1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/limits.h> 38 #include <sys/clock.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/sysproto.h> 42 #include <sys/eventhandler.h> 43 #include <sys/resourcevar.h> 44 #include <sys/signalvar.h> 45 #include <sys/kernel.h> 46 #include <sys/sleepqueue.h> 47 #include <sys/syscallsubr.h> 48 #include <sys/sysctl.h> 49 #include <sys/sysent.h> 50 #include <sys/priv.h> 51 #include <sys/proc.h> 52 #include <sys/posix4.h> 53 #include <sys/time.h> 54 #include <sys/timers.h> 55 #include <sys/timetc.h> 56 #include <sys/vnode.h> 57 58 #include <vm/vm.h> 59 #include <vm/vm_extern.h> 60 61 #define MAX_CLOCKS (CLOCK_MONOTONIC+1) 62 #define CPUCLOCK_BIT 0x80000000 63 #define CPUCLOCK_PROCESS_BIT 0x40000000 64 #define CPUCLOCK_ID_MASK (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT)) 65 #define MAKE_THREAD_CPUCLOCK(tid) (CPUCLOCK_BIT|(tid)) 66 #define MAKE_PROCESS_CPUCLOCK(pid) \ 67 (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid)) 68 69 static struct kclock posix_clocks[MAX_CLOCKS]; 70 static uma_zone_t itimer_zone = NULL; 71 72 /* 73 * Time of day and interval timer support. 74 * 75 * These routines provide the kernel entry points to get and set 76 * the time-of-day and per-process interval timers. Subroutines 77 * here provide support for adding and subtracting timeval structures 78 * and decrementing interval timers, optionally reloading the interval 79 * timers when they expire. 80 */ 81 82 static int settime(struct thread *, struct timeval *); 83 static void timevalfix(struct timeval *); 84 85 static void itimer_start(void); 86 static int itimer_init(void *, int, int); 87 static void itimer_fini(void *, int); 88 static void itimer_enter(struct itimer *); 89 static void itimer_leave(struct itimer *); 90 static struct itimer *itimer_find(struct proc *, int); 91 static void itimers_alloc(struct proc *); 92 static void itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp); 93 static void itimers_event_hook_exit(void *arg, struct proc *p); 94 static int realtimer_create(struct itimer *); 95 static int realtimer_gettime(struct itimer *, struct itimerspec *); 96 static int realtimer_settime(struct itimer *, int, 97 struct itimerspec *, struct itimerspec *); 98 static int realtimer_delete(struct itimer *); 99 static void realtimer_clocktime(clockid_t, struct timespec *); 100 static void realtimer_expire(void *); 101 102 int register_posix_clock(int, struct kclock *); 103 void itimer_fire(struct itimer *it); 104 int itimespecfix(struct timespec *ts); 105 106 #define CLOCK_CALL(clock, call, arglist) \ 107 ((*posix_clocks[clock].call) arglist) 108 109 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL); 110 111 112 static int 113 settime(struct thread *td, struct timeval *tv) 114 { 115 struct timeval delta, tv1, tv2; 116 static struct timeval maxtime, laststep; 117 struct timespec ts; 118 int s; 119 120 s = splclock(); 121 microtime(&tv1); 122 delta = *tv; 123 timevalsub(&delta, &tv1); 124 125 /* 126 * If the system is secure, we do not allow the time to be 127 * set to a value earlier than 1 second less than the highest 128 * time we have yet seen. The worst a miscreant can do in 129 * this circumstance is "freeze" time. He couldn't go 130 * back to the past. 131 * 132 * We similarly do not allow the clock to be stepped more 133 * than one second, nor more than once per second. This allows 134 * a miscreant to make the clock march double-time, but no worse. 135 */ 136 if (securelevel_gt(td->td_ucred, 1) != 0) { 137 if (delta.tv_sec < 0 || delta.tv_usec < 0) { 138 /* 139 * Update maxtime to latest time we've seen. 140 */ 141 if (tv1.tv_sec > maxtime.tv_sec) 142 maxtime = tv1; 143 tv2 = *tv; 144 timevalsub(&tv2, &maxtime); 145 if (tv2.tv_sec < -1) { 146 tv->tv_sec = maxtime.tv_sec - 1; 147 printf("Time adjustment clamped to -1 second\n"); 148 } 149 } else { 150 if (tv1.tv_sec == laststep.tv_sec) { 151 splx(s); 152 return (EPERM); 153 } 154 if (delta.tv_sec > 1) { 155 tv->tv_sec = tv1.tv_sec + 1; 156 printf("Time adjustment clamped to +1 second\n"); 157 } 158 laststep = *tv; 159 } 160 } 161 162 ts.tv_sec = tv->tv_sec; 163 ts.tv_nsec = tv->tv_usec * 1000; 164 mtx_lock(&Giant); 165 tc_setclock(&ts); 166 resettodr(); 167 mtx_unlock(&Giant); 168 return (0); 169 } 170 171 #ifndef _SYS_SYSPROTO_H_ 172 struct clock_getcpuclockid2_args { 173 id_t id; 174 int which, 175 clockid_t *clock_id; 176 }; 177 #endif 178 /* ARGSUSED */ 179 int 180 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap) 181 { 182 clockid_t clk_id; 183 int error; 184 185 error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id); 186 if (error == 0) 187 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 188 return (error); 189 } 190 191 int 192 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which, 193 clockid_t *clk_id) 194 { 195 struct proc *p; 196 pid_t pid; 197 lwpid_t tid; 198 int error; 199 200 switch (which) { 201 case CPUCLOCK_WHICH_PID: 202 if (id != 0) { 203 p = pfind(id); 204 if (p == NULL) 205 return (ESRCH); 206 error = p_cansee(td, p); 207 PROC_UNLOCK(p); 208 if (error != 0) 209 return (error); 210 pid = id; 211 } else { 212 pid = td->td_proc->p_pid; 213 } 214 *clk_id = MAKE_PROCESS_CPUCLOCK(pid); 215 return (0); 216 case CPUCLOCK_WHICH_TID: 217 tid = id == 0 ? td->td_tid : id; 218 *clk_id = MAKE_THREAD_CPUCLOCK(tid); 219 return (0); 220 default: 221 return (EINVAL); 222 } 223 } 224 225 #ifndef _SYS_SYSPROTO_H_ 226 struct clock_gettime_args { 227 clockid_t clock_id; 228 struct timespec *tp; 229 }; 230 #endif 231 /* ARGSUSED */ 232 int 233 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap) 234 { 235 struct timespec ats; 236 int error; 237 238 error = kern_clock_gettime(td, uap->clock_id, &ats); 239 if (error == 0) 240 error = copyout(&ats, uap->tp, sizeof(ats)); 241 242 return (error); 243 } 244 245 static inline void 246 cputick2timespec(uint64_t runtime, struct timespec *ats) 247 { 248 runtime = cputick2usec(runtime); 249 ats->tv_sec = runtime / 1000000; 250 ats->tv_nsec = runtime % 1000000 * 1000; 251 } 252 253 static void 254 get_thread_cputime(struct thread *targettd, struct timespec *ats) 255 { 256 uint64_t runtime, curtime, switchtime; 257 258 if (targettd == NULL) { /* current thread */ 259 critical_enter(); 260 switchtime = PCPU_GET(switchtime); 261 curtime = cpu_ticks(); 262 runtime = curthread->td_runtime; 263 critical_exit(); 264 runtime += curtime - switchtime; 265 } else { 266 thread_lock(targettd); 267 runtime = targettd->td_runtime; 268 thread_unlock(targettd); 269 } 270 cputick2timespec(runtime, ats); 271 } 272 273 static void 274 get_process_cputime(struct proc *targetp, struct timespec *ats) 275 { 276 uint64_t runtime; 277 struct rusage ru; 278 279 PROC_STATLOCK(targetp); 280 rufetch(targetp, &ru); 281 runtime = targetp->p_rux.rux_runtime; 282 PROC_STATUNLOCK(targetp); 283 cputick2timespec(runtime, ats); 284 } 285 286 static int 287 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats) 288 { 289 struct proc *p, *p2; 290 struct thread *td2; 291 lwpid_t tid; 292 pid_t pid; 293 int error; 294 295 p = td->td_proc; 296 if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) { 297 tid = clock_id & CPUCLOCK_ID_MASK; 298 td2 = tdfind(tid, p->p_pid); 299 if (td2 == NULL) 300 return (EINVAL); 301 get_thread_cputime(td2, ats); 302 PROC_UNLOCK(td2->td_proc); 303 } else { 304 pid = clock_id & CPUCLOCK_ID_MASK; 305 error = pget(pid, PGET_CANSEE, &p2); 306 if (error != 0) 307 return (EINVAL); 308 get_process_cputime(p2, ats); 309 PROC_UNLOCK(p2); 310 } 311 return (0); 312 } 313 314 int 315 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats) 316 { 317 struct timeval sys, user; 318 struct proc *p; 319 320 p = td->td_proc; 321 switch (clock_id) { 322 case CLOCK_REALTIME: /* Default to precise. */ 323 case CLOCK_REALTIME_PRECISE: 324 nanotime(ats); 325 break; 326 case CLOCK_REALTIME_FAST: 327 getnanotime(ats); 328 break; 329 case CLOCK_VIRTUAL: 330 PROC_LOCK(p); 331 PROC_STATLOCK(p); 332 calcru(p, &user, &sys); 333 PROC_STATUNLOCK(p); 334 PROC_UNLOCK(p); 335 TIMEVAL_TO_TIMESPEC(&user, ats); 336 break; 337 case CLOCK_PROF: 338 PROC_LOCK(p); 339 PROC_STATLOCK(p); 340 calcru(p, &user, &sys); 341 PROC_STATUNLOCK(p); 342 PROC_UNLOCK(p); 343 timevaladd(&user, &sys); 344 TIMEVAL_TO_TIMESPEC(&user, ats); 345 break; 346 case CLOCK_MONOTONIC: /* Default to precise. */ 347 case CLOCK_MONOTONIC_PRECISE: 348 case CLOCK_UPTIME: 349 case CLOCK_UPTIME_PRECISE: 350 nanouptime(ats); 351 break; 352 case CLOCK_UPTIME_FAST: 353 case CLOCK_MONOTONIC_FAST: 354 getnanouptime(ats); 355 break; 356 case CLOCK_SECOND: 357 ats->tv_sec = time_second; 358 ats->tv_nsec = 0; 359 break; 360 case CLOCK_THREAD_CPUTIME_ID: 361 get_thread_cputime(NULL, ats); 362 break; 363 case CLOCK_PROCESS_CPUTIME_ID: 364 PROC_LOCK(p); 365 get_process_cputime(p, ats); 366 PROC_UNLOCK(p); 367 break; 368 default: 369 if ((int)clock_id >= 0) 370 return (EINVAL); 371 return (get_cputime(td, clock_id, ats)); 372 } 373 return (0); 374 } 375 376 #ifndef _SYS_SYSPROTO_H_ 377 struct clock_settime_args { 378 clockid_t clock_id; 379 const struct timespec *tp; 380 }; 381 #endif 382 /* ARGSUSED */ 383 int 384 sys_clock_settime(struct thread *td, struct clock_settime_args *uap) 385 { 386 struct timespec ats; 387 int error; 388 389 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0) 390 return (error); 391 return (kern_clock_settime(td, uap->clock_id, &ats)); 392 } 393 394 int 395 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats) 396 { 397 struct timeval atv; 398 int error; 399 400 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 401 return (error); 402 if (clock_id != CLOCK_REALTIME) 403 return (EINVAL); 404 if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000) 405 return (EINVAL); 406 /* XXX Don't convert nsec->usec and back */ 407 TIMESPEC_TO_TIMEVAL(&atv, ats); 408 error = settime(td, &atv); 409 return (error); 410 } 411 412 #ifndef _SYS_SYSPROTO_H_ 413 struct clock_getres_args { 414 clockid_t clock_id; 415 struct timespec *tp; 416 }; 417 #endif 418 int 419 sys_clock_getres(struct thread *td, struct clock_getres_args *uap) 420 { 421 struct timespec ts; 422 int error; 423 424 if (uap->tp == NULL) 425 return (0); 426 427 error = kern_clock_getres(td, uap->clock_id, &ts); 428 if (error == 0) 429 error = copyout(&ts, uap->tp, sizeof(ts)); 430 return (error); 431 } 432 433 int 434 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts) 435 { 436 437 ts->tv_sec = 0; 438 switch (clock_id) { 439 case CLOCK_REALTIME: 440 case CLOCK_REALTIME_FAST: 441 case CLOCK_REALTIME_PRECISE: 442 case CLOCK_MONOTONIC: 443 case CLOCK_MONOTONIC_FAST: 444 case CLOCK_MONOTONIC_PRECISE: 445 case CLOCK_UPTIME: 446 case CLOCK_UPTIME_FAST: 447 case CLOCK_UPTIME_PRECISE: 448 /* 449 * Round up the result of the division cheaply by adding 1. 450 * Rounding up is especially important if rounding down 451 * would give 0. Perfect rounding is unimportant. 452 */ 453 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1; 454 break; 455 case CLOCK_VIRTUAL: 456 case CLOCK_PROF: 457 /* Accurately round up here because we can do so cheaply. */ 458 ts->tv_nsec = (1000000000 + hz - 1) / hz; 459 break; 460 case CLOCK_SECOND: 461 ts->tv_sec = 1; 462 ts->tv_nsec = 0; 463 break; 464 case CLOCK_THREAD_CPUTIME_ID: 465 case CLOCK_PROCESS_CPUTIME_ID: 466 cputime: 467 /* sync with cputick2usec */ 468 ts->tv_nsec = 1000000 / cpu_tickrate(); 469 if (ts->tv_nsec == 0) 470 ts->tv_nsec = 1000; 471 break; 472 default: 473 if ((int)clock_id < 0) 474 goto cputime; 475 return (EINVAL); 476 } 477 return (0); 478 } 479 480 static uint8_t nanowait[MAXCPU]; 481 482 int 483 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt) 484 { 485 struct timespec ts; 486 sbintime_t sbt, sbtt, prec, tmp; 487 time_t over; 488 int error; 489 490 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000) 491 return (EINVAL); 492 if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0)) 493 return (0); 494 ts = *rqt; 495 if (ts.tv_sec > INT32_MAX / 2) { 496 over = ts.tv_sec - INT32_MAX / 2; 497 ts.tv_sec -= over; 498 } else 499 over = 0; 500 tmp = tstosbt(ts); 501 prec = tmp; 502 prec >>= tc_precexp; 503 if (TIMESEL(&sbt, tmp)) 504 sbt += tc_tick_sbt; 505 sbt += tmp; 506 error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp", 507 sbt, prec, C_ABSOLUTE); 508 if (error != EWOULDBLOCK) { 509 if (error == ERESTART) 510 error = EINTR; 511 TIMESEL(&sbtt, tmp); 512 if (rmt != NULL) { 513 ts = sbttots(sbt - sbtt); 514 ts.tv_sec += over; 515 if (ts.tv_sec < 0) 516 timespecclear(&ts); 517 *rmt = ts; 518 } 519 if (sbtt >= sbt) 520 return (0); 521 return (error); 522 } 523 return (0); 524 } 525 526 #ifndef _SYS_SYSPROTO_H_ 527 struct nanosleep_args { 528 struct timespec *rqtp; 529 struct timespec *rmtp; 530 }; 531 #endif 532 /* ARGSUSED */ 533 int 534 sys_nanosleep(struct thread *td, struct nanosleep_args *uap) 535 { 536 struct timespec rmt, rqt; 537 int error; 538 539 error = copyin(uap->rqtp, &rqt, sizeof(rqt)); 540 if (error) 541 return (error); 542 543 if (uap->rmtp && 544 !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE)) 545 return (EFAULT); 546 error = kern_nanosleep(td, &rqt, &rmt); 547 if (error && uap->rmtp) { 548 int error2; 549 550 error2 = copyout(&rmt, uap->rmtp, sizeof(rmt)); 551 if (error2) 552 error = error2; 553 } 554 return (error); 555 } 556 557 #ifndef _SYS_SYSPROTO_H_ 558 struct gettimeofday_args { 559 struct timeval *tp; 560 struct timezone *tzp; 561 }; 562 #endif 563 /* ARGSUSED */ 564 int 565 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap) 566 { 567 struct timeval atv; 568 struct timezone rtz; 569 int error = 0; 570 571 if (uap->tp) { 572 microtime(&atv); 573 error = copyout(&atv, uap->tp, sizeof (atv)); 574 } 575 if (error == 0 && uap->tzp != NULL) { 576 rtz.tz_minuteswest = tz_minuteswest; 577 rtz.tz_dsttime = tz_dsttime; 578 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 579 } 580 return (error); 581 } 582 583 #ifndef _SYS_SYSPROTO_H_ 584 struct settimeofday_args { 585 struct timeval *tv; 586 struct timezone *tzp; 587 }; 588 #endif 589 /* ARGSUSED */ 590 int 591 sys_settimeofday(struct thread *td, struct settimeofday_args *uap) 592 { 593 struct timeval atv, *tvp; 594 struct timezone atz, *tzp; 595 int error; 596 597 if (uap->tv) { 598 error = copyin(uap->tv, &atv, sizeof(atv)); 599 if (error) 600 return (error); 601 tvp = &atv; 602 } else 603 tvp = NULL; 604 if (uap->tzp) { 605 error = copyin(uap->tzp, &atz, sizeof(atz)); 606 if (error) 607 return (error); 608 tzp = &atz; 609 } else 610 tzp = NULL; 611 return (kern_settimeofday(td, tvp, tzp)); 612 } 613 614 int 615 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp) 616 { 617 int error; 618 619 error = priv_check(td, PRIV_SETTIMEOFDAY); 620 if (error) 621 return (error); 622 /* Verify all parameters before changing time. */ 623 if (tv) { 624 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000) 625 return (EINVAL); 626 error = settime(td, tv); 627 } 628 if (tzp && error == 0) { 629 tz_minuteswest = tzp->tz_minuteswest; 630 tz_dsttime = tzp->tz_dsttime; 631 } 632 return (error); 633 } 634 635 /* 636 * Get value of an interval timer. The process virtual and profiling virtual 637 * time timers are kept in the p_stats area, since they can be swapped out. 638 * These are kept internally in the way they are specified externally: in 639 * time until they expire. 640 * 641 * The real time interval timer is kept in the process table slot for the 642 * process, and its value (it_value) is kept as an absolute time rather than 643 * as a delta, so that it is easy to keep periodic real-time signals from 644 * drifting. 645 * 646 * Virtual time timers are processed in the hardclock() routine of 647 * kern_clock.c. The real time timer is processed by a timeout routine, 648 * called from the softclock() routine. Since a callout may be delayed in 649 * real time due to interrupt processing in the system, it is possible for 650 * the real time timeout routine (realitexpire, given below), to be delayed 651 * in real time past when it is supposed to occur. It does not suffice, 652 * therefore, to reload the real timer .it_value from the real time timers 653 * .it_interval. Rather, we compute the next time in absolute time the timer 654 * should go off. 655 */ 656 #ifndef _SYS_SYSPROTO_H_ 657 struct getitimer_args { 658 u_int which; 659 struct itimerval *itv; 660 }; 661 #endif 662 int 663 sys_getitimer(struct thread *td, struct getitimer_args *uap) 664 { 665 struct itimerval aitv; 666 int error; 667 668 error = kern_getitimer(td, uap->which, &aitv); 669 if (error != 0) 670 return (error); 671 return (copyout(&aitv, uap->itv, sizeof (struct itimerval))); 672 } 673 674 int 675 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv) 676 { 677 struct proc *p = td->td_proc; 678 struct timeval ctv; 679 680 if (which > ITIMER_PROF) 681 return (EINVAL); 682 683 if (which == ITIMER_REAL) { 684 /* 685 * Convert from absolute to relative time in .it_value 686 * part of real time timer. If time for real time timer 687 * has passed return 0, else return difference between 688 * current time and time for the timer to go off. 689 */ 690 PROC_LOCK(p); 691 *aitv = p->p_realtimer; 692 PROC_UNLOCK(p); 693 if (timevalisset(&aitv->it_value)) { 694 microuptime(&ctv); 695 if (timevalcmp(&aitv->it_value, &ctv, <)) 696 timevalclear(&aitv->it_value); 697 else 698 timevalsub(&aitv->it_value, &ctv); 699 } 700 } else { 701 PROC_ITIMLOCK(p); 702 *aitv = p->p_stats->p_timer[which]; 703 PROC_ITIMUNLOCK(p); 704 } 705 return (0); 706 } 707 708 #ifndef _SYS_SYSPROTO_H_ 709 struct setitimer_args { 710 u_int which; 711 struct itimerval *itv, *oitv; 712 }; 713 #endif 714 int 715 sys_setitimer(struct thread *td, struct setitimer_args *uap) 716 { 717 struct itimerval aitv, oitv; 718 int error; 719 720 if (uap->itv == NULL) { 721 uap->itv = uap->oitv; 722 return (sys_getitimer(td, (struct getitimer_args *)uap)); 723 } 724 725 if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval)))) 726 return (error); 727 error = kern_setitimer(td, uap->which, &aitv, &oitv); 728 if (error != 0 || uap->oitv == NULL) 729 return (error); 730 return (copyout(&oitv, uap->oitv, sizeof(struct itimerval))); 731 } 732 733 int 734 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv, 735 struct itimerval *oitv) 736 { 737 struct proc *p = td->td_proc; 738 struct timeval ctv; 739 sbintime_t sbt, pr; 740 741 if (aitv == NULL) 742 return (kern_getitimer(td, which, oitv)); 743 744 if (which > ITIMER_PROF) 745 return (EINVAL); 746 if (itimerfix(&aitv->it_value) || 747 aitv->it_value.tv_sec > INT32_MAX / 2) 748 return (EINVAL); 749 if (!timevalisset(&aitv->it_value)) 750 timevalclear(&aitv->it_interval); 751 else if (itimerfix(&aitv->it_interval) || 752 aitv->it_interval.tv_sec > INT32_MAX / 2) 753 return (EINVAL); 754 755 if (which == ITIMER_REAL) { 756 PROC_LOCK(p); 757 if (timevalisset(&p->p_realtimer.it_value)) 758 callout_stop(&p->p_itcallout); 759 microuptime(&ctv); 760 if (timevalisset(&aitv->it_value)) { 761 pr = tvtosbt(aitv->it_value) >> tc_precexp; 762 timevaladd(&aitv->it_value, &ctv); 763 sbt = tvtosbt(aitv->it_value); 764 callout_reset_sbt(&p->p_itcallout, sbt, pr, 765 realitexpire, p, C_ABSOLUTE); 766 } 767 *oitv = p->p_realtimer; 768 p->p_realtimer = *aitv; 769 PROC_UNLOCK(p); 770 if (timevalisset(&oitv->it_value)) { 771 if (timevalcmp(&oitv->it_value, &ctv, <)) 772 timevalclear(&oitv->it_value); 773 else 774 timevalsub(&oitv->it_value, &ctv); 775 } 776 } else { 777 if (aitv->it_interval.tv_sec == 0 && 778 aitv->it_interval.tv_usec != 0 && 779 aitv->it_interval.tv_usec < tick) 780 aitv->it_interval.tv_usec = tick; 781 if (aitv->it_value.tv_sec == 0 && 782 aitv->it_value.tv_usec != 0 && 783 aitv->it_value.tv_usec < tick) 784 aitv->it_value.tv_usec = tick; 785 PROC_ITIMLOCK(p); 786 *oitv = p->p_stats->p_timer[which]; 787 p->p_stats->p_timer[which] = *aitv; 788 PROC_ITIMUNLOCK(p); 789 } 790 return (0); 791 } 792 793 /* 794 * Real interval timer expired: 795 * send process whose timer expired an alarm signal. 796 * If time is not set up to reload, then just return. 797 * Else compute next time timer should go off which is > current time. 798 * This is where delay in processing this timeout causes multiple 799 * SIGALRM calls to be compressed into one. 800 * tvtohz() always adds 1 to allow for the time until the next clock 801 * interrupt being strictly less than 1 clock tick, but we don't want 802 * that here since we want to appear to be in sync with the clock 803 * interrupt even when we're delayed. 804 */ 805 void 806 realitexpire(void *arg) 807 { 808 struct proc *p; 809 struct timeval ctv; 810 sbintime_t isbt; 811 812 p = (struct proc *)arg; 813 kern_psignal(p, SIGALRM); 814 if (!timevalisset(&p->p_realtimer.it_interval)) { 815 timevalclear(&p->p_realtimer.it_value); 816 if (p->p_flag & P_WEXIT) 817 wakeup(&p->p_itcallout); 818 return; 819 } 820 isbt = tvtosbt(p->p_realtimer.it_interval); 821 if (isbt >= sbt_timethreshold) 822 getmicrouptime(&ctv); 823 else 824 microuptime(&ctv); 825 do { 826 timevaladd(&p->p_realtimer.it_value, 827 &p->p_realtimer.it_interval); 828 } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=)); 829 callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value), 830 isbt >> tc_precexp, realitexpire, p, C_ABSOLUTE); 831 } 832 833 /* 834 * Check that a proposed value to load into the .it_value or 835 * .it_interval part of an interval timer is acceptable, and 836 * fix it to have at least minimal value (i.e. if it is less 837 * than the resolution of the clock, round it up.) 838 */ 839 int 840 itimerfix(struct timeval *tv) 841 { 842 843 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000) 844 return (EINVAL); 845 if (tv->tv_sec == 0 && tv->tv_usec != 0 && 846 tv->tv_usec < (u_int)tick / 16) 847 tv->tv_usec = (u_int)tick / 16; 848 return (0); 849 } 850 851 /* 852 * Decrement an interval timer by a specified number 853 * of microseconds, which must be less than a second, 854 * i.e. < 1000000. If the timer expires, then reload 855 * it. In this case, carry over (usec - old value) to 856 * reduce the value reloaded into the timer so that 857 * the timer does not drift. This routine assumes 858 * that it is called in a context where the timers 859 * on which it is operating cannot change in value. 860 */ 861 int 862 itimerdecr(struct itimerval *itp, int usec) 863 { 864 865 if (itp->it_value.tv_usec < usec) { 866 if (itp->it_value.tv_sec == 0) { 867 /* expired, and already in next interval */ 868 usec -= itp->it_value.tv_usec; 869 goto expire; 870 } 871 itp->it_value.tv_usec += 1000000; 872 itp->it_value.tv_sec--; 873 } 874 itp->it_value.tv_usec -= usec; 875 usec = 0; 876 if (timevalisset(&itp->it_value)) 877 return (1); 878 /* expired, exactly at end of interval */ 879 expire: 880 if (timevalisset(&itp->it_interval)) { 881 itp->it_value = itp->it_interval; 882 itp->it_value.tv_usec -= usec; 883 if (itp->it_value.tv_usec < 0) { 884 itp->it_value.tv_usec += 1000000; 885 itp->it_value.tv_sec--; 886 } 887 } else 888 itp->it_value.tv_usec = 0; /* sec is already 0 */ 889 return (0); 890 } 891 892 /* 893 * Add and subtract routines for timevals. 894 * N.B.: subtract routine doesn't deal with 895 * results which are before the beginning, 896 * it just gets very confused in this case. 897 * Caveat emptor. 898 */ 899 void 900 timevaladd(struct timeval *t1, const struct timeval *t2) 901 { 902 903 t1->tv_sec += t2->tv_sec; 904 t1->tv_usec += t2->tv_usec; 905 timevalfix(t1); 906 } 907 908 void 909 timevalsub(struct timeval *t1, const struct timeval *t2) 910 { 911 912 t1->tv_sec -= t2->tv_sec; 913 t1->tv_usec -= t2->tv_usec; 914 timevalfix(t1); 915 } 916 917 static void 918 timevalfix(struct timeval *t1) 919 { 920 921 if (t1->tv_usec < 0) { 922 t1->tv_sec--; 923 t1->tv_usec += 1000000; 924 } 925 if (t1->tv_usec >= 1000000) { 926 t1->tv_sec++; 927 t1->tv_usec -= 1000000; 928 } 929 } 930 931 /* 932 * ratecheck(): simple time-based rate-limit checking. 933 */ 934 int 935 ratecheck(struct timeval *lasttime, const struct timeval *mininterval) 936 { 937 struct timeval tv, delta; 938 int rv = 0; 939 940 getmicrouptime(&tv); /* NB: 10ms precision */ 941 delta = tv; 942 timevalsub(&delta, lasttime); 943 944 /* 945 * check for 0,0 is so that the message will be seen at least once, 946 * even if interval is huge. 947 */ 948 if (timevalcmp(&delta, mininterval, >=) || 949 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { 950 *lasttime = tv; 951 rv = 1; 952 } 953 954 return (rv); 955 } 956 957 /* 958 * ppsratecheck(): packets (or events) per second limitation. 959 * 960 * Return 0 if the limit is to be enforced (e.g. the caller 961 * should drop a packet because of the rate limitation). 962 * 963 * maxpps of 0 always causes zero to be returned. maxpps of -1 964 * always causes 1 to be returned; this effectively defeats rate 965 * limiting. 966 * 967 * Note that we maintain the struct timeval for compatibility 968 * with other bsd systems. We reuse the storage and just monitor 969 * clock ticks for minimal overhead. 970 */ 971 int 972 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) 973 { 974 int now; 975 976 /* 977 * Reset the last time and counter if this is the first call 978 * or more than a second has passed since the last update of 979 * lasttime. 980 */ 981 now = ticks; 982 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) { 983 lasttime->tv_sec = now; 984 *curpps = 1; 985 return (maxpps != 0); 986 } else { 987 (*curpps)++; /* NB: ignore potential overflow */ 988 return (maxpps < 0 || *curpps < maxpps); 989 } 990 } 991 992 static void 993 itimer_start(void) 994 { 995 struct kclock rt_clock = { 996 .timer_create = realtimer_create, 997 .timer_delete = realtimer_delete, 998 .timer_settime = realtimer_settime, 999 .timer_gettime = realtimer_gettime, 1000 .event_hook = NULL 1001 }; 1002 1003 itimer_zone = uma_zcreate("itimer", sizeof(struct itimer), 1004 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0); 1005 register_posix_clock(CLOCK_REALTIME, &rt_clock); 1006 register_posix_clock(CLOCK_MONOTONIC, &rt_clock); 1007 p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L); 1008 p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX); 1009 p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX); 1010 EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit, 1011 (void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY); 1012 EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec, 1013 (void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY); 1014 } 1015 1016 int 1017 register_posix_clock(int clockid, struct kclock *clk) 1018 { 1019 if ((unsigned)clockid >= MAX_CLOCKS) { 1020 printf("%s: invalid clockid\n", __func__); 1021 return (0); 1022 } 1023 posix_clocks[clockid] = *clk; 1024 return (1); 1025 } 1026 1027 static int 1028 itimer_init(void *mem, int size, int flags) 1029 { 1030 struct itimer *it; 1031 1032 it = (struct itimer *)mem; 1033 mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF); 1034 return (0); 1035 } 1036 1037 static void 1038 itimer_fini(void *mem, int size) 1039 { 1040 struct itimer *it; 1041 1042 it = (struct itimer *)mem; 1043 mtx_destroy(&it->it_mtx); 1044 } 1045 1046 static void 1047 itimer_enter(struct itimer *it) 1048 { 1049 1050 mtx_assert(&it->it_mtx, MA_OWNED); 1051 it->it_usecount++; 1052 } 1053 1054 static void 1055 itimer_leave(struct itimer *it) 1056 { 1057 1058 mtx_assert(&it->it_mtx, MA_OWNED); 1059 KASSERT(it->it_usecount > 0, ("invalid it_usecount")); 1060 1061 if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0) 1062 wakeup(it); 1063 } 1064 1065 #ifndef _SYS_SYSPROTO_H_ 1066 struct ktimer_create_args { 1067 clockid_t clock_id; 1068 struct sigevent * evp; 1069 int * timerid; 1070 }; 1071 #endif 1072 int 1073 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap) 1074 { 1075 struct sigevent *evp, ev; 1076 int id; 1077 int error; 1078 1079 if (uap->evp == NULL) { 1080 evp = NULL; 1081 } else { 1082 error = copyin(uap->evp, &ev, sizeof(ev)); 1083 if (error != 0) 1084 return (error); 1085 evp = &ev; 1086 } 1087 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 1088 if (error == 0) { 1089 error = copyout(&id, uap->timerid, sizeof(int)); 1090 if (error != 0) 1091 kern_ktimer_delete(td, id); 1092 } 1093 return (error); 1094 } 1095 1096 int 1097 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp, 1098 int *timerid, int preset_id) 1099 { 1100 struct proc *p = td->td_proc; 1101 struct itimer *it; 1102 int id; 1103 int error; 1104 1105 if (clock_id < 0 || clock_id >= MAX_CLOCKS) 1106 return (EINVAL); 1107 1108 if (posix_clocks[clock_id].timer_create == NULL) 1109 return (EINVAL); 1110 1111 if (evp != NULL) { 1112 if (evp->sigev_notify != SIGEV_NONE && 1113 evp->sigev_notify != SIGEV_SIGNAL && 1114 evp->sigev_notify != SIGEV_THREAD_ID) 1115 return (EINVAL); 1116 if ((evp->sigev_notify == SIGEV_SIGNAL || 1117 evp->sigev_notify == SIGEV_THREAD_ID) && 1118 !_SIG_VALID(evp->sigev_signo)) 1119 return (EINVAL); 1120 } 1121 1122 if (p->p_itimers == NULL) 1123 itimers_alloc(p); 1124 1125 it = uma_zalloc(itimer_zone, M_WAITOK); 1126 it->it_flags = 0; 1127 it->it_usecount = 0; 1128 it->it_active = 0; 1129 timespecclear(&it->it_time.it_value); 1130 timespecclear(&it->it_time.it_interval); 1131 it->it_overrun = 0; 1132 it->it_overrun_last = 0; 1133 it->it_clockid = clock_id; 1134 it->it_timerid = -1; 1135 it->it_proc = p; 1136 ksiginfo_init(&it->it_ksi); 1137 it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT; 1138 error = CLOCK_CALL(clock_id, timer_create, (it)); 1139 if (error != 0) 1140 goto out; 1141 1142 PROC_LOCK(p); 1143 if (preset_id != -1) { 1144 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id")); 1145 id = preset_id; 1146 if (p->p_itimers->its_timers[id] != NULL) { 1147 PROC_UNLOCK(p); 1148 error = 0; 1149 goto out; 1150 } 1151 } else { 1152 /* 1153 * Find a free timer slot, skipping those reserved 1154 * for setitimer(). 1155 */ 1156 for (id = 3; id < TIMER_MAX; id++) 1157 if (p->p_itimers->its_timers[id] == NULL) 1158 break; 1159 if (id == TIMER_MAX) { 1160 PROC_UNLOCK(p); 1161 error = EAGAIN; 1162 goto out; 1163 } 1164 } 1165 it->it_timerid = id; 1166 p->p_itimers->its_timers[id] = it; 1167 if (evp != NULL) 1168 it->it_sigev = *evp; 1169 else { 1170 it->it_sigev.sigev_notify = SIGEV_SIGNAL; 1171 switch (clock_id) { 1172 default: 1173 case CLOCK_REALTIME: 1174 it->it_sigev.sigev_signo = SIGALRM; 1175 break; 1176 case CLOCK_VIRTUAL: 1177 it->it_sigev.sigev_signo = SIGVTALRM; 1178 break; 1179 case CLOCK_PROF: 1180 it->it_sigev.sigev_signo = SIGPROF; 1181 break; 1182 } 1183 it->it_sigev.sigev_value.sival_int = id; 1184 } 1185 1186 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1187 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1188 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo; 1189 it->it_ksi.ksi_code = SI_TIMER; 1190 it->it_ksi.ksi_value = it->it_sigev.sigev_value; 1191 it->it_ksi.ksi_timerid = id; 1192 } 1193 PROC_UNLOCK(p); 1194 *timerid = id; 1195 return (0); 1196 1197 out: 1198 ITIMER_LOCK(it); 1199 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1200 ITIMER_UNLOCK(it); 1201 uma_zfree(itimer_zone, it); 1202 return (error); 1203 } 1204 1205 #ifndef _SYS_SYSPROTO_H_ 1206 struct ktimer_delete_args { 1207 int timerid; 1208 }; 1209 #endif 1210 int 1211 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap) 1212 { 1213 1214 return (kern_ktimer_delete(td, uap->timerid)); 1215 } 1216 1217 static struct itimer * 1218 itimer_find(struct proc *p, int timerid) 1219 { 1220 struct itimer *it; 1221 1222 PROC_LOCK_ASSERT(p, MA_OWNED); 1223 if ((p->p_itimers == NULL) || 1224 (timerid < 0) || (timerid >= TIMER_MAX) || 1225 (it = p->p_itimers->its_timers[timerid]) == NULL) { 1226 return (NULL); 1227 } 1228 ITIMER_LOCK(it); 1229 if ((it->it_flags & ITF_DELETING) != 0) { 1230 ITIMER_UNLOCK(it); 1231 it = NULL; 1232 } 1233 return (it); 1234 } 1235 1236 int 1237 kern_ktimer_delete(struct thread *td, int timerid) 1238 { 1239 struct proc *p = td->td_proc; 1240 struct itimer *it; 1241 1242 PROC_LOCK(p); 1243 it = itimer_find(p, timerid); 1244 if (it == NULL) { 1245 PROC_UNLOCK(p); 1246 return (EINVAL); 1247 } 1248 PROC_UNLOCK(p); 1249 1250 it->it_flags |= ITF_DELETING; 1251 while (it->it_usecount > 0) { 1252 it->it_flags |= ITF_WANTED; 1253 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0); 1254 } 1255 it->it_flags &= ~ITF_WANTED; 1256 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1257 ITIMER_UNLOCK(it); 1258 1259 PROC_LOCK(p); 1260 if (KSI_ONQ(&it->it_ksi)) 1261 sigqueue_take(&it->it_ksi); 1262 p->p_itimers->its_timers[timerid] = NULL; 1263 PROC_UNLOCK(p); 1264 uma_zfree(itimer_zone, it); 1265 return (0); 1266 } 1267 1268 #ifndef _SYS_SYSPROTO_H_ 1269 struct ktimer_settime_args { 1270 int timerid; 1271 int flags; 1272 const struct itimerspec * value; 1273 struct itimerspec * ovalue; 1274 }; 1275 #endif 1276 int 1277 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap) 1278 { 1279 struct itimerspec val, oval, *ovalp; 1280 int error; 1281 1282 error = copyin(uap->value, &val, sizeof(val)); 1283 if (error != 0) 1284 return (error); 1285 ovalp = uap->ovalue != NULL ? &oval : NULL; 1286 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 1287 if (error == 0 && uap->ovalue != NULL) 1288 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp)); 1289 return (error); 1290 } 1291 1292 int 1293 kern_ktimer_settime(struct thread *td, int timer_id, int flags, 1294 struct itimerspec *val, struct itimerspec *oval) 1295 { 1296 struct proc *p; 1297 struct itimer *it; 1298 int error; 1299 1300 p = td->td_proc; 1301 PROC_LOCK(p); 1302 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1303 PROC_UNLOCK(p); 1304 error = EINVAL; 1305 } else { 1306 PROC_UNLOCK(p); 1307 itimer_enter(it); 1308 error = CLOCK_CALL(it->it_clockid, timer_settime, (it, 1309 flags, val, oval)); 1310 itimer_leave(it); 1311 ITIMER_UNLOCK(it); 1312 } 1313 return (error); 1314 } 1315 1316 #ifndef _SYS_SYSPROTO_H_ 1317 struct ktimer_gettime_args { 1318 int timerid; 1319 struct itimerspec * value; 1320 }; 1321 #endif 1322 int 1323 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap) 1324 { 1325 struct itimerspec val; 1326 int error; 1327 1328 error = kern_ktimer_gettime(td, uap->timerid, &val); 1329 if (error == 0) 1330 error = copyout(&val, uap->value, sizeof(val)); 1331 return (error); 1332 } 1333 1334 int 1335 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val) 1336 { 1337 struct proc *p; 1338 struct itimer *it; 1339 int error; 1340 1341 p = td->td_proc; 1342 PROC_LOCK(p); 1343 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1344 PROC_UNLOCK(p); 1345 error = EINVAL; 1346 } else { 1347 PROC_UNLOCK(p); 1348 itimer_enter(it); 1349 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val)); 1350 itimer_leave(it); 1351 ITIMER_UNLOCK(it); 1352 } 1353 return (error); 1354 } 1355 1356 #ifndef _SYS_SYSPROTO_H_ 1357 struct timer_getoverrun_args { 1358 int timerid; 1359 }; 1360 #endif 1361 int 1362 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap) 1363 { 1364 1365 return (kern_ktimer_getoverrun(td, uap->timerid)); 1366 } 1367 1368 int 1369 kern_ktimer_getoverrun(struct thread *td, int timer_id) 1370 { 1371 struct proc *p = td->td_proc; 1372 struct itimer *it; 1373 int error ; 1374 1375 PROC_LOCK(p); 1376 if (timer_id < 3 || 1377 (it = itimer_find(p, timer_id)) == NULL) { 1378 PROC_UNLOCK(p); 1379 error = EINVAL; 1380 } else { 1381 td->td_retval[0] = it->it_overrun_last; 1382 ITIMER_UNLOCK(it); 1383 PROC_UNLOCK(p); 1384 error = 0; 1385 } 1386 return (error); 1387 } 1388 1389 static int 1390 realtimer_create(struct itimer *it) 1391 { 1392 callout_init_mtx(&it->it_callout, &it->it_mtx, 0); 1393 return (0); 1394 } 1395 1396 static int 1397 realtimer_delete(struct itimer *it) 1398 { 1399 mtx_assert(&it->it_mtx, MA_OWNED); 1400 1401 /* 1402 * clear timer's value and interval to tell realtimer_expire 1403 * to not rearm the timer. 1404 */ 1405 timespecclear(&it->it_time.it_value); 1406 timespecclear(&it->it_time.it_interval); 1407 ITIMER_UNLOCK(it); 1408 callout_drain(&it->it_callout); 1409 ITIMER_LOCK(it); 1410 return (0); 1411 } 1412 1413 static int 1414 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue) 1415 { 1416 struct timespec cts; 1417 1418 mtx_assert(&it->it_mtx, MA_OWNED); 1419 1420 realtimer_clocktime(it->it_clockid, &cts); 1421 *ovalue = it->it_time; 1422 if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) { 1423 timespecsub(&ovalue->it_value, &cts); 1424 if (ovalue->it_value.tv_sec < 0 || 1425 (ovalue->it_value.tv_sec == 0 && 1426 ovalue->it_value.tv_nsec == 0)) { 1427 ovalue->it_value.tv_sec = 0; 1428 ovalue->it_value.tv_nsec = 1; 1429 } 1430 } 1431 return (0); 1432 } 1433 1434 static int 1435 realtimer_settime(struct itimer *it, int flags, 1436 struct itimerspec *value, struct itimerspec *ovalue) 1437 { 1438 struct timespec cts, ts; 1439 struct timeval tv; 1440 struct itimerspec val; 1441 1442 mtx_assert(&it->it_mtx, MA_OWNED); 1443 1444 val = *value; 1445 if (itimespecfix(&val.it_value)) 1446 return (EINVAL); 1447 1448 if (timespecisset(&val.it_value)) { 1449 if (itimespecfix(&val.it_interval)) 1450 return (EINVAL); 1451 } else { 1452 timespecclear(&val.it_interval); 1453 } 1454 1455 if (ovalue != NULL) 1456 realtimer_gettime(it, ovalue); 1457 1458 it->it_time = val; 1459 if (timespecisset(&val.it_value)) { 1460 realtimer_clocktime(it->it_clockid, &cts); 1461 ts = val.it_value; 1462 if ((flags & TIMER_ABSTIME) == 0) { 1463 /* Convert to absolute time. */ 1464 timespecadd(&it->it_time.it_value, &cts); 1465 } else { 1466 timespecsub(&ts, &cts); 1467 /* 1468 * We don't care if ts is negative, tztohz will 1469 * fix it. 1470 */ 1471 } 1472 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1473 callout_reset(&it->it_callout, tvtohz(&tv), 1474 realtimer_expire, it); 1475 } else { 1476 callout_stop(&it->it_callout); 1477 } 1478 1479 return (0); 1480 } 1481 1482 static void 1483 realtimer_clocktime(clockid_t id, struct timespec *ts) 1484 { 1485 if (id == CLOCK_REALTIME) 1486 getnanotime(ts); 1487 else /* CLOCK_MONOTONIC */ 1488 getnanouptime(ts); 1489 } 1490 1491 int 1492 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi) 1493 { 1494 struct itimer *it; 1495 1496 PROC_LOCK_ASSERT(p, MA_OWNED); 1497 it = itimer_find(p, timerid); 1498 if (it != NULL) { 1499 ksi->ksi_overrun = it->it_overrun; 1500 it->it_overrun_last = it->it_overrun; 1501 it->it_overrun = 0; 1502 ITIMER_UNLOCK(it); 1503 return (0); 1504 } 1505 return (EINVAL); 1506 } 1507 1508 int 1509 itimespecfix(struct timespec *ts) 1510 { 1511 1512 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1513 return (EINVAL); 1514 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000) 1515 ts->tv_nsec = tick * 1000; 1516 return (0); 1517 } 1518 1519 /* Timeout callback for realtime timer */ 1520 static void 1521 realtimer_expire(void *arg) 1522 { 1523 struct timespec cts, ts; 1524 struct timeval tv; 1525 struct itimer *it; 1526 1527 it = (struct itimer *)arg; 1528 1529 realtimer_clocktime(it->it_clockid, &cts); 1530 /* Only fire if time is reached. */ 1531 if (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1532 if (timespecisset(&it->it_time.it_interval)) { 1533 timespecadd(&it->it_time.it_value, 1534 &it->it_time.it_interval); 1535 while (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1536 if (it->it_overrun < INT_MAX) 1537 it->it_overrun++; 1538 else 1539 it->it_ksi.ksi_errno = ERANGE; 1540 timespecadd(&it->it_time.it_value, 1541 &it->it_time.it_interval); 1542 } 1543 } else { 1544 /* single shot timer ? */ 1545 timespecclear(&it->it_time.it_value); 1546 } 1547 if (timespecisset(&it->it_time.it_value)) { 1548 ts = it->it_time.it_value; 1549 timespecsub(&ts, &cts); 1550 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1551 callout_reset(&it->it_callout, tvtohz(&tv), 1552 realtimer_expire, it); 1553 } 1554 itimer_enter(it); 1555 ITIMER_UNLOCK(it); 1556 itimer_fire(it); 1557 ITIMER_LOCK(it); 1558 itimer_leave(it); 1559 } else if (timespecisset(&it->it_time.it_value)) { 1560 ts = it->it_time.it_value; 1561 timespecsub(&ts, &cts); 1562 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1563 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire, 1564 it); 1565 } 1566 } 1567 1568 void 1569 itimer_fire(struct itimer *it) 1570 { 1571 struct proc *p = it->it_proc; 1572 struct thread *td; 1573 1574 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1575 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1576 if (sigev_findtd(p, &it->it_sigev, &td) != 0) { 1577 ITIMER_LOCK(it); 1578 timespecclear(&it->it_time.it_value); 1579 timespecclear(&it->it_time.it_interval); 1580 callout_stop(&it->it_callout); 1581 ITIMER_UNLOCK(it); 1582 return; 1583 } 1584 if (!KSI_ONQ(&it->it_ksi)) { 1585 it->it_ksi.ksi_errno = 0; 1586 ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev); 1587 tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi); 1588 } else { 1589 if (it->it_overrun < INT_MAX) 1590 it->it_overrun++; 1591 else 1592 it->it_ksi.ksi_errno = ERANGE; 1593 } 1594 PROC_UNLOCK(p); 1595 } 1596 } 1597 1598 static void 1599 itimers_alloc(struct proc *p) 1600 { 1601 struct itimers *its; 1602 int i; 1603 1604 its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO); 1605 LIST_INIT(&its->its_virtual); 1606 LIST_INIT(&its->its_prof); 1607 TAILQ_INIT(&its->its_worklist); 1608 for (i = 0; i < TIMER_MAX; i++) 1609 its->its_timers[i] = NULL; 1610 PROC_LOCK(p); 1611 if (p->p_itimers == NULL) { 1612 p->p_itimers = its; 1613 PROC_UNLOCK(p); 1614 } 1615 else { 1616 PROC_UNLOCK(p); 1617 free(its, M_SUBPROC); 1618 } 1619 } 1620 1621 static void 1622 itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused) 1623 { 1624 itimers_event_hook_exit(arg, p); 1625 } 1626 1627 /* Clean up timers when some process events are being triggered. */ 1628 static void 1629 itimers_event_hook_exit(void *arg, struct proc *p) 1630 { 1631 struct itimers *its; 1632 struct itimer *it; 1633 int event = (int)(intptr_t)arg; 1634 int i; 1635 1636 if (p->p_itimers != NULL) { 1637 its = p->p_itimers; 1638 for (i = 0; i < MAX_CLOCKS; ++i) { 1639 if (posix_clocks[i].event_hook != NULL) 1640 CLOCK_CALL(i, event_hook, (p, i, event)); 1641 } 1642 /* 1643 * According to susv3, XSI interval timers should be inherited 1644 * by new image. 1645 */ 1646 if (event == ITIMER_EV_EXEC) 1647 i = 3; 1648 else if (event == ITIMER_EV_EXIT) 1649 i = 0; 1650 else 1651 panic("unhandled event"); 1652 for (; i < TIMER_MAX; ++i) { 1653 if ((it = its->its_timers[i]) != NULL) 1654 kern_ktimer_delete(curthread, i); 1655 } 1656 if (its->its_timers[0] == NULL && 1657 its->its_timers[1] == NULL && 1658 its->its_timers[2] == NULL) { 1659 free(its, M_SUBPROC); 1660 p->p_itimers = NULL; 1661 } 1662 } 1663 } 1664