xref: /freebsd/sys/kern/kern_time.c (revision 4b2eaea43fec8e8792be611dea204071a10b655a)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD$
35  */
36 
37 #include "opt_mac.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/lock.h>
42 #include <sys/mutex.h>
43 #include <sys/sysproto.h>
44 #include <sys/resourcevar.h>
45 #include <sys/signalvar.h>
46 #include <sys/kernel.h>
47 #include <sys/mac.h>
48 #include <sys/systm.h>
49 #include <sys/sysent.h>
50 #include <sys/proc.h>
51 #include <sys/time.h>
52 #include <sys/timetc.h>
53 #include <sys/vnode.h>
54 
55 #include <vm/vm.h>
56 #include <vm/vm_extern.h>
57 
58 struct timezone tz;
59 
60 /*
61  * Time of day and interval timer support.
62  *
63  * These routines provide the kernel entry points to get and set
64  * the time-of-day and per-process interval timers.  Subroutines
65  * here provide support for adding and subtracting timeval structures
66  * and decrementing interval timers, optionally reloading the interval
67  * timers when they expire.
68  */
69 
70 static int	nanosleep1(struct thread *td, struct timespec *rqt,
71 		    struct timespec *rmt);
72 static int	settime(struct thread *, struct timeval *);
73 static void	timevalfix(struct timeval *);
74 static void	no_lease_updatetime(int);
75 
76 static void
77 no_lease_updatetime(deltat)
78 	int deltat;
79 {
80 }
81 
82 void (*lease_updatetime)(int)  = no_lease_updatetime;
83 
84 static int
85 settime(struct thread *td, struct timeval *tv)
86 {
87 	struct timeval delta, tv1, tv2;
88 	static struct timeval maxtime, laststep;
89 	struct timespec ts;
90 	int s;
91 
92 	s = splclock();
93 	microtime(&tv1);
94 	delta = *tv;
95 	timevalsub(&delta, &tv1);
96 
97 	/*
98 	 * If the system is secure, we do not allow the time to be
99 	 * set to a value earlier than 1 second less than the highest
100 	 * time we have yet seen. The worst a miscreant can do in
101 	 * this circumstance is "freeze" time. He couldn't go
102 	 * back to the past.
103 	 *
104 	 * We similarly do not allow the clock to be stepped more
105 	 * than one second, nor more than once per second. This allows
106 	 * a miscreant to make the clock march double-time, but no worse.
107 	 */
108 	if (securelevel_gt(td->td_ucred, 1) != 0) {
109 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
110 			/*
111 			 * Update maxtime to latest time we've seen.
112 			 */
113 			if (tv1.tv_sec > maxtime.tv_sec)
114 				maxtime = tv1;
115 			tv2 = *tv;
116 			timevalsub(&tv2, &maxtime);
117 			if (tv2.tv_sec < -1) {
118 				tv->tv_sec = maxtime.tv_sec - 1;
119 				printf("Time adjustment clamped to -1 second\n");
120 			}
121 		} else {
122 			if (tv1.tv_sec == laststep.tv_sec) {
123 				splx(s);
124 				return (EPERM);
125 			}
126 			if (delta.tv_sec > 1) {
127 				tv->tv_sec = tv1.tv_sec + 1;
128 				printf("Time adjustment clamped to +1 second\n");
129 			}
130 			laststep = *tv;
131 		}
132 	}
133 
134 	ts.tv_sec = tv->tv_sec;
135 	ts.tv_nsec = tv->tv_usec * 1000;
136 	mtx_lock(&Giant);
137 	tc_setclock(&ts);
138 	(void) splsoftclock();
139 	lease_updatetime(delta.tv_sec);
140 	splx(s);
141 	resettodr();
142 	mtx_unlock(&Giant);
143 	return (0);
144 }
145 
146 #ifndef _SYS_SYSPROTO_H_
147 struct clock_gettime_args {
148 	clockid_t clock_id;
149 	struct	timespec *tp;
150 };
151 #endif
152 
153 /*
154  * MPSAFE
155  */
156 /* ARGSUSED */
157 int
158 clock_gettime(struct thread *td, struct clock_gettime_args *uap)
159 {
160 	struct timespec ats;
161 
162 	if (uap->clock_id != CLOCK_REALTIME)
163 		return (EINVAL);
164 	nanotime(&ats);
165 	return (copyout(&ats, uap->tp, sizeof(ats)));
166 }
167 
168 #ifndef _SYS_SYSPROTO_H_
169 struct clock_settime_args {
170 	clockid_t clock_id;
171 	const struct	timespec *tp;
172 };
173 #endif
174 
175 /*
176  * MPSAFE
177  */
178 /* ARGSUSED */
179 int
180 clock_settime(struct thread *td, struct clock_settime_args *uap)
181 {
182 	struct timeval atv;
183 	struct timespec ats;
184 	int error;
185 
186 #ifdef MAC
187 	error = mac_check_system_settime(td->td_ucred);
188 	if (error)
189 		return (error);
190 #endif
191 	if ((error = suser(td)) != 0)
192 		return (error);
193 	if (uap->clock_id != CLOCK_REALTIME)
194 		return (EINVAL);
195 	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
196 		return (error);
197 	if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
198 		return (EINVAL);
199 	/* XXX Don't convert nsec->usec and back */
200 	TIMESPEC_TO_TIMEVAL(&atv, &ats);
201 	error = settime(td, &atv);
202 	return (error);
203 }
204 
205 #ifndef _SYS_SYSPROTO_H_
206 struct clock_getres_args {
207 	clockid_t clock_id;
208 	struct	timespec *tp;
209 };
210 #endif
211 
212 int
213 clock_getres(struct thread *td, struct clock_getres_args *uap)
214 {
215 	struct timespec ts;
216 	int error;
217 
218 	if (uap->clock_id != CLOCK_REALTIME)
219 		return (EINVAL);
220 	error = 0;
221 	if (uap->tp) {
222 		ts.tv_sec = 0;
223 		/*
224 		 * Round up the result of the division cheaply by adding 1.
225 		 * Rounding up is especially important if rounding down
226 		 * would give 0.  Perfect rounding is unimportant.
227 		 */
228 		ts.tv_nsec = 1000000000 / tc_getfrequency() + 1;
229 		error = copyout(&ts, uap->tp, sizeof(ts));
230 	}
231 	return (error);
232 }
233 
234 static int nanowait;
235 
236 static int
237 nanosleep1(struct thread *td, struct timespec *rqt, struct timespec *rmt)
238 {
239 	struct timespec ts, ts2, ts3;
240 	struct timeval tv;
241 	int error;
242 
243 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
244 		return (EINVAL);
245 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
246 		return (0);
247 	getnanouptime(&ts);
248 	timespecadd(&ts, rqt);
249 	TIMESPEC_TO_TIMEVAL(&tv, rqt);
250 	for (;;) {
251 		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
252 		    tvtohz(&tv));
253 		getnanouptime(&ts2);
254 		if (error != EWOULDBLOCK) {
255 			if (error == ERESTART)
256 				error = EINTR;
257 			if (rmt != NULL) {
258 				timespecsub(&ts, &ts2);
259 				if (ts.tv_sec < 0)
260 					timespecclear(&ts);
261 				*rmt = ts;
262 			}
263 			return (error);
264 		}
265 		if (timespeccmp(&ts2, &ts, >=))
266 			return (0);
267 		ts3 = ts;
268 		timespecsub(&ts3, &ts2);
269 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
270 	}
271 }
272 
273 #ifndef _SYS_SYSPROTO_H_
274 struct nanosleep_args {
275 	struct	timespec *rqtp;
276 	struct	timespec *rmtp;
277 };
278 #endif
279 
280 /*
281  * MPSAFE
282  */
283 /* ARGSUSED */
284 int
285 nanosleep(struct thread *td, struct nanosleep_args *uap)
286 {
287 	struct timespec rmt, rqt;
288 	int error;
289 
290 	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
291 	if (error)
292 		return (error);
293 
294 	if (uap->rmtp &&
295 	    !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
296 			return (EFAULT);
297 	mtx_lock(&Giant);
298 	error = nanosleep1(td, &rqt, &rmt);
299 	mtx_unlock(&Giant);
300 	if (error && uap->rmtp) {
301 		int error2;
302 
303 		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
304 		if (error2)
305 			error = error2;
306 	}
307 	return (error);
308 }
309 
310 #ifndef _SYS_SYSPROTO_H_
311 struct gettimeofday_args {
312 	struct	timeval *tp;
313 	struct	timezone *tzp;
314 };
315 #endif
316 /*
317  * MPSAFE
318  */
319 /* ARGSUSED */
320 int
321 gettimeofday(struct thread *td, struct gettimeofday_args *uap)
322 {
323 	struct timeval atv;
324 	int error = 0;
325 
326 	if (uap->tp) {
327 		microtime(&atv);
328 		error = copyout(&atv, uap->tp, sizeof (atv));
329 	}
330 	if (error == 0 && uap->tzp != NULL) {
331 		mtx_lock(&Giant);
332 		error = copyout(&tz, uap->tzp, sizeof (tz));
333 		mtx_unlock(&Giant);
334 	}
335 	return (error);
336 }
337 
338 #ifndef _SYS_SYSPROTO_H_
339 struct settimeofday_args {
340 	struct	timeval *tv;
341 	struct	timezone *tzp;
342 };
343 #endif
344 /*
345  * MPSAFE
346  */
347 /* ARGSUSED */
348 int
349 settimeofday(struct thread *td, struct settimeofday_args *uap)
350 {
351 	struct timeval atv;
352 	struct timezone atz;
353 	int error = 0;
354 
355 #ifdef MAC
356 	error = mac_check_system_settime(td->td_ucred);
357 	if (error)
358 		return (error);
359 #endif
360 	if ((error = suser(td)))
361 		return (error);
362 	/* Verify all parameters before changing time. */
363 	if (uap->tv) {
364 		if ((error = copyin(uap->tv, &atv, sizeof(atv))))
365 			return (error);
366 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
367 			return (EINVAL);
368 	}
369 	if (uap->tzp &&
370 	    (error = copyin(uap->tzp, &atz, sizeof(atz))))
371 		return (error);
372 
373 	if (uap->tv && (error = settime(td, &atv)))
374 		return (error);
375 	if (uap->tzp) {
376 		mtx_lock(&Giant);
377 		tz = atz;
378 		mtx_unlock(&Giant);
379 	}
380 	return (error);
381 }
382 /*
383  * Get value of an interval timer.  The process virtual and
384  * profiling virtual time timers are kept in the p_stats area, since
385  * they can be swapped out.  These are kept internally in the
386  * way they are specified externally: in time until they expire.
387  *
388  * The real time interval timer is kept in the process table slot
389  * for the process, and its value (it_value) is kept as an
390  * absolute time rather than as a delta, so that it is easy to keep
391  * periodic real-time signals from drifting.
392  *
393  * Virtual time timers are processed in the hardclock() routine of
394  * kern_clock.c.  The real time timer is processed by a timeout
395  * routine, called from the softclock() routine.  Since a callout
396  * may be delayed in real time due to interrupt processing in the system,
397  * it is possible for the real time timeout routine (realitexpire, given below),
398  * to be delayed in real time past when it is supposed to occur.  It
399  * does not suffice, therefore, to reload the real timer .it_value from the
400  * real time timers .it_interval.  Rather, we compute the next time in
401  * absolute time the timer should go off.
402  */
403 #ifndef _SYS_SYSPROTO_H_
404 struct getitimer_args {
405 	u_int	which;
406 	struct	itimerval *itv;
407 };
408 #endif
409 /*
410  * MPSAFE
411  */
412 /* ARGSUSED */
413 int
414 getitimer(struct thread *td, struct getitimer_args *uap)
415 {
416 	struct proc *p = td->td_proc;
417 	struct timeval ctv;
418 	struct itimerval aitv;
419 	int s;
420 	int error;
421 
422 	if (uap->which > ITIMER_PROF)
423 		return (EINVAL);
424 
425 	mtx_lock(&Giant);
426 
427 	s = splclock(); /* XXX still needed ? */
428 	if (uap->which == ITIMER_REAL) {
429 		/*
430 		 * Convert from absolute to relative time in .it_value
431 		 * part of real time timer.  If time for real time timer
432 		 * has passed return 0, else return difference between
433 		 * current time and time for the timer to go off.
434 		 */
435 		aitv = p->p_realtimer;
436 		if (timevalisset(&aitv.it_value)) {
437 			getmicrouptime(&ctv);
438 			if (timevalcmp(&aitv.it_value, &ctv, <))
439 				timevalclear(&aitv.it_value);
440 			else
441 				timevalsub(&aitv.it_value, &ctv);
442 		}
443 	} else {
444 		aitv = p->p_stats->p_timer[uap->which];
445 	}
446 	splx(s);
447 	error = copyout(&aitv, uap->itv, sizeof (struct itimerval));
448 	mtx_unlock(&Giant);
449 	return(error);
450 }
451 
452 #ifndef _SYS_SYSPROTO_H_
453 struct setitimer_args {
454 	u_int	which;
455 	struct	itimerval *itv, *oitv;
456 };
457 #endif
458 /*
459  * MPSAFE
460  */
461 /* ARGSUSED */
462 int
463 setitimer(struct thread *td, struct setitimer_args *uap)
464 {
465 	struct proc *p = td->td_proc;
466 	struct itimerval aitv;
467 	struct timeval ctv;
468 	struct itimerval *itvp;
469 	int s, error = 0;
470 
471 	if (uap->which > ITIMER_PROF)
472 		return (EINVAL);
473 	itvp = uap->itv;
474 	if (itvp && (error = copyin(itvp, &aitv, sizeof(struct itimerval))))
475 		return (error);
476 
477 	mtx_lock(&Giant);
478 
479 	if ((uap->itv = uap->oitv) &&
480 	    (error = getitimer(td, (struct getitimer_args *)uap))) {
481 		goto done2;
482 	}
483 	if (itvp == 0) {
484 		error = 0;
485 		goto done2;
486 	}
487 	if (itimerfix(&aitv.it_value)) {
488 		error = EINVAL;
489 		goto done2;
490 	}
491 	if (!timevalisset(&aitv.it_value)) {
492 		timevalclear(&aitv.it_interval);
493 	} else if (itimerfix(&aitv.it_interval)) {
494 		error = EINVAL;
495 		goto done2;
496 	}
497 	s = splclock(); /* XXX: still needed ? */
498 	if (uap->which == ITIMER_REAL) {
499 		if (timevalisset(&p->p_realtimer.it_value))
500 			callout_stop(&p->p_itcallout);
501 		if (timevalisset(&aitv.it_value))
502 			callout_reset(&p->p_itcallout, tvtohz(&aitv.it_value),
503 			    realitexpire, p);
504 		getmicrouptime(&ctv);
505 		timevaladd(&aitv.it_value, &ctv);
506 		p->p_realtimer = aitv;
507 	} else {
508 		p->p_stats->p_timer[uap->which] = aitv;
509 	}
510 	splx(s);
511 done2:
512 	mtx_unlock(&Giant);
513 	return (error);
514 }
515 
516 /*
517  * Real interval timer expired:
518  * send process whose timer expired an alarm signal.
519  * If time is not set up to reload, then just return.
520  * Else compute next time timer should go off which is > current time.
521  * This is where delay in processing this timeout causes multiple
522  * SIGALRM calls to be compressed into one.
523  * tvtohz() always adds 1 to allow for the time until the next clock
524  * interrupt being strictly less than 1 clock tick, but we don't want
525  * that here since we want to appear to be in sync with the clock
526  * interrupt even when we're delayed.
527  */
528 void
529 realitexpire(void *arg)
530 {
531 	struct proc *p;
532 	struct timeval ctv, ntv;
533 	int s;
534 
535 	p = (struct proc *)arg;
536 	PROC_LOCK(p);
537 	psignal(p, SIGALRM);
538 	if (!timevalisset(&p->p_realtimer.it_interval)) {
539 		timevalclear(&p->p_realtimer.it_value);
540 		PROC_UNLOCK(p);
541 		return;
542 	}
543 	for (;;) {
544 		s = splclock(); /* XXX: still neeeded ? */
545 		timevaladd(&p->p_realtimer.it_value,
546 		    &p->p_realtimer.it_interval);
547 		getmicrouptime(&ctv);
548 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
549 			ntv = p->p_realtimer.it_value;
550 			timevalsub(&ntv, &ctv);
551 			callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
552 			    realitexpire, p);
553 			splx(s);
554 			PROC_UNLOCK(p);
555 			return;
556 		}
557 		splx(s);
558 	}
559 	/*NOTREACHED*/
560 }
561 
562 /*
563  * Check that a proposed value to load into the .it_value or
564  * .it_interval part of an interval timer is acceptable, and
565  * fix it to have at least minimal value (i.e. if it is less
566  * than the resolution of the clock, round it up.)
567  */
568 int
569 itimerfix(struct timeval *tv)
570 {
571 
572 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
573 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
574 		return (EINVAL);
575 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
576 		tv->tv_usec = tick;
577 	return (0);
578 }
579 
580 /*
581  * Decrement an interval timer by a specified number
582  * of microseconds, which must be less than a second,
583  * i.e. < 1000000.  If the timer expires, then reload
584  * it.  In this case, carry over (usec - old value) to
585  * reduce the value reloaded into the timer so that
586  * the timer does not drift.  This routine assumes
587  * that it is called in a context where the timers
588  * on which it is operating cannot change in value.
589  */
590 int
591 itimerdecr(struct itimerval *itp, int usec)
592 {
593 
594 	if (itp->it_value.tv_usec < usec) {
595 		if (itp->it_value.tv_sec == 0) {
596 			/* expired, and already in next interval */
597 			usec -= itp->it_value.tv_usec;
598 			goto expire;
599 		}
600 		itp->it_value.tv_usec += 1000000;
601 		itp->it_value.tv_sec--;
602 	}
603 	itp->it_value.tv_usec -= usec;
604 	usec = 0;
605 	if (timevalisset(&itp->it_value))
606 		return (1);
607 	/* expired, exactly at end of interval */
608 expire:
609 	if (timevalisset(&itp->it_interval)) {
610 		itp->it_value = itp->it_interval;
611 		itp->it_value.tv_usec -= usec;
612 		if (itp->it_value.tv_usec < 0) {
613 			itp->it_value.tv_usec += 1000000;
614 			itp->it_value.tv_sec--;
615 		}
616 	} else
617 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
618 	return (0);
619 }
620 
621 /*
622  * Add and subtract routines for timevals.
623  * N.B.: subtract routine doesn't deal with
624  * results which are before the beginning,
625  * it just gets very confused in this case.
626  * Caveat emptor.
627  */
628 void
629 timevaladd(struct timeval *t1, struct timeval *t2)
630 {
631 
632 	t1->tv_sec += t2->tv_sec;
633 	t1->tv_usec += t2->tv_usec;
634 	timevalfix(t1);
635 }
636 
637 void
638 timevalsub(struct timeval *t1, struct timeval *t2)
639 {
640 
641 	t1->tv_sec -= t2->tv_sec;
642 	t1->tv_usec -= t2->tv_usec;
643 	timevalfix(t1);
644 }
645 
646 static void
647 timevalfix(struct timeval *t1)
648 {
649 
650 	if (t1->tv_usec < 0) {
651 		t1->tv_sec--;
652 		t1->tv_usec += 1000000;
653 	}
654 	if (t1->tv_usec >= 1000000) {
655 		t1->tv_sec++;
656 		t1->tv_usec -= 1000000;
657 	}
658 }
659 
660 /*
661  * ratecheck(): simple time-based rate-limit checking.
662  */
663 int
664 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
665 {
666 	struct timeval tv, delta;
667 	int rv = 0;
668 
669 	getmicrouptime(&tv);		/* NB: 10ms precision */
670 	delta = tv;
671 	timevalsub(&delta, lasttime);
672 
673 	/*
674 	 * check for 0,0 is so that the message will be seen at least once,
675 	 * even if interval is huge.
676 	 */
677 	if (timevalcmp(&delta, mininterval, >=) ||
678 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
679 		*lasttime = tv;
680 		rv = 1;
681 	}
682 
683 	return (rv);
684 }
685 
686 /*
687  * ppsratecheck(): packets (or events) per second limitation.
688  *
689  * Return 0 if the limit is to be enforced (e.g. the caller
690  * should drop a packet because of the rate limitation).
691  *
692  * Note that we maintain the struct timeval for compatibility
693  * with other bsd systems.  We reuse the storage and just monitor
694  * clock ticks for minimal overhead.
695  */
696 int
697 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
698 {
699 	int now;
700 
701 	/*
702 	 * Reset the last time and counter if this is the first call
703 	 * or more than a second has passed since the last update of
704 	 * lasttime.
705 	 */
706 	now = ticks;
707 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
708 		lasttime->tv_sec = now;
709 		*curpps = 1;
710 		return (1);
711 	} else {
712 		(*curpps)++;		/* NB: ignore potential overflow */
713 		return (maxpps < 0 || *curpps < maxpps);
714 	}
715 }
716