
501 	itvp = uap->itv;
502 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
503 	    sizeof(struct itimerval))))
504 		return (error);
505 	if ((uap->itv = uap->oitv) &&
506 	    (error = getitimer(p, (struct getitimer_args *)uap)))
507 		return (error);
508 	if (itvp == 0)
509 		return (0);
510 	if (itimerfix(&aitv.it_value))
511 		return (EINVAL);
512 	if (!timevalisset(&aitv.it_value))
513 		timevalclear(&aitv.it_interval);
514 	else if (itimerfix(&aitv.it_interval))
515 		return (EINVAL);
516 	s = splclock(); /* XXX: still needed ? */
517 	if (uap->which == ITIMER_REAL) {
518 		if (timevalisset(&p->p_realtimer.it_value))
519 			callout_stop(&p->p_itcallout);
520 		if (timevalisset(&aitv.it_value))
521 			callout_reset(&p->p_itcallout, tvtohz(&aitv.it_value),
522 			    realitexpire, p);
523 		getmicrouptime(&ctv);
524 		timevaladd(&aitv.it_value, &ctv);
525 		p->p_realtimer = aitv;
526 	} else
527 		p->p_stats->p_timer[uap->which] = aitv;
528 	splx(s);
529 	return (0);
530 }
531 
532 /*
533  * Real interval timer expired:
534  * send process whose timer expired an alarm signal.
535  * If time is not set up to reload, then just return.
536  * Else compute next time timer should go off which is > current time.
537  * This is where delay in processing this timeout causes multiple
538  * SIGALRM calls to be compressed into one.
539  * tvtohz() always adds 1 to allow for the time until the next clock
540  * interrupt being strictly less than 1 clock tick, but we don't want
541  * that here since we want to appear to be in sync with the clock
542  * interrupt even when we're delayed.
543  */
544 void
545 realitexpire(arg)
546 	void *arg;
547 {
548 	register struct proc *p;
549 	struct timeval ctv, ntv;
550 	int s;
551 
552 	p = (struct proc *)arg;
553 	PROC_LOCK(p);
554 	psignal(p, SIGALRM);
555 	if (!timevalisset(&p->p_realtimer.it_interval)) {
556 		timevalclear(&p->p_realtimer.it_value);
557 		PROC_UNLOCK(p);
558 		return;
559 	}
560 	for (;;) {
561 		s = splclock(); /* XXX: still neeeded ? */
562 		timevaladd(&p->p_realtimer.it_value,
563 		    &p->p_realtimer.it_interval);
564 		getmicrouptime(&ctv);
565 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
566 			ntv = p->p_realtimer.it_value;
567 			timevalsub(&ntv, &ctv);
568 			callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
569 			    realitexpire, p);
570 			splx(s);
571 			PROC_UNLOCK(p);
572 			return;
573 		}
574 		splx(s);
575 	}
576 	/*NOTREACHED*/
577 }
578 
579 /*
580  * Check that a proposed value to load into the .it_value or
581  * .it_interval part of an interval timer is acceptable, and
582  * fix it to have at least minimal value (i.e. if it is less
583  * than the resolution of the clock, round it up.)
584  */
585 int
586 itimerfix(tv)
587 	struct timeval *tv;
588 {
589 
590 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
591 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
592 		return (EINVAL);
593 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
594 		tv->tv_usec = tick;
595 	return (0);
596 }
597 
598 /*
599  * Decrement an interval timer by a specified number
600  * of microseconds, which must be less than a second,
601  * i.e. < 1000000.  If the timer expires, then reload
602  * it.  In this case, carry over (usec - old value) to
603  * reduce the value reloaded into the timer so that
604  * the timer does not drift.  This routine assumes
605  * that it is called in a context where the timers
606  * on which it is operating cannot change in value.
607  */
608 int
609 itimerdecr(itp, usec)
610 	register struct itimerval *itp;
611 	int usec;
612 {
613 
614 	if (itp->it_value.tv_usec < usec) {
615 		if (itp->it_value.tv_sec == 0) {
616 			/* expired, and already in next interval */
617 			usec -= itp->it_value.tv_usec;
618 			goto expire;
619 		}
620 		itp->it_value.tv_usec += 1000000;
621 		itp->it_value.tv_sec--;
622 	}
623 	itp->it_value.tv_usec -= usec;
624 	usec = 0;
625 	if (timevalisset(&itp->it_value))
626 		return (1);
627 	/* expired, exactly at end of interval */
628 expire:
629 	if (timevalisset(&itp->it_interval)) {
630 		itp->it_value = itp->it_interval;
631 		itp->it_value.tv_usec -= usec;
632 		if (itp->it_value.tv_usec < 0) {
633 			itp->it_value.tv_usec += 1000000;
634 			itp->it_value.tv_sec--;
635 		}
636 	} else
637 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
638 	return (0);
639 }
640 
641 /*
642  * Add and subtract routines for timevals.
643  * N.B.: subtract routine doesn't deal with
644  * results which are before the beginning,
645  * it just gets very confused in this case.
646  * Caveat emptor.
647  */
648 void
649 timevaladd(t1, t2)
650 	struct timeval *t1, *t2;
651 {
652 
653 	t1->tv_sec += t2->tv_sec;
654 	t1->tv_usec += t2->tv_usec;
655 	timevalfix(t1);
656 }
657 
658 void
659 timevalsub(t1, t2)
660 	struct timeval *t1, *t2;
661 {
662 
663 	t1->tv_sec -= t2->tv_sec;
664 	t1->tv_usec -= t2->tv_usec;
665 	timevalfix(t1);
666 }
667 
668 static void
669 timevalfix(t1)
670 	struct timeval *t1;
671 {
672 
673 	if (t1->tv_usec < 0) {
674 		t1->tv_sec--;
675 		t1->tv_usec += 1000000;
676 	}
677 	if (t1->tv_usec >= 1000000) {
678 		t1->tv_sec++;
679 		t1->tv_usec -= 1000000;
680 	}
681 }
682