1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ktrace.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/limits.h> 42 #include <sys/clock.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/sysproto.h> 46 #include <sys/eventhandler.h> 47 #include <sys/resourcevar.h> 48 #include <sys/signalvar.h> 49 #include <sys/kernel.h> 50 #include <sys/sleepqueue.h> 51 #include <sys/syscallsubr.h> 52 #include <sys/sysctl.h> 53 #include <sys/sysent.h> 54 #include <sys/priv.h> 55 #include <sys/proc.h> 56 #include <sys/posix4.h> 57 #include <sys/time.h> 58 #include <sys/timers.h> 59 #include <sys/timetc.h> 60 #include <sys/vnode.h> 61 #ifdef KTRACE 62 #include <sys/ktrace.h> 63 #endif 64 65 #include <vm/vm.h> 66 #include <vm/vm_extern.h> 67 68 #define MAX_CLOCKS (CLOCK_MONOTONIC+1) 69 #define CPUCLOCK_BIT 0x80000000 70 #define CPUCLOCK_PROCESS_BIT 0x40000000 71 #define CPUCLOCK_ID_MASK (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT)) 72 #define MAKE_THREAD_CPUCLOCK(tid) (CPUCLOCK_BIT|(tid)) 73 #define MAKE_PROCESS_CPUCLOCK(pid) \ 74 (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid)) 75 76 static struct kclock posix_clocks[MAX_CLOCKS]; 77 static uma_zone_t itimer_zone = NULL; 78 79 /* 80 * Time of day and interval timer support. 81 * 82 * These routines provide the kernel entry points to get and set 83 * the time-of-day and per-process interval timers. Subroutines 84 * here provide support for adding and subtracting timeval structures 85 * and decrementing interval timers, optionally reloading the interval 86 * timers when they expire. 87 */ 88 89 static int settime(struct thread *, struct timeval *); 90 static void timevalfix(struct timeval *); 91 static int user_clock_nanosleep(struct thread *td, clockid_t clock_id, 92 int flags, const struct timespec *ua_rqtp, 93 struct timespec *ua_rmtp); 94 95 static void itimer_start(void); 96 static int itimer_init(void *, int, int); 97 static void itimer_fini(void *, int); 98 static void itimer_enter(struct itimer *); 99 static void itimer_leave(struct itimer *); 100 static struct itimer *itimer_find(struct proc *, int); 101 static void itimers_alloc(struct proc *); 102 static void itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp); 103 static void itimers_event_hook_exit(void *arg, struct proc *p); 104 static int realtimer_create(struct itimer *); 105 static int realtimer_gettime(struct itimer *, struct itimerspec *); 106 static int realtimer_settime(struct itimer *, int, 107 struct itimerspec *, struct itimerspec *); 108 static int realtimer_delete(struct itimer *); 109 static void realtimer_clocktime(clockid_t, struct timespec *); 110 static void realtimer_expire(void *); 111 112 int register_posix_clock(int, struct kclock *); 113 void itimer_fire(struct itimer *it); 114 int itimespecfix(struct timespec *ts); 115 116 #define CLOCK_CALL(clock, call, arglist) \ 117 ((*posix_clocks[clock].call) arglist) 118 119 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL); 120 121 static int 122 settime(struct thread *td, struct timeval *tv) 123 { 124 struct timeval delta, tv1, tv2; 125 static struct timeval maxtime, laststep; 126 struct timespec ts; 127 128 microtime(&tv1); 129 delta = *tv; 130 timevalsub(&delta, &tv1); 131 132 /* 133 * If the system is secure, we do not allow the time to be 134 * set to a value earlier than 1 second less than the highest 135 * time we have yet seen. The worst a miscreant can do in 136 * this circumstance is "freeze" time. He couldn't go 137 * back to the past. 138 * 139 * We similarly do not allow the clock to be stepped more 140 * than one second, nor more than once per second. This allows 141 * a miscreant to make the clock march double-time, but no worse. 142 */ 143 if (securelevel_gt(td->td_ucred, 1) != 0) { 144 if (delta.tv_sec < 0 || delta.tv_usec < 0) { 145 /* 146 * Update maxtime to latest time we've seen. 147 */ 148 if (tv1.tv_sec > maxtime.tv_sec) 149 maxtime = tv1; 150 tv2 = *tv; 151 timevalsub(&tv2, &maxtime); 152 if (tv2.tv_sec < -1) { 153 tv->tv_sec = maxtime.tv_sec - 1; 154 printf("Time adjustment clamped to -1 second\n"); 155 } 156 } else { 157 if (tv1.tv_sec == laststep.tv_sec) 158 return (EPERM); 159 if (delta.tv_sec > 1) { 160 tv->tv_sec = tv1.tv_sec + 1; 161 printf("Time adjustment clamped to +1 second\n"); 162 } 163 laststep = *tv; 164 } 165 } 166 167 ts.tv_sec = tv->tv_sec; 168 ts.tv_nsec = tv->tv_usec * 1000; 169 tc_setclock(&ts); 170 resettodr(); 171 return (0); 172 } 173 174 #ifndef _SYS_SYSPROTO_H_ 175 struct clock_getcpuclockid2_args { 176 id_t id; 177 int which, 178 clockid_t *clock_id; 179 }; 180 #endif 181 /* ARGSUSED */ 182 int 183 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap) 184 { 185 clockid_t clk_id; 186 int error; 187 188 error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id); 189 if (error == 0) 190 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 191 return (error); 192 } 193 194 int 195 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which, 196 clockid_t *clk_id) 197 { 198 struct proc *p; 199 pid_t pid; 200 lwpid_t tid; 201 int error; 202 203 switch (which) { 204 case CPUCLOCK_WHICH_PID: 205 if (id != 0) { 206 error = pget(id, PGET_CANSEE | PGET_NOTID, &p); 207 if (error != 0) 208 return (error); 209 PROC_UNLOCK(p); 210 pid = id; 211 } else { 212 pid = td->td_proc->p_pid; 213 } 214 *clk_id = MAKE_PROCESS_CPUCLOCK(pid); 215 return (0); 216 case CPUCLOCK_WHICH_TID: 217 tid = id == 0 ? td->td_tid : id; 218 *clk_id = MAKE_THREAD_CPUCLOCK(tid); 219 return (0); 220 default: 221 return (EINVAL); 222 } 223 } 224 225 #ifndef _SYS_SYSPROTO_H_ 226 struct clock_gettime_args { 227 clockid_t clock_id; 228 struct timespec *tp; 229 }; 230 #endif 231 /* ARGSUSED */ 232 int 233 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap) 234 { 235 struct timespec ats; 236 int error; 237 238 error = kern_clock_gettime(td, uap->clock_id, &ats); 239 if (error == 0) 240 error = copyout(&ats, uap->tp, sizeof(ats)); 241 242 return (error); 243 } 244 245 static inline void 246 cputick2timespec(uint64_t runtime, struct timespec *ats) 247 { 248 runtime = cputick2usec(runtime); 249 ats->tv_sec = runtime / 1000000; 250 ats->tv_nsec = runtime % 1000000 * 1000; 251 } 252 253 void 254 kern_thread_cputime(struct thread *targettd, struct timespec *ats) 255 { 256 uint64_t runtime, curtime, switchtime; 257 258 if (targettd == NULL) { /* current thread */ 259 critical_enter(); 260 switchtime = PCPU_GET(switchtime); 261 curtime = cpu_ticks(); 262 runtime = curthread->td_runtime; 263 critical_exit(); 264 runtime += curtime - switchtime; 265 } else { 266 PROC_LOCK_ASSERT(targettd->td_proc, MA_OWNED); 267 thread_lock(targettd); 268 runtime = targettd->td_runtime; 269 thread_unlock(targettd); 270 } 271 cputick2timespec(runtime, ats); 272 } 273 274 void 275 kern_process_cputime(struct proc *targetp, struct timespec *ats) 276 { 277 uint64_t runtime; 278 struct rusage ru; 279 280 PROC_LOCK_ASSERT(targetp, MA_OWNED); 281 PROC_STATLOCK(targetp); 282 rufetch(targetp, &ru); 283 runtime = targetp->p_rux.rux_runtime; 284 if (curthread->td_proc == targetp) 285 runtime += cpu_ticks() - PCPU_GET(switchtime); 286 PROC_STATUNLOCK(targetp); 287 cputick2timespec(runtime, ats); 288 } 289 290 static int 291 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats) 292 { 293 struct proc *p, *p2; 294 struct thread *td2; 295 lwpid_t tid; 296 pid_t pid; 297 int error; 298 299 p = td->td_proc; 300 if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) { 301 tid = clock_id & CPUCLOCK_ID_MASK; 302 td2 = tdfind(tid, p->p_pid); 303 if (td2 == NULL) 304 return (EINVAL); 305 kern_thread_cputime(td2, ats); 306 PROC_UNLOCK(td2->td_proc); 307 } else { 308 pid = clock_id & CPUCLOCK_ID_MASK; 309 error = pget(pid, PGET_CANSEE, &p2); 310 if (error != 0) 311 return (EINVAL); 312 kern_process_cputime(p2, ats); 313 PROC_UNLOCK(p2); 314 } 315 return (0); 316 } 317 318 int 319 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats) 320 { 321 struct timeval sys, user; 322 struct proc *p; 323 324 p = td->td_proc; 325 switch (clock_id) { 326 case CLOCK_REALTIME: /* Default to precise. */ 327 case CLOCK_REALTIME_PRECISE: 328 nanotime(ats); 329 break; 330 case CLOCK_REALTIME_FAST: 331 getnanotime(ats); 332 break; 333 case CLOCK_VIRTUAL: 334 PROC_LOCK(p); 335 PROC_STATLOCK(p); 336 calcru(p, &user, &sys); 337 PROC_STATUNLOCK(p); 338 PROC_UNLOCK(p); 339 TIMEVAL_TO_TIMESPEC(&user, ats); 340 break; 341 case CLOCK_PROF: 342 PROC_LOCK(p); 343 PROC_STATLOCK(p); 344 calcru(p, &user, &sys); 345 PROC_STATUNLOCK(p); 346 PROC_UNLOCK(p); 347 timevaladd(&user, &sys); 348 TIMEVAL_TO_TIMESPEC(&user, ats); 349 break; 350 case CLOCK_MONOTONIC: /* Default to precise. */ 351 case CLOCK_MONOTONIC_PRECISE: 352 case CLOCK_UPTIME: 353 case CLOCK_UPTIME_PRECISE: 354 nanouptime(ats); 355 break; 356 case CLOCK_UPTIME_FAST: 357 case CLOCK_MONOTONIC_FAST: 358 getnanouptime(ats); 359 break; 360 case CLOCK_SECOND: 361 ats->tv_sec = time_second; 362 ats->tv_nsec = 0; 363 break; 364 case CLOCK_THREAD_CPUTIME_ID: 365 kern_thread_cputime(NULL, ats); 366 break; 367 case CLOCK_PROCESS_CPUTIME_ID: 368 PROC_LOCK(p); 369 kern_process_cputime(p, ats); 370 PROC_UNLOCK(p); 371 break; 372 default: 373 if ((int)clock_id >= 0) 374 return (EINVAL); 375 return (get_cputime(td, clock_id, ats)); 376 } 377 return (0); 378 } 379 380 #ifndef _SYS_SYSPROTO_H_ 381 struct clock_settime_args { 382 clockid_t clock_id; 383 const struct timespec *tp; 384 }; 385 #endif 386 /* ARGSUSED */ 387 int 388 sys_clock_settime(struct thread *td, struct clock_settime_args *uap) 389 { 390 struct timespec ats; 391 int error; 392 393 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0) 394 return (error); 395 return (kern_clock_settime(td, uap->clock_id, &ats)); 396 } 397 398 static int allow_insane_settime = 0; 399 SYSCTL_INT(_debug, OID_AUTO, allow_insane_settime, CTLFLAG_RWTUN, 400 &allow_insane_settime, 0, 401 "do not perform possibly restrictive checks on settime(2) args"); 402 403 int 404 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats) 405 { 406 struct timeval atv; 407 int error; 408 409 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 410 return (error); 411 if (clock_id != CLOCK_REALTIME) 412 return (EINVAL); 413 if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000 || 414 ats->tv_sec < 0) 415 return (EINVAL); 416 if (!allow_insane_settime && 417 (ats->tv_sec > 8000ULL * 365 * 24 * 60 * 60 || 418 ats->tv_sec < utc_offset())) 419 return (EINVAL); 420 /* XXX Don't convert nsec->usec and back */ 421 TIMESPEC_TO_TIMEVAL(&atv, ats); 422 error = settime(td, &atv); 423 return (error); 424 } 425 426 #ifndef _SYS_SYSPROTO_H_ 427 struct clock_getres_args { 428 clockid_t clock_id; 429 struct timespec *tp; 430 }; 431 #endif 432 int 433 sys_clock_getres(struct thread *td, struct clock_getres_args *uap) 434 { 435 struct timespec ts; 436 int error; 437 438 if (uap->tp == NULL) 439 return (0); 440 441 error = kern_clock_getres(td, uap->clock_id, &ts); 442 if (error == 0) 443 error = copyout(&ts, uap->tp, sizeof(ts)); 444 return (error); 445 } 446 447 int 448 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts) 449 { 450 451 ts->tv_sec = 0; 452 switch (clock_id) { 453 case CLOCK_REALTIME: 454 case CLOCK_REALTIME_FAST: 455 case CLOCK_REALTIME_PRECISE: 456 case CLOCK_MONOTONIC: 457 case CLOCK_MONOTONIC_FAST: 458 case CLOCK_MONOTONIC_PRECISE: 459 case CLOCK_UPTIME: 460 case CLOCK_UPTIME_FAST: 461 case CLOCK_UPTIME_PRECISE: 462 /* 463 * Round up the result of the division cheaply by adding 1. 464 * Rounding up is especially important if rounding down 465 * would give 0. Perfect rounding is unimportant. 466 */ 467 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1; 468 break; 469 case CLOCK_VIRTUAL: 470 case CLOCK_PROF: 471 /* Accurately round up here because we can do so cheaply. */ 472 ts->tv_nsec = howmany(1000000000, hz); 473 break; 474 case CLOCK_SECOND: 475 ts->tv_sec = 1; 476 ts->tv_nsec = 0; 477 break; 478 case CLOCK_THREAD_CPUTIME_ID: 479 case CLOCK_PROCESS_CPUTIME_ID: 480 cputime: 481 /* sync with cputick2usec */ 482 ts->tv_nsec = 1000000 / cpu_tickrate(); 483 if (ts->tv_nsec == 0) 484 ts->tv_nsec = 1000; 485 break; 486 default: 487 if ((int)clock_id < 0) 488 goto cputime; 489 return (EINVAL); 490 } 491 return (0); 492 } 493 494 int 495 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt) 496 { 497 498 return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt, 499 rmt)); 500 } 501 502 static uint8_t nanowait[MAXCPU]; 503 504 int 505 kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 506 const struct timespec *rqt, struct timespec *rmt) 507 { 508 struct timespec ts, now; 509 sbintime_t sbt, sbtt, prec, tmp; 510 time_t over; 511 int error; 512 bool is_abs_real; 513 514 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000) 515 return (EINVAL); 516 if ((flags & ~TIMER_ABSTIME) != 0) 517 return (EINVAL); 518 switch (clock_id) { 519 case CLOCK_REALTIME: 520 case CLOCK_REALTIME_PRECISE: 521 case CLOCK_REALTIME_FAST: 522 case CLOCK_SECOND: 523 is_abs_real = (flags & TIMER_ABSTIME) != 0; 524 break; 525 case CLOCK_MONOTONIC: 526 case CLOCK_MONOTONIC_PRECISE: 527 case CLOCK_MONOTONIC_FAST: 528 case CLOCK_UPTIME: 529 case CLOCK_UPTIME_PRECISE: 530 case CLOCK_UPTIME_FAST: 531 is_abs_real = false; 532 break; 533 case CLOCK_VIRTUAL: 534 case CLOCK_PROF: 535 case CLOCK_PROCESS_CPUTIME_ID: 536 return (ENOTSUP); 537 case CLOCK_THREAD_CPUTIME_ID: 538 default: 539 return (EINVAL); 540 } 541 do { 542 ts = *rqt; 543 if ((flags & TIMER_ABSTIME) != 0) { 544 if (is_abs_real) 545 td->td_rtcgen = 546 atomic_load_acq_int(&rtc_generation); 547 error = kern_clock_gettime(td, clock_id, &now); 548 KASSERT(error == 0, ("kern_clock_gettime: %d", error)); 549 timespecsub(&ts, &now, &ts); 550 } 551 if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) { 552 error = EWOULDBLOCK; 553 break; 554 } 555 if (ts.tv_sec > INT32_MAX / 2) { 556 over = ts.tv_sec - INT32_MAX / 2; 557 ts.tv_sec -= over; 558 } else 559 over = 0; 560 tmp = tstosbt(ts); 561 prec = tmp; 562 prec >>= tc_precexp; 563 if (TIMESEL(&sbt, tmp)) 564 sbt += tc_tick_sbt; 565 sbt += tmp; 566 error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp", 567 sbt, prec, C_ABSOLUTE); 568 } while (error == 0 && is_abs_real && td->td_rtcgen == 0); 569 td->td_rtcgen = 0; 570 if (error != EWOULDBLOCK) { 571 if (TIMESEL(&sbtt, tmp)) 572 sbtt += tc_tick_sbt; 573 if (sbtt >= sbt) 574 return (0); 575 if (error == ERESTART) 576 error = EINTR; 577 if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) { 578 ts = sbttots(sbt - sbtt); 579 ts.tv_sec += over; 580 if (ts.tv_sec < 0) 581 timespecclear(&ts); 582 *rmt = ts; 583 } 584 return (error); 585 } 586 return (0); 587 } 588 589 #ifndef _SYS_SYSPROTO_H_ 590 struct nanosleep_args { 591 struct timespec *rqtp; 592 struct timespec *rmtp; 593 }; 594 #endif 595 /* ARGSUSED */ 596 int 597 sys_nanosleep(struct thread *td, struct nanosleep_args *uap) 598 { 599 600 return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, 601 uap->rqtp, uap->rmtp)); 602 } 603 604 #ifndef _SYS_SYSPROTO_H_ 605 struct clock_nanosleep_args { 606 clockid_t clock_id; 607 int flags; 608 struct timespec *rqtp; 609 struct timespec *rmtp; 610 }; 611 #endif 612 /* ARGSUSED */ 613 int 614 sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap) 615 { 616 int error; 617 618 error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp, 619 uap->rmtp); 620 return (kern_posix_error(td, error)); 621 } 622 623 static int 624 user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 625 const struct timespec *ua_rqtp, struct timespec *ua_rmtp) 626 { 627 struct timespec rmt, rqt; 628 int error, error2; 629 630 error = copyin(ua_rqtp, &rqt, sizeof(rqt)); 631 if (error) 632 return (error); 633 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 634 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 635 error2 = copyout(&rmt, ua_rmtp, sizeof(rmt)); 636 if (error2 != 0) 637 error = error2; 638 } 639 return (error); 640 } 641 642 #ifndef _SYS_SYSPROTO_H_ 643 struct gettimeofday_args { 644 struct timeval *tp; 645 struct timezone *tzp; 646 }; 647 #endif 648 /* ARGSUSED */ 649 int 650 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap) 651 { 652 struct timeval atv; 653 struct timezone rtz; 654 int error = 0; 655 656 if (uap->tp) { 657 microtime(&atv); 658 error = copyout(&atv, uap->tp, sizeof (atv)); 659 } 660 if (error == 0 && uap->tzp != NULL) { 661 rtz.tz_minuteswest = 0; 662 rtz.tz_dsttime = 0; 663 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 664 } 665 return (error); 666 } 667 668 #ifndef _SYS_SYSPROTO_H_ 669 struct settimeofday_args { 670 struct timeval *tv; 671 struct timezone *tzp; 672 }; 673 #endif 674 /* ARGSUSED */ 675 int 676 sys_settimeofday(struct thread *td, struct settimeofday_args *uap) 677 { 678 struct timeval atv, *tvp; 679 struct timezone atz, *tzp; 680 int error; 681 682 if (uap->tv) { 683 error = copyin(uap->tv, &atv, sizeof(atv)); 684 if (error) 685 return (error); 686 tvp = &atv; 687 } else 688 tvp = NULL; 689 if (uap->tzp) { 690 error = copyin(uap->tzp, &atz, sizeof(atz)); 691 if (error) 692 return (error); 693 tzp = &atz; 694 } else 695 tzp = NULL; 696 return (kern_settimeofday(td, tvp, tzp)); 697 } 698 699 int 700 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp) 701 { 702 int error; 703 704 error = priv_check(td, PRIV_SETTIMEOFDAY); 705 if (error) 706 return (error); 707 /* Verify all parameters before changing time. */ 708 if (tv) { 709 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 || 710 tv->tv_sec < 0) 711 return (EINVAL); 712 error = settime(td, tv); 713 } 714 return (error); 715 } 716 717 /* 718 * Get value of an interval timer. The process virtual and profiling virtual 719 * time timers are kept in the p_stats area, since they can be swapped out. 720 * These are kept internally in the way they are specified externally: in 721 * time until they expire. 722 * 723 * The real time interval timer is kept in the process table slot for the 724 * process, and its value (it_value) is kept as an absolute time rather than 725 * as a delta, so that it is easy to keep periodic real-time signals from 726 * drifting. 727 * 728 * Virtual time timers are processed in the hardclock() routine of 729 * kern_clock.c. The real time timer is processed by a timeout routine, 730 * called from the softclock() routine. Since a callout may be delayed in 731 * real time due to interrupt processing in the system, it is possible for 732 * the real time timeout routine (realitexpire, given below), to be delayed 733 * in real time past when it is supposed to occur. It does not suffice, 734 * therefore, to reload the real timer .it_value from the real time timers 735 * .it_interval. Rather, we compute the next time in absolute time the timer 736 * should go off. 737 */ 738 #ifndef _SYS_SYSPROTO_H_ 739 struct getitimer_args { 740 u_int which; 741 struct itimerval *itv; 742 }; 743 #endif 744 int 745 sys_getitimer(struct thread *td, struct getitimer_args *uap) 746 { 747 struct itimerval aitv; 748 int error; 749 750 error = kern_getitimer(td, uap->which, &aitv); 751 if (error != 0) 752 return (error); 753 return (copyout(&aitv, uap->itv, sizeof (struct itimerval))); 754 } 755 756 int 757 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv) 758 { 759 struct proc *p = td->td_proc; 760 struct timeval ctv; 761 762 if (which > ITIMER_PROF) 763 return (EINVAL); 764 765 if (which == ITIMER_REAL) { 766 /* 767 * Convert from absolute to relative time in .it_value 768 * part of real time timer. If time for real time timer 769 * has passed return 0, else return difference between 770 * current time and time for the timer to go off. 771 */ 772 PROC_LOCK(p); 773 *aitv = p->p_realtimer; 774 PROC_UNLOCK(p); 775 if (timevalisset(&aitv->it_value)) { 776 microuptime(&ctv); 777 if (timevalcmp(&aitv->it_value, &ctv, <)) 778 timevalclear(&aitv->it_value); 779 else 780 timevalsub(&aitv->it_value, &ctv); 781 } 782 } else { 783 PROC_ITIMLOCK(p); 784 *aitv = p->p_stats->p_timer[which]; 785 PROC_ITIMUNLOCK(p); 786 } 787 #ifdef KTRACE 788 if (KTRPOINT(td, KTR_STRUCT)) 789 ktritimerval(aitv); 790 #endif 791 return (0); 792 } 793 794 #ifndef _SYS_SYSPROTO_H_ 795 struct setitimer_args { 796 u_int which; 797 struct itimerval *itv, *oitv; 798 }; 799 #endif 800 int 801 sys_setitimer(struct thread *td, struct setitimer_args *uap) 802 { 803 struct itimerval aitv, oitv; 804 int error; 805 806 if (uap->itv == NULL) { 807 uap->itv = uap->oitv; 808 return (sys_getitimer(td, (struct getitimer_args *)uap)); 809 } 810 811 if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval)))) 812 return (error); 813 error = kern_setitimer(td, uap->which, &aitv, &oitv); 814 if (error != 0 || uap->oitv == NULL) 815 return (error); 816 return (copyout(&oitv, uap->oitv, sizeof(struct itimerval))); 817 } 818 819 int 820 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv, 821 struct itimerval *oitv) 822 { 823 struct proc *p = td->td_proc; 824 struct timeval ctv; 825 sbintime_t sbt, pr; 826 827 if (aitv == NULL) 828 return (kern_getitimer(td, which, oitv)); 829 830 if (which > ITIMER_PROF) 831 return (EINVAL); 832 #ifdef KTRACE 833 if (KTRPOINT(td, KTR_STRUCT)) 834 ktritimerval(aitv); 835 #endif 836 if (itimerfix(&aitv->it_value) || 837 aitv->it_value.tv_sec > INT32_MAX / 2) 838 return (EINVAL); 839 if (!timevalisset(&aitv->it_value)) 840 timevalclear(&aitv->it_interval); 841 else if (itimerfix(&aitv->it_interval) || 842 aitv->it_interval.tv_sec > INT32_MAX / 2) 843 return (EINVAL); 844 845 if (which == ITIMER_REAL) { 846 PROC_LOCK(p); 847 if (timevalisset(&p->p_realtimer.it_value)) 848 callout_stop(&p->p_itcallout); 849 microuptime(&ctv); 850 if (timevalisset(&aitv->it_value)) { 851 pr = tvtosbt(aitv->it_value) >> tc_precexp; 852 timevaladd(&aitv->it_value, &ctv); 853 sbt = tvtosbt(aitv->it_value); 854 callout_reset_sbt(&p->p_itcallout, sbt, pr, 855 realitexpire, p, C_ABSOLUTE); 856 } 857 *oitv = p->p_realtimer; 858 p->p_realtimer = *aitv; 859 PROC_UNLOCK(p); 860 if (timevalisset(&oitv->it_value)) { 861 if (timevalcmp(&oitv->it_value, &ctv, <)) 862 timevalclear(&oitv->it_value); 863 else 864 timevalsub(&oitv->it_value, &ctv); 865 } 866 } else { 867 if (aitv->it_interval.tv_sec == 0 && 868 aitv->it_interval.tv_usec != 0 && 869 aitv->it_interval.tv_usec < tick) 870 aitv->it_interval.tv_usec = tick; 871 if (aitv->it_value.tv_sec == 0 && 872 aitv->it_value.tv_usec != 0 && 873 aitv->it_value.tv_usec < tick) 874 aitv->it_value.tv_usec = tick; 875 PROC_ITIMLOCK(p); 876 *oitv = p->p_stats->p_timer[which]; 877 p->p_stats->p_timer[which] = *aitv; 878 PROC_ITIMUNLOCK(p); 879 } 880 #ifdef KTRACE 881 if (KTRPOINT(td, KTR_STRUCT)) 882 ktritimerval(oitv); 883 #endif 884 return (0); 885 } 886 887 /* 888 * Real interval timer expired: 889 * send process whose timer expired an alarm signal. 890 * If time is not set up to reload, then just return. 891 * Else compute next time timer should go off which is > current time. 892 * This is where delay in processing this timeout causes multiple 893 * SIGALRM calls to be compressed into one. 894 * tvtohz() always adds 1 to allow for the time until the next clock 895 * interrupt being strictly less than 1 clock tick, but we don't want 896 * that here since we want to appear to be in sync with the clock 897 * interrupt even when we're delayed. 898 */ 899 void 900 realitexpire(void *arg) 901 { 902 struct proc *p; 903 struct timeval ctv; 904 sbintime_t isbt; 905 906 p = (struct proc *)arg; 907 kern_psignal(p, SIGALRM); 908 if (!timevalisset(&p->p_realtimer.it_interval)) { 909 timevalclear(&p->p_realtimer.it_value); 910 if (p->p_flag & P_WEXIT) 911 wakeup(&p->p_itcallout); 912 return; 913 } 914 isbt = tvtosbt(p->p_realtimer.it_interval); 915 if (isbt >= sbt_timethreshold) 916 getmicrouptime(&ctv); 917 else 918 microuptime(&ctv); 919 do { 920 timevaladd(&p->p_realtimer.it_value, 921 &p->p_realtimer.it_interval); 922 } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=)); 923 callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value), 924 isbt >> tc_precexp, realitexpire, p, C_ABSOLUTE); 925 } 926 927 /* 928 * Check that a proposed value to load into the .it_value or 929 * .it_interval part of an interval timer is acceptable, and 930 * fix it to have at least minimal value (i.e. if it is less 931 * than the resolution of the clock, round it up.) 932 */ 933 int 934 itimerfix(struct timeval *tv) 935 { 936 937 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000) 938 return (EINVAL); 939 if (tv->tv_sec == 0 && tv->tv_usec != 0 && 940 tv->tv_usec < (u_int)tick / 16) 941 tv->tv_usec = (u_int)tick / 16; 942 return (0); 943 } 944 945 /* 946 * Decrement an interval timer by a specified number 947 * of microseconds, which must be less than a second, 948 * i.e. < 1000000. If the timer expires, then reload 949 * it. In this case, carry over (usec - old value) to 950 * reduce the value reloaded into the timer so that 951 * the timer does not drift. This routine assumes 952 * that it is called in a context where the timers 953 * on which it is operating cannot change in value. 954 */ 955 int 956 itimerdecr(struct itimerval *itp, int usec) 957 { 958 959 if (itp->it_value.tv_usec < usec) { 960 if (itp->it_value.tv_sec == 0) { 961 /* expired, and already in next interval */ 962 usec -= itp->it_value.tv_usec; 963 goto expire; 964 } 965 itp->it_value.tv_usec += 1000000; 966 itp->it_value.tv_sec--; 967 } 968 itp->it_value.tv_usec -= usec; 969 usec = 0; 970 if (timevalisset(&itp->it_value)) 971 return (1); 972 /* expired, exactly at end of interval */ 973 expire: 974 if (timevalisset(&itp->it_interval)) { 975 itp->it_value = itp->it_interval; 976 itp->it_value.tv_usec -= usec; 977 if (itp->it_value.tv_usec < 0) { 978 itp->it_value.tv_usec += 1000000; 979 itp->it_value.tv_sec--; 980 } 981 } else 982 itp->it_value.tv_usec = 0; /* sec is already 0 */ 983 return (0); 984 } 985 986 /* 987 * Add and subtract routines for timevals. 988 * N.B.: subtract routine doesn't deal with 989 * results which are before the beginning, 990 * it just gets very confused in this case. 991 * Caveat emptor. 992 */ 993 void 994 timevaladd(struct timeval *t1, const struct timeval *t2) 995 { 996 997 t1->tv_sec += t2->tv_sec; 998 t1->tv_usec += t2->tv_usec; 999 timevalfix(t1); 1000 } 1001 1002 void 1003 timevalsub(struct timeval *t1, const struct timeval *t2) 1004 { 1005 1006 t1->tv_sec -= t2->tv_sec; 1007 t1->tv_usec -= t2->tv_usec; 1008 timevalfix(t1); 1009 } 1010 1011 static void 1012 timevalfix(struct timeval *t1) 1013 { 1014 1015 if (t1->tv_usec < 0) { 1016 t1->tv_sec--; 1017 t1->tv_usec += 1000000; 1018 } 1019 if (t1->tv_usec >= 1000000) { 1020 t1->tv_sec++; 1021 t1->tv_usec -= 1000000; 1022 } 1023 } 1024 1025 /* 1026 * ratecheck(): simple time-based rate-limit checking. 1027 */ 1028 int 1029 ratecheck(struct timeval *lasttime, const struct timeval *mininterval) 1030 { 1031 struct timeval tv, delta; 1032 int rv = 0; 1033 1034 getmicrouptime(&tv); /* NB: 10ms precision */ 1035 delta = tv; 1036 timevalsub(&delta, lasttime); 1037 1038 /* 1039 * check for 0,0 is so that the message will be seen at least once, 1040 * even if interval is huge. 1041 */ 1042 if (timevalcmp(&delta, mininterval, >=) || 1043 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { 1044 *lasttime = tv; 1045 rv = 1; 1046 } 1047 1048 return (rv); 1049 } 1050 1051 /* 1052 * ppsratecheck(): packets (or events) per second limitation. 1053 * 1054 * Return 0 if the limit is to be enforced (e.g. the caller 1055 * should drop a packet because of the rate limitation). 1056 * 1057 * maxpps of 0 always causes zero to be returned. maxpps of -1 1058 * always causes 1 to be returned; this effectively defeats rate 1059 * limiting. 1060 * 1061 * Note that we maintain the struct timeval for compatibility 1062 * with other bsd systems. We reuse the storage and just monitor 1063 * clock ticks for minimal overhead. 1064 */ 1065 int 1066 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) 1067 { 1068 int now; 1069 1070 /* 1071 * Reset the last time and counter if this is the first call 1072 * or more than a second has passed since the last update of 1073 * lasttime. 1074 */ 1075 now = ticks; 1076 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) { 1077 lasttime->tv_sec = now; 1078 *curpps = 1; 1079 return (maxpps != 0); 1080 } else { 1081 (*curpps)++; /* NB: ignore potential overflow */ 1082 return (maxpps < 0 || *curpps <= maxpps); 1083 } 1084 } 1085 1086 static void 1087 itimer_start(void) 1088 { 1089 struct kclock rt_clock = { 1090 .timer_create = realtimer_create, 1091 .timer_delete = realtimer_delete, 1092 .timer_settime = realtimer_settime, 1093 .timer_gettime = realtimer_gettime, 1094 .event_hook = NULL 1095 }; 1096 1097 itimer_zone = uma_zcreate("itimer", sizeof(struct itimer), 1098 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0); 1099 register_posix_clock(CLOCK_REALTIME, &rt_clock); 1100 register_posix_clock(CLOCK_MONOTONIC, &rt_clock); 1101 p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L); 1102 p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX); 1103 p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX); 1104 EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit, 1105 (void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY); 1106 EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec, 1107 (void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY); 1108 } 1109 1110 int 1111 register_posix_clock(int clockid, struct kclock *clk) 1112 { 1113 if ((unsigned)clockid >= MAX_CLOCKS) { 1114 printf("%s: invalid clockid\n", __func__); 1115 return (0); 1116 } 1117 posix_clocks[clockid] = *clk; 1118 return (1); 1119 } 1120 1121 static int 1122 itimer_init(void *mem, int size, int flags) 1123 { 1124 struct itimer *it; 1125 1126 it = (struct itimer *)mem; 1127 mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF); 1128 return (0); 1129 } 1130 1131 static void 1132 itimer_fini(void *mem, int size) 1133 { 1134 struct itimer *it; 1135 1136 it = (struct itimer *)mem; 1137 mtx_destroy(&it->it_mtx); 1138 } 1139 1140 static void 1141 itimer_enter(struct itimer *it) 1142 { 1143 1144 mtx_assert(&it->it_mtx, MA_OWNED); 1145 it->it_usecount++; 1146 } 1147 1148 static void 1149 itimer_leave(struct itimer *it) 1150 { 1151 1152 mtx_assert(&it->it_mtx, MA_OWNED); 1153 KASSERT(it->it_usecount > 0, ("invalid it_usecount")); 1154 1155 if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0) 1156 wakeup(it); 1157 } 1158 1159 #ifndef _SYS_SYSPROTO_H_ 1160 struct ktimer_create_args { 1161 clockid_t clock_id; 1162 struct sigevent * evp; 1163 int * timerid; 1164 }; 1165 #endif 1166 int 1167 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap) 1168 { 1169 struct sigevent *evp, ev; 1170 int id; 1171 int error; 1172 1173 if (uap->evp == NULL) { 1174 evp = NULL; 1175 } else { 1176 error = copyin(uap->evp, &ev, sizeof(ev)); 1177 if (error != 0) 1178 return (error); 1179 evp = &ev; 1180 } 1181 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 1182 if (error == 0) { 1183 error = copyout(&id, uap->timerid, sizeof(int)); 1184 if (error != 0) 1185 kern_ktimer_delete(td, id); 1186 } 1187 return (error); 1188 } 1189 1190 int 1191 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp, 1192 int *timerid, int preset_id) 1193 { 1194 struct proc *p = td->td_proc; 1195 struct itimer *it; 1196 int id; 1197 int error; 1198 1199 if (clock_id < 0 || clock_id >= MAX_CLOCKS) 1200 return (EINVAL); 1201 1202 if (posix_clocks[clock_id].timer_create == NULL) 1203 return (EINVAL); 1204 1205 if (evp != NULL) { 1206 if (evp->sigev_notify != SIGEV_NONE && 1207 evp->sigev_notify != SIGEV_SIGNAL && 1208 evp->sigev_notify != SIGEV_THREAD_ID) 1209 return (EINVAL); 1210 if ((evp->sigev_notify == SIGEV_SIGNAL || 1211 evp->sigev_notify == SIGEV_THREAD_ID) && 1212 !_SIG_VALID(evp->sigev_signo)) 1213 return (EINVAL); 1214 } 1215 1216 if (p->p_itimers == NULL) 1217 itimers_alloc(p); 1218 1219 it = uma_zalloc(itimer_zone, M_WAITOK); 1220 it->it_flags = 0; 1221 it->it_usecount = 0; 1222 it->it_active = 0; 1223 timespecclear(&it->it_time.it_value); 1224 timespecclear(&it->it_time.it_interval); 1225 it->it_overrun = 0; 1226 it->it_overrun_last = 0; 1227 it->it_clockid = clock_id; 1228 it->it_timerid = -1; 1229 it->it_proc = p; 1230 ksiginfo_init(&it->it_ksi); 1231 it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT; 1232 error = CLOCK_CALL(clock_id, timer_create, (it)); 1233 if (error != 0) 1234 goto out; 1235 1236 PROC_LOCK(p); 1237 if (preset_id != -1) { 1238 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id")); 1239 id = preset_id; 1240 if (p->p_itimers->its_timers[id] != NULL) { 1241 PROC_UNLOCK(p); 1242 error = 0; 1243 goto out; 1244 } 1245 } else { 1246 /* 1247 * Find a free timer slot, skipping those reserved 1248 * for setitimer(). 1249 */ 1250 for (id = 3; id < TIMER_MAX; id++) 1251 if (p->p_itimers->its_timers[id] == NULL) 1252 break; 1253 if (id == TIMER_MAX) { 1254 PROC_UNLOCK(p); 1255 error = EAGAIN; 1256 goto out; 1257 } 1258 } 1259 it->it_timerid = id; 1260 p->p_itimers->its_timers[id] = it; 1261 if (evp != NULL) 1262 it->it_sigev = *evp; 1263 else { 1264 it->it_sigev.sigev_notify = SIGEV_SIGNAL; 1265 switch (clock_id) { 1266 default: 1267 case CLOCK_REALTIME: 1268 it->it_sigev.sigev_signo = SIGALRM; 1269 break; 1270 case CLOCK_VIRTUAL: 1271 it->it_sigev.sigev_signo = SIGVTALRM; 1272 break; 1273 case CLOCK_PROF: 1274 it->it_sigev.sigev_signo = SIGPROF; 1275 break; 1276 } 1277 it->it_sigev.sigev_value.sival_int = id; 1278 } 1279 1280 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1281 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1282 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo; 1283 it->it_ksi.ksi_code = SI_TIMER; 1284 it->it_ksi.ksi_value = it->it_sigev.sigev_value; 1285 it->it_ksi.ksi_timerid = id; 1286 } 1287 PROC_UNLOCK(p); 1288 *timerid = id; 1289 return (0); 1290 1291 out: 1292 ITIMER_LOCK(it); 1293 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1294 ITIMER_UNLOCK(it); 1295 uma_zfree(itimer_zone, it); 1296 return (error); 1297 } 1298 1299 #ifndef _SYS_SYSPROTO_H_ 1300 struct ktimer_delete_args { 1301 int timerid; 1302 }; 1303 #endif 1304 int 1305 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap) 1306 { 1307 1308 return (kern_ktimer_delete(td, uap->timerid)); 1309 } 1310 1311 static struct itimer * 1312 itimer_find(struct proc *p, int timerid) 1313 { 1314 struct itimer *it; 1315 1316 PROC_LOCK_ASSERT(p, MA_OWNED); 1317 if ((p->p_itimers == NULL) || 1318 (timerid < 0) || (timerid >= TIMER_MAX) || 1319 (it = p->p_itimers->its_timers[timerid]) == NULL) { 1320 return (NULL); 1321 } 1322 ITIMER_LOCK(it); 1323 if ((it->it_flags & ITF_DELETING) != 0) { 1324 ITIMER_UNLOCK(it); 1325 it = NULL; 1326 } 1327 return (it); 1328 } 1329 1330 int 1331 kern_ktimer_delete(struct thread *td, int timerid) 1332 { 1333 struct proc *p = td->td_proc; 1334 struct itimer *it; 1335 1336 PROC_LOCK(p); 1337 it = itimer_find(p, timerid); 1338 if (it == NULL) { 1339 PROC_UNLOCK(p); 1340 return (EINVAL); 1341 } 1342 PROC_UNLOCK(p); 1343 1344 it->it_flags |= ITF_DELETING; 1345 while (it->it_usecount > 0) { 1346 it->it_flags |= ITF_WANTED; 1347 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0); 1348 } 1349 it->it_flags &= ~ITF_WANTED; 1350 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1351 ITIMER_UNLOCK(it); 1352 1353 PROC_LOCK(p); 1354 if (KSI_ONQ(&it->it_ksi)) 1355 sigqueue_take(&it->it_ksi); 1356 p->p_itimers->its_timers[timerid] = NULL; 1357 PROC_UNLOCK(p); 1358 uma_zfree(itimer_zone, it); 1359 return (0); 1360 } 1361 1362 #ifndef _SYS_SYSPROTO_H_ 1363 struct ktimer_settime_args { 1364 int timerid; 1365 int flags; 1366 const struct itimerspec * value; 1367 struct itimerspec * ovalue; 1368 }; 1369 #endif 1370 int 1371 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap) 1372 { 1373 struct itimerspec val, oval, *ovalp; 1374 int error; 1375 1376 error = copyin(uap->value, &val, sizeof(val)); 1377 if (error != 0) 1378 return (error); 1379 ovalp = uap->ovalue != NULL ? &oval : NULL; 1380 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 1381 if (error == 0 && uap->ovalue != NULL) 1382 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp)); 1383 return (error); 1384 } 1385 1386 int 1387 kern_ktimer_settime(struct thread *td, int timer_id, int flags, 1388 struct itimerspec *val, struct itimerspec *oval) 1389 { 1390 struct proc *p; 1391 struct itimer *it; 1392 int error; 1393 1394 p = td->td_proc; 1395 PROC_LOCK(p); 1396 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1397 PROC_UNLOCK(p); 1398 error = EINVAL; 1399 } else { 1400 PROC_UNLOCK(p); 1401 itimer_enter(it); 1402 error = CLOCK_CALL(it->it_clockid, timer_settime, (it, 1403 flags, val, oval)); 1404 itimer_leave(it); 1405 ITIMER_UNLOCK(it); 1406 } 1407 return (error); 1408 } 1409 1410 #ifndef _SYS_SYSPROTO_H_ 1411 struct ktimer_gettime_args { 1412 int timerid; 1413 struct itimerspec * value; 1414 }; 1415 #endif 1416 int 1417 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap) 1418 { 1419 struct itimerspec val; 1420 int error; 1421 1422 error = kern_ktimer_gettime(td, uap->timerid, &val); 1423 if (error == 0) 1424 error = copyout(&val, uap->value, sizeof(val)); 1425 return (error); 1426 } 1427 1428 int 1429 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val) 1430 { 1431 struct proc *p; 1432 struct itimer *it; 1433 int error; 1434 1435 p = td->td_proc; 1436 PROC_LOCK(p); 1437 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1438 PROC_UNLOCK(p); 1439 error = EINVAL; 1440 } else { 1441 PROC_UNLOCK(p); 1442 itimer_enter(it); 1443 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val)); 1444 itimer_leave(it); 1445 ITIMER_UNLOCK(it); 1446 } 1447 return (error); 1448 } 1449 1450 #ifndef _SYS_SYSPROTO_H_ 1451 struct timer_getoverrun_args { 1452 int timerid; 1453 }; 1454 #endif 1455 int 1456 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap) 1457 { 1458 1459 return (kern_ktimer_getoverrun(td, uap->timerid)); 1460 } 1461 1462 int 1463 kern_ktimer_getoverrun(struct thread *td, int timer_id) 1464 { 1465 struct proc *p = td->td_proc; 1466 struct itimer *it; 1467 int error ; 1468 1469 PROC_LOCK(p); 1470 if (timer_id < 3 || 1471 (it = itimer_find(p, timer_id)) == NULL) { 1472 PROC_UNLOCK(p); 1473 error = EINVAL; 1474 } else { 1475 td->td_retval[0] = it->it_overrun_last; 1476 ITIMER_UNLOCK(it); 1477 PROC_UNLOCK(p); 1478 error = 0; 1479 } 1480 return (error); 1481 } 1482 1483 static int 1484 realtimer_create(struct itimer *it) 1485 { 1486 callout_init_mtx(&it->it_callout, &it->it_mtx, 0); 1487 return (0); 1488 } 1489 1490 static int 1491 realtimer_delete(struct itimer *it) 1492 { 1493 mtx_assert(&it->it_mtx, MA_OWNED); 1494 1495 /* 1496 * clear timer's value and interval to tell realtimer_expire 1497 * to not rearm the timer. 1498 */ 1499 timespecclear(&it->it_time.it_value); 1500 timespecclear(&it->it_time.it_interval); 1501 ITIMER_UNLOCK(it); 1502 callout_drain(&it->it_callout); 1503 ITIMER_LOCK(it); 1504 return (0); 1505 } 1506 1507 static int 1508 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue) 1509 { 1510 struct timespec cts; 1511 1512 mtx_assert(&it->it_mtx, MA_OWNED); 1513 1514 realtimer_clocktime(it->it_clockid, &cts); 1515 *ovalue = it->it_time; 1516 if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) { 1517 timespecsub(&ovalue->it_value, &cts, &ovalue->it_value); 1518 if (ovalue->it_value.tv_sec < 0 || 1519 (ovalue->it_value.tv_sec == 0 && 1520 ovalue->it_value.tv_nsec == 0)) { 1521 ovalue->it_value.tv_sec = 0; 1522 ovalue->it_value.tv_nsec = 1; 1523 } 1524 } 1525 return (0); 1526 } 1527 1528 static int 1529 realtimer_settime(struct itimer *it, int flags, 1530 struct itimerspec *value, struct itimerspec *ovalue) 1531 { 1532 struct timespec cts, ts; 1533 struct timeval tv; 1534 struct itimerspec val; 1535 1536 mtx_assert(&it->it_mtx, MA_OWNED); 1537 1538 val = *value; 1539 if (itimespecfix(&val.it_value)) 1540 return (EINVAL); 1541 1542 if (timespecisset(&val.it_value)) { 1543 if (itimespecfix(&val.it_interval)) 1544 return (EINVAL); 1545 } else { 1546 timespecclear(&val.it_interval); 1547 } 1548 1549 if (ovalue != NULL) 1550 realtimer_gettime(it, ovalue); 1551 1552 it->it_time = val; 1553 if (timespecisset(&val.it_value)) { 1554 realtimer_clocktime(it->it_clockid, &cts); 1555 ts = val.it_value; 1556 if ((flags & TIMER_ABSTIME) == 0) { 1557 /* Convert to absolute time. */ 1558 timespecadd(&it->it_time.it_value, &cts, 1559 &it->it_time.it_value); 1560 } else { 1561 timespecsub(&ts, &cts, &ts); 1562 /* 1563 * We don't care if ts is negative, tztohz will 1564 * fix it. 1565 */ 1566 } 1567 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1568 callout_reset(&it->it_callout, tvtohz(&tv), 1569 realtimer_expire, it); 1570 } else { 1571 callout_stop(&it->it_callout); 1572 } 1573 1574 return (0); 1575 } 1576 1577 static void 1578 realtimer_clocktime(clockid_t id, struct timespec *ts) 1579 { 1580 if (id == CLOCK_REALTIME) 1581 getnanotime(ts); 1582 else /* CLOCK_MONOTONIC */ 1583 getnanouptime(ts); 1584 } 1585 1586 int 1587 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi) 1588 { 1589 struct itimer *it; 1590 1591 PROC_LOCK_ASSERT(p, MA_OWNED); 1592 it = itimer_find(p, timerid); 1593 if (it != NULL) { 1594 ksi->ksi_overrun = it->it_overrun; 1595 it->it_overrun_last = it->it_overrun; 1596 it->it_overrun = 0; 1597 ITIMER_UNLOCK(it); 1598 return (0); 1599 } 1600 return (EINVAL); 1601 } 1602 1603 int 1604 itimespecfix(struct timespec *ts) 1605 { 1606 1607 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1608 return (EINVAL); 1609 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000) 1610 ts->tv_nsec = tick * 1000; 1611 return (0); 1612 } 1613 1614 /* Timeout callback for realtime timer */ 1615 static void 1616 realtimer_expire(void *arg) 1617 { 1618 struct timespec cts, ts; 1619 struct timeval tv; 1620 struct itimer *it; 1621 1622 it = (struct itimer *)arg; 1623 1624 realtimer_clocktime(it->it_clockid, &cts); 1625 /* Only fire if time is reached. */ 1626 if (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1627 if (timespecisset(&it->it_time.it_interval)) { 1628 timespecadd(&it->it_time.it_value, 1629 &it->it_time.it_interval, 1630 &it->it_time.it_value); 1631 while (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1632 if (it->it_overrun < INT_MAX) 1633 it->it_overrun++; 1634 else 1635 it->it_ksi.ksi_errno = ERANGE; 1636 timespecadd(&it->it_time.it_value, 1637 &it->it_time.it_interval, 1638 &it->it_time.it_value); 1639 } 1640 } else { 1641 /* single shot timer ? */ 1642 timespecclear(&it->it_time.it_value); 1643 } 1644 if (timespecisset(&it->it_time.it_value)) { 1645 timespecsub(&it->it_time.it_value, &cts, &ts); 1646 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1647 callout_reset(&it->it_callout, tvtohz(&tv), 1648 realtimer_expire, it); 1649 } 1650 itimer_enter(it); 1651 ITIMER_UNLOCK(it); 1652 itimer_fire(it); 1653 ITIMER_LOCK(it); 1654 itimer_leave(it); 1655 } else if (timespecisset(&it->it_time.it_value)) { 1656 ts = it->it_time.it_value; 1657 timespecsub(&ts, &cts, &ts); 1658 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1659 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire, 1660 it); 1661 } 1662 } 1663 1664 void 1665 itimer_fire(struct itimer *it) 1666 { 1667 struct proc *p = it->it_proc; 1668 struct thread *td; 1669 1670 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1671 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1672 if (sigev_findtd(p, &it->it_sigev, &td) != 0) { 1673 ITIMER_LOCK(it); 1674 timespecclear(&it->it_time.it_value); 1675 timespecclear(&it->it_time.it_interval); 1676 callout_stop(&it->it_callout); 1677 ITIMER_UNLOCK(it); 1678 return; 1679 } 1680 if (!KSI_ONQ(&it->it_ksi)) { 1681 it->it_ksi.ksi_errno = 0; 1682 ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev); 1683 tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi); 1684 } else { 1685 if (it->it_overrun < INT_MAX) 1686 it->it_overrun++; 1687 else 1688 it->it_ksi.ksi_errno = ERANGE; 1689 } 1690 PROC_UNLOCK(p); 1691 } 1692 } 1693 1694 static void 1695 itimers_alloc(struct proc *p) 1696 { 1697 struct itimers *its; 1698 int i; 1699 1700 its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO); 1701 LIST_INIT(&its->its_virtual); 1702 LIST_INIT(&its->its_prof); 1703 TAILQ_INIT(&its->its_worklist); 1704 for (i = 0; i < TIMER_MAX; i++) 1705 its->its_timers[i] = NULL; 1706 PROC_LOCK(p); 1707 if (p->p_itimers == NULL) { 1708 p->p_itimers = its; 1709 PROC_UNLOCK(p); 1710 } 1711 else { 1712 PROC_UNLOCK(p); 1713 free(its, M_SUBPROC); 1714 } 1715 } 1716 1717 static void 1718 itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused) 1719 { 1720 itimers_event_hook_exit(arg, p); 1721 } 1722 1723 /* Clean up timers when some process events are being triggered. */ 1724 static void 1725 itimers_event_hook_exit(void *arg, struct proc *p) 1726 { 1727 struct itimers *its; 1728 struct itimer *it; 1729 int event = (int)(intptr_t)arg; 1730 int i; 1731 1732 if (p->p_itimers != NULL) { 1733 its = p->p_itimers; 1734 for (i = 0; i < MAX_CLOCKS; ++i) { 1735 if (posix_clocks[i].event_hook != NULL) 1736 CLOCK_CALL(i, event_hook, (p, i, event)); 1737 } 1738 /* 1739 * According to susv3, XSI interval timers should be inherited 1740 * by new image. 1741 */ 1742 if (event == ITIMER_EV_EXEC) 1743 i = 3; 1744 else if (event == ITIMER_EV_EXIT) 1745 i = 0; 1746 else 1747 panic("unhandled event"); 1748 for (; i < TIMER_MAX; ++i) { 1749 if ((it = its->its_timers[i]) != NULL) 1750 kern_ktimer_delete(curthread, i); 1751 } 1752 if (its->its_timers[0] == NULL && 1753 its->its_timers[1] == NULL && 1754 its->its_timers[2] == NULL) { 1755 free(its, M_SUBPROC); 1756 p->p_itimers = NULL; 1757 } 1758 } 1759 } 1760