1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ktrace.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/limits.h> 42 #include <sys/clock.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/sysproto.h> 46 #include <sys/eventhandler.h> 47 #include <sys/resourcevar.h> 48 #include <sys/signalvar.h> 49 #include <sys/kernel.h> 50 #include <sys/sleepqueue.h> 51 #include <sys/syscallsubr.h> 52 #include <sys/sysctl.h> 53 #include <sys/sysent.h> 54 #include <sys/priv.h> 55 #include <sys/proc.h> 56 #include <sys/posix4.h> 57 #include <sys/time.h> 58 #include <sys/timers.h> 59 #include <sys/timetc.h> 60 #include <sys/vnode.h> 61 #ifdef KTRACE 62 #include <sys/ktrace.h> 63 #endif 64 65 #include <vm/vm.h> 66 #include <vm/vm_extern.h> 67 68 #define MAX_CLOCKS (CLOCK_MONOTONIC+1) 69 #define CPUCLOCK_BIT 0x80000000 70 #define CPUCLOCK_PROCESS_BIT 0x40000000 71 #define CPUCLOCK_ID_MASK (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT)) 72 #define MAKE_THREAD_CPUCLOCK(tid) (CPUCLOCK_BIT|(tid)) 73 #define MAKE_PROCESS_CPUCLOCK(pid) \ 74 (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid)) 75 76 static struct kclock posix_clocks[MAX_CLOCKS]; 77 static uma_zone_t itimer_zone = NULL; 78 79 /* 80 * Time of day and interval timer support. 81 * 82 * These routines provide the kernel entry points to get and set 83 * the time-of-day and per-process interval timers. Subroutines 84 * here provide support for adding and subtracting timeval structures 85 * and decrementing interval timers, optionally reloading the interval 86 * timers when they expire. 87 */ 88 89 static int settime(struct thread *, struct timeval *); 90 static void timevalfix(struct timeval *); 91 static int user_clock_nanosleep(struct thread *td, clockid_t clock_id, 92 int flags, const struct timespec *ua_rqtp, 93 struct timespec *ua_rmtp); 94 95 static void itimer_start(void); 96 static int itimer_init(void *, int, int); 97 static void itimer_fini(void *, int); 98 static void itimer_enter(struct itimer *); 99 static void itimer_leave(struct itimer *); 100 static struct itimer *itimer_find(struct proc *, int); 101 static void itimers_alloc(struct proc *); 102 static void itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp); 103 static void itimers_event_hook_exit(void *arg, struct proc *p); 104 static int realtimer_create(struct itimer *); 105 static int realtimer_gettime(struct itimer *, struct itimerspec *); 106 static int realtimer_settime(struct itimer *, int, 107 struct itimerspec *, struct itimerspec *); 108 static int realtimer_delete(struct itimer *); 109 static void realtimer_clocktime(clockid_t, struct timespec *); 110 static void realtimer_expire(void *); 111 112 int register_posix_clock(int, struct kclock *); 113 void itimer_fire(struct itimer *it); 114 int itimespecfix(struct timespec *ts); 115 116 #define CLOCK_CALL(clock, call, arglist) \ 117 ((*posix_clocks[clock].call) arglist) 118 119 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL); 120 121 122 static int 123 settime(struct thread *td, struct timeval *tv) 124 { 125 struct timeval delta, tv1, tv2; 126 static struct timeval maxtime, laststep; 127 struct timespec ts; 128 129 microtime(&tv1); 130 delta = *tv; 131 timevalsub(&delta, &tv1); 132 133 /* 134 * If the system is secure, we do not allow the time to be 135 * set to a value earlier than 1 second less than the highest 136 * time we have yet seen. The worst a miscreant can do in 137 * this circumstance is "freeze" time. He couldn't go 138 * back to the past. 139 * 140 * We similarly do not allow the clock to be stepped more 141 * than one second, nor more than once per second. This allows 142 * a miscreant to make the clock march double-time, but no worse. 143 */ 144 if (securelevel_gt(td->td_ucred, 1) != 0) { 145 if (delta.tv_sec < 0 || delta.tv_usec < 0) { 146 /* 147 * Update maxtime to latest time we've seen. 148 */ 149 if (tv1.tv_sec > maxtime.tv_sec) 150 maxtime = tv1; 151 tv2 = *tv; 152 timevalsub(&tv2, &maxtime); 153 if (tv2.tv_sec < -1) { 154 tv->tv_sec = maxtime.tv_sec - 1; 155 printf("Time adjustment clamped to -1 second\n"); 156 } 157 } else { 158 if (tv1.tv_sec == laststep.tv_sec) 159 return (EPERM); 160 if (delta.tv_sec > 1) { 161 tv->tv_sec = tv1.tv_sec + 1; 162 printf("Time adjustment clamped to +1 second\n"); 163 } 164 laststep = *tv; 165 } 166 } 167 168 ts.tv_sec = tv->tv_sec; 169 ts.tv_nsec = tv->tv_usec * 1000; 170 tc_setclock(&ts); 171 resettodr(); 172 return (0); 173 } 174 175 #ifndef _SYS_SYSPROTO_H_ 176 struct clock_getcpuclockid2_args { 177 id_t id; 178 int which, 179 clockid_t *clock_id; 180 }; 181 #endif 182 /* ARGSUSED */ 183 int 184 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap) 185 { 186 clockid_t clk_id; 187 int error; 188 189 error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id); 190 if (error == 0) 191 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 192 return (error); 193 } 194 195 int 196 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which, 197 clockid_t *clk_id) 198 { 199 struct proc *p; 200 pid_t pid; 201 lwpid_t tid; 202 int error; 203 204 switch (which) { 205 case CPUCLOCK_WHICH_PID: 206 if (id != 0) { 207 error = pget(id, PGET_CANSEE | PGET_NOTID, &p); 208 if (error != 0) 209 return (error); 210 PROC_UNLOCK(p); 211 pid = id; 212 } else { 213 pid = td->td_proc->p_pid; 214 } 215 *clk_id = MAKE_PROCESS_CPUCLOCK(pid); 216 return (0); 217 case CPUCLOCK_WHICH_TID: 218 tid = id == 0 ? td->td_tid : id; 219 *clk_id = MAKE_THREAD_CPUCLOCK(tid); 220 return (0); 221 default: 222 return (EINVAL); 223 } 224 } 225 226 #ifndef _SYS_SYSPROTO_H_ 227 struct clock_gettime_args { 228 clockid_t clock_id; 229 struct timespec *tp; 230 }; 231 #endif 232 /* ARGSUSED */ 233 int 234 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap) 235 { 236 struct timespec ats; 237 int error; 238 239 error = kern_clock_gettime(td, uap->clock_id, &ats); 240 if (error == 0) 241 error = copyout(&ats, uap->tp, sizeof(ats)); 242 243 return (error); 244 } 245 246 static inline void 247 cputick2timespec(uint64_t runtime, struct timespec *ats) 248 { 249 runtime = cputick2usec(runtime); 250 ats->tv_sec = runtime / 1000000; 251 ats->tv_nsec = runtime % 1000000 * 1000; 252 } 253 254 static void 255 get_thread_cputime(struct thread *targettd, struct timespec *ats) 256 { 257 uint64_t runtime, curtime, switchtime; 258 259 if (targettd == NULL) { /* current thread */ 260 critical_enter(); 261 switchtime = PCPU_GET(switchtime); 262 curtime = cpu_ticks(); 263 runtime = curthread->td_runtime; 264 critical_exit(); 265 runtime += curtime - switchtime; 266 } else { 267 thread_lock(targettd); 268 runtime = targettd->td_runtime; 269 thread_unlock(targettd); 270 } 271 cputick2timespec(runtime, ats); 272 } 273 274 static void 275 get_process_cputime(struct proc *targetp, struct timespec *ats) 276 { 277 uint64_t runtime; 278 struct rusage ru; 279 280 PROC_STATLOCK(targetp); 281 rufetch(targetp, &ru); 282 runtime = targetp->p_rux.rux_runtime; 283 if (curthread->td_proc == targetp) 284 runtime += cpu_ticks() - PCPU_GET(switchtime); 285 PROC_STATUNLOCK(targetp); 286 cputick2timespec(runtime, ats); 287 } 288 289 static int 290 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats) 291 { 292 struct proc *p, *p2; 293 struct thread *td2; 294 lwpid_t tid; 295 pid_t pid; 296 int error; 297 298 p = td->td_proc; 299 if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) { 300 tid = clock_id & CPUCLOCK_ID_MASK; 301 td2 = tdfind(tid, p->p_pid); 302 if (td2 == NULL) 303 return (EINVAL); 304 get_thread_cputime(td2, ats); 305 PROC_UNLOCK(td2->td_proc); 306 } else { 307 pid = clock_id & CPUCLOCK_ID_MASK; 308 error = pget(pid, PGET_CANSEE, &p2); 309 if (error != 0) 310 return (EINVAL); 311 get_process_cputime(p2, ats); 312 PROC_UNLOCK(p2); 313 } 314 return (0); 315 } 316 317 int 318 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats) 319 { 320 struct timeval sys, user; 321 struct proc *p; 322 323 p = td->td_proc; 324 switch (clock_id) { 325 case CLOCK_REALTIME: /* Default to precise. */ 326 case CLOCK_REALTIME_PRECISE: 327 nanotime(ats); 328 break; 329 case CLOCK_REALTIME_FAST: 330 getnanotime(ats); 331 break; 332 case CLOCK_VIRTUAL: 333 PROC_LOCK(p); 334 PROC_STATLOCK(p); 335 calcru(p, &user, &sys); 336 PROC_STATUNLOCK(p); 337 PROC_UNLOCK(p); 338 TIMEVAL_TO_TIMESPEC(&user, ats); 339 break; 340 case CLOCK_PROF: 341 PROC_LOCK(p); 342 PROC_STATLOCK(p); 343 calcru(p, &user, &sys); 344 PROC_STATUNLOCK(p); 345 PROC_UNLOCK(p); 346 timevaladd(&user, &sys); 347 TIMEVAL_TO_TIMESPEC(&user, ats); 348 break; 349 case CLOCK_MONOTONIC: /* Default to precise. */ 350 case CLOCK_MONOTONIC_PRECISE: 351 case CLOCK_UPTIME: 352 case CLOCK_UPTIME_PRECISE: 353 nanouptime(ats); 354 break; 355 case CLOCK_UPTIME_FAST: 356 case CLOCK_MONOTONIC_FAST: 357 getnanouptime(ats); 358 break; 359 case CLOCK_SECOND: 360 ats->tv_sec = time_second; 361 ats->tv_nsec = 0; 362 break; 363 case CLOCK_THREAD_CPUTIME_ID: 364 get_thread_cputime(NULL, ats); 365 break; 366 case CLOCK_PROCESS_CPUTIME_ID: 367 PROC_LOCK(p); 368 get_process_cputime(p, ats); 369 PROC_UNLOCK(p); 370 break; 371 default: 372 if ((int)clock_id >= 0) 373 return (EINVAL); 374 return (get_cputime(td, clock_id, ats)); 375 } 376 return (0); 377 } 378 379 #ifndef _SYS_SYSPROTO_H_ 380 struct clock_settime_args { 381 clockid_t clock_id; 382 const struct timespec *tp; 383 }; 384 #endif 385 /* ARGSUSED */ 386 int 387 sys_clock_settime(struct thread *td, struct clock_settime_args *uap) 388 { 389 struct timespec ats; 390 int error; 391 392 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0) 393 return (error); 394 return (kern_clock_settime(td, uap->clock_id, &ats)); 395 } 396 397 static int allow_insane_settime = 0; 398 SYSCTL_INT(_debug, OID_AUTO, allow_insane_settime, CTLFLAG_RWTUN, 399 &allow_insane_settime, 0, 400 "do not perform possibly restrictive checks on settime(2) args"); 401 402 int 403 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats) 404 { 405 struct timeval atv; 406 int error; 407 408 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 409 return (error); 410 if (clock_id != CLOCK_REALTIME) 411 return (EINVAL); 412 if (ats->tv_nsec < 0 || ats->tv_nsec >= 1000000000 || 413 ats->tv_sec < 0) 414 return (EINVAL); 415 if (!allow_insane_settime && 416 (ats->tv_sec > 8000ULL * 365 * 24 * 60 * 60 || 417 ats->tv_sec < utc_offset())) 418 return (EINVAL); 419 /* XXX Don't convert nsec->usec and back */ 420 TIMESPEC_TO_TIMEVAL(&atv, ats); 421 error = settime(td, &atv); 422 return (error); 423 } 424 425 #ifndef _SYS_SYSPROTO_H_ 426 struct clock_getres_args { 427 clockid_t clock_id; 428 struct timespec *tp; 429 }; 430 #endif 431 int 432 sys_clock_getres(struct thread *td, struct clock_getres_args *uap) 433 { 434 struct timespec ts; 435 int error; 436 437 if (uap->tp == NULL) 438 return (0); 439 440 error = kern_clock_getres(td, uap->clock_id, &ts); 441 if (error == 0) 442 error = copyout(&ts, uap->tp, sizeof(ts)); 443 return (error); 444 } 445 446 int 447 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts) 448 { 449 450 ts->tv_sec = 0; 451 switch (clock_id) { 452 case CLOCK_REALTIME: 453 case CLOCK_REALTIME_FAST: 454 case CLOCK_REALTIME_PRECISE: 455 case CLOCK_MONOTONIC: 456 case CLOCK_MONOTONIC_FAST: 457 case CLOCK_MONOTONIC_PRECISE: 458 case CLOCK_UPTIME: 459 case CLOCK_UPTIME_FAST: 460 case CLOCK_UPTIME_PRECISE: 461 /* 462 * Round up the result of the division cheaply by adding 1. 463 * Rounding up is especially important if rounding down 464 * would give 0. Perfect rounding is unimportant. 465 */ 466 ts->tv_nsec = 1000000000 / tc_getfrequency() + 1; 467 break; 468 case CLOCK_VIRTUAL: 469 case CLOCK_PROF: 470 /* Accurately round up here because we can do so cheaply. */ 471 ts->tv_nsec = howmany(1000000000, hz); 472 break; 473 case CLOCK_SECOND: 474 ts->tv_sec = 1; 475 ts->tv_nsec = 0; 476 break; 477 case CLOCK_THREAD_CPUTIME_ID: 478 case CLOCK_PROCESS_CPUTIME_ID: 479 cputime: 480 /* sync with cputick2usec */ 481 ts->tv_nsec = 1000000 / cpu_tickrate(); 482 if (ts->tv_nsec == 0) 483 ts->tv_nsec = 1000; 484 break; 485 default: 486 if ((int)clock_id < 0) 487 goto cputime; 488 return (EINVAL); 489 } 490 return (0); 491 } 492 493 int 494 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt) 495 { 496 497 return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt, 498 rmt)); 499 } 500 501 static uint8_t nanowait[MAXCPU]; 502 503 int 504 kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 505 const struct timespec *rqt, struct timespec *rmt) 506 { 507 struct timespec ts, now; 508 sbintime_t sbt, sbtt, prec, tmp; 509 time_t over; 510 int error; 511 bool is_abs_real; 512 513 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000) 514 return (EINVAL); 515 if ((flags & ~TIMER_ABSTIME) != 0) 516 return (EINVAL); 517 switch (clock_id) { 518 case CLOCK_REALTIME: 519 case CLOCK_REALTIME_PRECISE: 520 case CLOCK_REALTIME_FAST: 521 case CLOCK_SECOND: 522 is_abs_real = (flags & TIMER_ABSTIME) != 0; 523 break; 524 case CLOCK_MONOTONIC: 525 case CLOCK_MONOTONIC_PRECISE: 526 case CLOCK_MONOTONIC_FAST: 527 case CLOCK_UPTIME: 528 case CLOCK_UPTIME_PRECISE: 529 case CLOCK_UPTIME_FAST: 530 is_abs_real = false; 531 break; 532 case CLOCK_VIRTUAL: 533 case CLOCK_PROF: 534 case CLOCK_PROCESS_CPUTIME_ID: 535 return (ENOTSUP); 536 case CLOCK_THREAD_CPUTIME_ID: 537 default: 538 return (EINVAL); 539 } 540 do { 541 ts = *rqt; 542 if ((flags & TIMER_ABSTIME) != 0) { 543 if (is_abs_real) 544 td->td_rtcgen = 545 atomic_load_acq_int(&rtc_generation); 546 error = kern_clock_gettime(td, clock_id, &now); 547 KASSERT(error == 0, ("kern_clock_gettime: %d", error)); 548 timespecsub(&ts, &now, &ts); 549 } 550 if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) { 551 error = EWOULDBLOCK; 552 break; 553 } 554 if (ts.tv_sec > INT32_MAX / 2) { 555 over = ts.tv_sec - INT32_MAX / 2; 556 ts.tv_sec -= over; 557 } else 558 over = 0; 559 tmp = tstosbt(ts); 560 prec = tmp; 561 prec >>= tc_precexp; 562 if (TIMESEL(&sbt, tmp)) 563 sbt += tc_tick_sbt; 564 sbt += tmp; 565 error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp", 566 sbt, prec, C_ABSOLUTE); 567 } while (error == 0 && is_abs_real && td->td_rtcgen == 0); 568 td->td_rtcgen = 0; 569 if (error != EWOULDBLOCK) { 570 if (TIMESEL(&sbtt, tmp)) 571 sbtt += tc_tick_sbt; 572 if (sbtt >= sbt) 573 return (0); 574 if (error == ERESTART) 575 error = EINTR; 576 if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) { 577 ts = sbttots(sbt - sbtt); 578 ts.tv_sec += over; 579 if (ts.tv_sec < 0) 580 timespecclear(&ts); 581 *rmt = ts; 582 } 583 return (error); 584 } 585 return (0); 586 } 587 588 #ifndef _SYS_SYSPROTO_H_ 589 struct nanosleep_args { 590 struct timespec *rqtp; 591 struct timespec *rmtp; 592 }; 593 #endif 594 /* ARGSUSED */ 595 int 596 sys_nanosleep(struct thread *td, struct nanosleep_args *uap) 597 { 598 599 return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, 600 uap->rqtp, uap->rmtp)); 601 } 602 603 #ifndef _SYS_SYSPROTO_H_ 604 struct clock_nanosleep_args { 605 clockid_t clock_id; 606 int flags; 607 struct timespec *rqtp; 608 struct timespec *rmtp; 609 }; 610 #endif 611 /* ARGSUSED */ 612 int 613 sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap) 614 { 615 int error; 616 617 error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp, 618 uap->rmtp); 619 return (kern_posix_error(td, error)); 620 } 621 622 static int 623 user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 624 const struct timespec *ua_rqtp, struct timespec *ua_rmtp) 625 { 626 struct timespec rmt, rqt; 627 int error; 628 629 error = copyin(ua_rqtp, &rqt, sizeof(rqt)); 630 if (error) 631 return (error); 632 if (ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0 && 633 !useracc(ua_rmtp, sizeof(rmt), VM_PROT_WRITE)) 634 return (EFAULT); 635 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 636 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 637 int error2; 638 639 error2 = copyout(&rmt, ua_rmtp, sizeof(rmt)); 640 if (error2) 641 error = error2; 642 } 643 return (error); 644 } 645 646 #ifndef _SYS_SYSPROTO_H_ 647 struct gettimeofday_args { 648 struct timeval *tp; 649 struct timezone *tzp; 650 }; 651 #endif 652 /* ARGSUSED */ 653 int 654 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap) 655 { 656 struct timeval atv; 657 struct timezone rtz; 658 int error = 0; 659 660 if (uap->tp) { 661 microtime(&atv); 662 error = copyout(&atv, uap->tp, sizeof (atv)); 663 } 664 if (error == 0 && uap->tzp != NULL) { 665 rtz.tz_minuteswest = 0; 666 rtz.tz_dsttime = 0; 667 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 668 } 669 return (error); 670 } 671 672 #ifndef _SYS_SYSPROTO_H_ 673 struct settimeofday_args { 674 struct timeval *tv; 675 struct timezone *tzp; 676 }; 677 #endif 678 /* ARGSUSED */ 679 int 680 sys_settimeofday(struct thread *td, struct settimeofday_args *uap) 681 { 682 struct timeval atv, *tvp; 683 struct timezone atz, *tzp; 684 int error; 685 686 if (uap->tv) { 687 error = copyin(uap->tv, &atv, sizeof(atv)); 688 if (error) 689 return (error); 690 tvp = &atv; 691 } else 692 tvp = NULL; 693 if (uap->tzp) { 694 error = copyin(uap->tzp, &atz, sizeof(atz)); 695 if (error) 696 return (error); 697 tzp = &atz; 698 } else 699 tzp = NULL; 700 return (kern_settimeofday(td, tvp, tzp)); 701 } 702 703 int 704 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp) 705 { 706 int error; 707 708 error = priv_check(td, PRIV_SETTIMEOFDAY); 709 if (error) 710 return (error); 711 /* Verify all parameters before changing time. */ 712 if (tv) { 713 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 || 714 tv->tv_sec < 0) 715 return (EINVAL); 716 error = settime(td, tv); 717 } 718 return (error); 719 } 720 721 /* 722 * Get value of an interval timer. The process virtual and profiling virtual 723 * time timers are kept in the p_stats area, since they can be swapped out. 724 * These are kept internally in the way they are specified externally: in 725 * time until they expire. 726 * 727 * The real time interval timer is kept in the process table slot for the 728 * process, and its value (it_value) is kept as an absolute time rather than 729 * as a delta, so that it is easy to keep periodic real-time signals from 730 * drifting. 731 * 732 * Virtual time timers are processed in the hardclock() routine of 733 * kern_clock.c. The real time timer is processed by a timeout routine, 734 * called from the softclock() routine. Since a callout may be delayed in 735 * real time due to interrupt processing in the system, it is possible for 736 * the real time timeout routine (realitexpire, given below), to be delayed 737 * in real time past when it is supposed to occur. It does not suffice, 738 * therefore, to reload the real timer .it_value from the real time timers 739 * .it_interval. Rather, we compute the next time in absolute time the timer 740 * should go off. 741 */ 742 #ifndef _SYS_SYSPROTO_H_ 743 struct getitimer_args { 744 u_int which; 745 struct itimerval *itv; 746 }; 747 #endif 748 int 749 sys_getitimer(struct thread *td, struct getitimer_args *uap) 750 { 751 struct itimerval aitv; 752 int error; 753 754 error = kern_getitimer(td, uap->which, &aitv); 755 if (error != 0) 756 return (error); 757 return (copyout(&aitv, uap->itv, sizeof (struct itimerval))); 758 } 759 760 int 761 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv) 762 { 763 struct proc *p = td->td_proc; 764 struct timeval ctv; 765 766 if (which > ITIMER_PROF) 767 return (EINVAL); 768 769 if (which == ITIMER_REAL) { 770 /* 771 * Convert from absolute to relative time in .it_value 772 * part of real time timer. If time for real time timer 773 * has passed return 0, else return difference between 774 * current time and time for the timer to go off. 775 */ 776 PROC_LOCK(p); 777 *aitv = p->p_realtimer; 778 PROC_UNLOCK(p); 779 if (timevalisset(&aitv->it_value)) { 780 microuptime(&ctv); 781 if (timevalcmp(&aitv->it_value, &ctv, <)) 782 timevalclear(&aitv->it_value); 783 else 784 timevalsub(&aitv->it_value, &ctv); 785 } 786 } else { 787 PROC_ITIMLOCK(p); 788 *aitv = p->p_stats->p_timer[which]; 789 PROC_ITIMUNLOCK(p); 790 } 791 #ifdef KTRACE 792 if (KTRPOINT(td, KTR_STRUCT)) 793 ktritimerval(aitv); 794 #endif 795 return (0); 796 } 797 798 #ifndef _SYS_SYSPROTO_H_ 799 struct setitimer_args { 800 u_int which; 801 struct itimerval *itv, *oitv; 802 }; 803 #endif 804 int 805 sys_setitimer(struct thread *td, struct setitimer_args *uap) 806 { 807 struct itimerval aitv, oitv; 808 int error; 809 810 if (uap->itv == NULL) { 811 uap->itv = uap->oitv; 812 return (sys_getitimer(td, (struct getitimer_args *)uap)); 813 } 814 815 if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval)))) 816 return (error); 817 error = kern_setitimer(td, uap->which, &aitv, &oitv); 818 if (error != 0 || uap->oitv == NULL) 819 return (error); 820 return (copyout(&oitv, uap->oitv, sizeof(struct itimerval))); 821 } 822 823 int 824 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv, 825 struct itimerval *oitv) 826 { 827 struct proc *p = td->td_proc; 828 struct timeval ctv; 829 sbintime_t sbt, pr; 830 831 if (aitv == NULL) 832 return (kern_getitimer(td, which, oitv)); 833 834 if (which > ITIMER_PROF) 835 return (EINVAL); 836 #ifdef KTRACE 837 if (KTRPOINT(td, KTR_STRUCT)) 838 ktritimerval(aitv); 839 #endif 840 if (itimerfix(&aitv->it_value) || 841 aitv->it_value.tv_sec > INT32_MAX / 2) 842 return (EINVAL); 843 if (!timevalisset(&aitv->it_value)) 844 timevalclear(&aitv->it_interval); 845 else if (itimerfix(&aitv->it_interval) || 846 aitv->it_interval.tv_sec > INT32_MAX / 2) 847 return (EINVAL); 848 849 if (which == ITIMER_REAL) { 850 PROC_LOCK(p); 851 if (timevalisset(&p->p_realtimer.it_value)) 852 callout_stop(&p->p_itcallout); 853 microuptime(&ctv); 854 if (timevalisset(&aitv->it_value)) { 855 pr = tvtosbt(aitv->it_value) >> tc_precexp; 856 timevaladd(&aitv->it_value, &ctv); 857 sbt = tvtosbt(aitv->it_value); 858 callout_reset_sbt(&p->p_itcallout, sbt, pr, 859 realitexpire, p, C_ABSOLUTE); 860 } 861 *oitv = p->p_realtimer; 862 p->p_realtimer = *aitv; 863 PROC_UNLOCK(p); 864 if (timevalisset(&oitv->it_value)) { 865 if (timevalcmp(&oitv->it_value, &ctv, <)) 866 timevalclear(&oitv->it_value); 867 else 868 timevalsub(&oitv->it_value, &ctv); 869 } 870 } else { 871 if (aitv->it_interval.tv_sec == 0 && 872 aitv->it_interval.tv_usec != 0 && 873 aitv->it_interval.tv_usec < tick) 874 aitv->it_interval.tv_usec = tick; 875 if (aitv->it_value.tv_sec == 0 && 876 aitv->it_value.tv_usec != 0 && 877 aitv->it_value.tv_usec < tick) 878 aitv->it_value.tv_usec = tick; 879 PROC_ITIMLOCK(p); 880 *oitv = p->p_stats->p_timer[which]; 881 p->p_stats->p_timer[which] = *aitv; 882 PROC_ITIMUNLOCK(p); 883 } 884 #ifdef KTRACE 885 if (KTRPOINT(td, KTR_STRUCT)) 886 ktritimerval(oitv); 887 #endif 888 return (0); 889 } 890 891 /* 892 * Real interval timer expired: 893 * send process whose timer expired an alarm signal. 894 * If time is not set up to reload, then just return. 895 * Else compute next time timer should go off which is > current time. 896 * This is where delay in processing this timeout causes multiple 897 * SIGALRM calls to be compressed into one. 898 * tvtohz() always adds 1 to allow for the time until the next clock 899 * interrupt being strictly less than 1 clock tick, but we don't want 900 * that here since we want to appear to be in sync with the clock 901 * interrupt even when we're delayed. 902 */ 903 void 904 realitexpire(void *arg) 905 { 906 struct proc *p; 907 struct timeval ctv; 908 sbintime_t isbt; 909 910 p = (struct proc *)arg; 911 kern_psignal(p, SIGALRM); 912 if (!timevalisset(&p->p_realtimer.it_interval)) { 913 timevalclear(&p->p_realtimer.it_value); 914 if (p->p_flag & P_WEXIT) 915 wakeup(&p->p_itcallout); 916 return; 917 } 918 isbt = tvtosbt(p->p_realtimer.it_interval); 919 if (isbt >= sbt_timethreshold) 920 getmicrouptime(&ctv); 921 else 922 microuptime(&ctv); 923 do { 924 timevaladd(&p->p_realtimer.it_value, 925 &p->p_realtimer.it_interval); 926 } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=)); 927 callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value), 928 isbt >> tc_precexp, realitexpire, p, C_ABSOLUTE); 929 } 930 931 /* 932 * Check that a proposed value to load into the .it_value or 933 * .it_interval part of an interval timer is acceptable, and 934 * fix it to have at least minimal value (i.e. if it is less 935 * than the resolution of the clock, round it up.) 936 */ 937 int 938 itimerfix(struct timeval *tv) 939 { 940 941 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000) 942 return (EINVAL); 943 if (tv->tv_sec == 0 && tv->tv_usec != 0 && 944 tv->tv_usec < (u_int)tick / 16) 945 tv->tv_usec = (u_int)tick / 16; 946 return (0); 947 } 948 949 /* 950 * Decrement an interval timer by a specified number 951 * of microseconds, which must be less than a second, 952 * i.e. < 1000000. If the timer expires, then reload 953 * it. In this case, carry over (usec - old value) to 954 * reduce the value reloaded into the timer so that 955 * the timer does not drift. This routine assumes 956 * that it is called in a context where the timers 957 * on which it is operating cannot change in value. 958 */ 959 int 960 itimerdecr(struct itimerval *itp, int usec) 961 { 962 963 if (itp->it_value.tv_usec < usec) { 964 if (itp->it_value.tv_sec == 0) { 965 /* expired, and already in next interval */ 966 usec -= itp->it_value.tv_usec; 967 goto expire; 968 } 969 itp->it_value.tv_usec += 1000000; 970 itp->it_value.tv_sec--; 971 } 972 itp->it_value.tv_usec -= usec; 973 usec = 0; 974 if (timevalisset(&itp->it_value)) 975 return (1); 976 /* expired, exactly at end of interval */ 977 expire: 978 if (timevalisset(&itp->it_interval)) { 979 itp->it_value = itp->it_interval; 980 itp->it_value.tv_usec -= usec; 981 if (itp->it_value.tv_usec < 0) { 982 itp->it_value.tv_usec += 1000000; 983 itp->it_value.tv_sec--; 984 } 985 } else 986 itp->it_value.tv_usec = 0; /* sec is already 0 */ 987 return (0); 988 } 989 990 /* 991 * Add and subtract routines for timevals. 992 * N.B.: subtract routine doesn't deal with 993 * results which are before the beginning, 994 * it just gets very confused in this case. 995 * Caveat emptor. 996 */ 997 void 998 timevaladd(struct timeval *t1, const struct timeval *t2) 999 { 1000 1001 t1->tv_sec += t2->tv_sec; 1002 t1->tv_usec += t2->tv_usec; 1003 timevalfix(t1); 1004 } 1005 1006 void 1007 timevalsub(struct timeval *t1, const struct timeval *t2) 1008 { 1009 1010 t1->tv_sec -= t2->tv_sec; 1011 t1->tv_usec -= t2->tv_usec; 1012 timevalfix(t1); 1013 } 1014 1015 static void 1016 timevalfix(struct timeval *t1) 1017 { 1018 1019 if (t1->tv_usec < 0) { 1020 t1->tv_sec--; 1021 t1->tv_usec += 1000000; 1022 } 1023 if (t1->tv_usec >= 1000000) { 1024 t1->tv_sec++; 1025 t1->tv_usec -= 1000000; 1026 } 1027 } 1028 1029 /* 1030 * ratecheck(): simple time-based rate-limit checking. 1031 */ 1032 int 1033 ratecheck(struct timeval *lasttime, const struct timeval *mininterval) 1034 { 1035 struct timeval tv, delta; 1036 int rv = 0; 1037 1038 getmicrouptime(&tv); /* NB: 10ms precision */ 1039 delta = tv; 1040 timevalsub(&delta, lasttime); 1041 1042 /* 1043 * check for 0,0 is so that the message will be seen at least once, 1044 * even if interval is huge. 1045 */ 1046 if (timevalcmp(&delta, mininterval, >=) || 1047 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { 1048 *lasttime = tv; 1049 rv = 1; 1050 } 1051 1052 return (rv); 1053 } 1054 1055 /* 1056 * ppsratecheck(): packets (or events) per second limitation. 1057 * 1058 * Return 0 if the limit is to be enforced (e.g. the caller 1059 * should drop a packet because of the rate limitation). 1060 * 1061 * maxpps of 0 always causes zero to be returned. maxpps of -1 1062 * always causes 1 to be returned; this effectively defeats rate 1063 * limiting. 1064 * 1065 * Note that we maintain the struct timeval for compatibility 1066 * with other bsd systems. We reuse the storage and just monitor 1067 * clock ticks for minimal overhead. 1068 */ 1069 int 1070 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) 1071 { 1072 int now; 1073 1074 /* 1075 * Reset the last time and counter if this is the first call 1076 * or more than a second has passed since the last update of 1077 * lasttime. 1078 */ 1079 now = ticks; 1080 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) { 1081 lasttime->tv_sec = now; 1082 *curpps = 1; 1083 return (maxpps != 0); 1084 } else { 1085 (*curpps)++; /* NB: ignore potential overflow */ 1086 return (maxpps < 0 || *curpps <= maxpps); 1087 } 1088 } 1089 1090 static void 1091 itimer_start(void) 1092 { 1093 struct kclock rt_clock = { 1094 .timer_create = realtimer_create, 1095 .timer_delete = realtimer_delete, 1096 .timer_settime = realtimer_settime, 1097 .timer_gettime = realtimer_gettime, 1098 .event_hook = NULL 1099 }; 1100 1101 itimer_zone = uma_zcreate("itimer", sizeof(struct itimer), 1102 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0); 1103 register_posix_clock(CLOCK_REALTIME, &rt_clock); 1104 register_posix_clock(CLOCK_MONOTONIC, &rt_clock); 1105 p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L); 1106 p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX); 1107 p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX); 1108 EVENTHANDLER_REGISTER(process_exit, itimers_event_hook_exit, 1109 (void *)ITIMER_EV_EXIT, EVENTHANDLER_PRI_ANY); 1110 EVENTHANDLER_REGISTER(process_exec, itimers_event_hook_exec, 1111 (void *)ITIMER_EV_EXEC, EVENTHANDLER_PRI_ANY); 1112 } 1113 1114 int 1115 register_posix_clock(int clockid, struct kclock *clk) 1116 { 1117 if ((unsigned)clockid >= MAX_CLOCKS) { 1118 printf("%s: invalid clockid\n", __func__); 1119 return (0); 1120 } 1121 posix_clocks[clockid] = *clk; 1122 return (1); 1123 } 1124 1125 static int 1126 itimer_init(void *mem, int size, int flags) 1127 { 1128 struct itimer *it; 1129 1130 it = (struct itimer *)mem; 1131 mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF); 1132 return (0); 1133 } 1134 1135 static void 1136 itimer_fini(void *mem, int size) 1137 { 1138 struct itimer *it; 1139 1140 it = (struct itimer *)mem; 1141 mtx_destroy(&it->it_mtx); 1142 } 1143 1144 static void 1145 itimer_enter(struct itimer *it) 1146 { 1147 1148 mtx_assert(&it->it_mtx, MA_OWNED); 1149 it->it_usecount++; 1150 } 1151 1152 static void 1153 itimer_leave(struct itimer *it) 1154 { 1155 1156 mtx_assert(&it->it_mtx, MA_OWNED); 1157 KASSERT(it->it_usecount > 0, ("invalid it_usecount")); 1158 1159 if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0) 1160 wakeup(it); 1161 } 1162 1163 #ifndef _SYS_SYSPROTO_H_ 1164 struct ktimer_create_args { 1165 clockid_t clock_id; 1166 struct sigevent * evp; 1167 int * timerid; 1168 }; 1169 #endif 1170 int 1171 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap) 1172 { 1173 struct sigevent *evp, ev; 1174 int id; 1175 int error; 1176 1177 if (uap->evp == NULL) { 1178 evp = NULL; 1179 } else { 1180 error = copyin(uap->evp, &ev, sizeof(ev)); 1181 if (error != 0) 1182 return (error); 1183 evp = &ev; 1184 } 1185 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 1186 if (error == 0) { 1187 error = copyout(&id, uap->timerid, sizeof(int)); 1188 if (error != 0) 1189 kern_ktimer_delete(td, id); 1190 } 1191 return (error); 1192 } 1193 1194 int 1195 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp, 1196 int *timerid, int preset_id) 1197 { 1198 struct proc *p = td->td_proc; 1199 struct itimer *it; 1200 int id; 1201 int error; 1202 1203 if (clock_id < 0 || clock_id >= MAX_CLOCKS) 1204 return (EINVAL); 1205 1206 if (posix_clocks[clock_id].timer_create == NULL) 1207 return (EINVAL); 1208 1209 if (evp != NULL) { 1210 if (evp->sigev_notify != SIGEV_NONE && 1211 evp->sigev_notify != SIGEV_SIGNAL && 1212 evp->sigev_notify != SIGEV_THREAD_ID) 1213 return (EINVAL); 1214 if ((evp->sigev_notify == SIGEV_SIGNAL || 1215 evp->sigev_notify == SIGEV_THREAD_ID) && 1216 !_SIG_VALID(evp->sigev_signo)) 1217 return (EINVAL); 1218 } 1219 1220 if (p->p_itimers == NULL) 1221 itimers_alloc(p); 1222 1223 it = uma_zalloc(itimer_zone, M_WAITOK); 1224 it->it_flags = 0; 1225 it->it_usecount = 0; 1226 it->it_active = 0; 1227 timespecclear(&it->it_time.it_value); 1228 timespecclear(&it->it_time.it_interval); 1229 it->it_overrun = 0; 1230 it->it_overrun_last = 0; 1231 it->it_clockid = clock_id; 1232 it->it_timerid = -1; 1233 it->it_proc = p; 1234 ksiginfo_init(&it->it_ksi); 1235 it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT; 1236 error = CLOCK_CALL(clock_id, timer_create, (it)); 1237 if (error != 0) 1238 goto out; 1239 1240 PROC_LOCK(p); 1241 if (preset_id != -1) { 1242 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id")); 1243 id = preset_id; 1244 if (p->p_itimers->its_timers[id] != NULL) { 1245 PROC_UNLOCK(p); 1246 error = 0; 1247 goto out; 1248 } 1249 } else { 1250 /* 1251 * Find a free timer slot, skipping those reserved 1252 * for setitimer(). 1253 */ 1254 for (id = 3; id < TIMER_MAX; id++) 1255 if (p->p_itimers->its_timers[id] == NULL) 1256 break; 1257 if (id == TIMER_MAX) { 1258 PROC_UNLOCK(p); 1259 error = EAGAIN; 1260 goto out; 1261 } 1262 } 1263 it->it_timerid = id; 1264 p->p_itimers->its_timers[id] = it; 1265 if (evp != NULL) 1266 it->it_sigev = *evp; 1267 else { 1268 it->it_sigev.sigev_notify = SIGEV_SIGNAL; 1269 switch (clock_id) { 1270 default: 1271 case CLOCK_REALTIME: 1272 it->it_sigev.sigev_signo = SIGALRM; 1273 break; 1274 case CLOCK_VIRTUAL: 1275 it->it_sigev.sigev_signo = SIGVTALRM; 1276 break; 1277 case CLOCK_PROF: 1278 it->it_sigev.sigev_signo = SIGPROF; 1279 break; 1280 } 1281 it->it_sigev.sigev_value.sival_int = id; 1282 } 1283 1284 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1285 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1286 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo; 1287 it->it_ksi.ksi_code = SI_TIMER; 1288 it->it_ksi.ksi_value = it->it_sigev.sigev_value; 1289 it->it_ksi.ksi_timerid = id; 1290 } 1291 PROC_UNLOCK(p); 1292 *timerid = id; 1293 return (0); 1294 1295 out: 1296 ITIMER_LOCK(it); 1297 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1298 ITIMER_UNLOCK(it); 1299 uma_zfree(itimer_zone, it); 1300 return (error); 1301 } 1302 1303 #ifndef _SYS_SYSPROTO_H_ 1304 struct ktimer_delete_args { 1305 int timerid; 1306 }; 1307 #endif 1308 int 1309 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap) 1310 { 1311 1312 return (kern_ktimer_delete(td, uap->timerid)); 1313 } 1314 1315 static struct itimer * 1316 itimer_find(struct proc *p, int timerid) 1317 { 1318 struct itimer *it; 1319 1320 PROC_LOCK_ASSERT(p, MA_OWNED); 1321 if ((p->p_itimers == NULL) || 1322 (timerid < 0) || (timerid >= TIMER_MAX) || 1323 (it = p->p_itimers->its_timers[timerid]) == NULL) { 1324 return (NULL); 1325 } 1326 ITIMER_LOCK(it); 1327 if ((it->it_flags & ITF_DELETING) != 0) { 1328 ITIMER_UNLOCK(it); 1329 it = NULL; 1330 } 1331 return (it); 1332 } 1333 1334 int 1335 kern_ktimer_delete(struct thread *td, int timerid) 1336 { 1337 struct proc *p = td->td_proc; 1338 struct itimer *it; 1339 1340 PROC_LOCK(p); 1341 it = itimer_find(p, timerid); 1342 if (it == NULL) { 1343 PROC_UNLOCK(p); 1344 return (EINVAL); 1345 } 1346 PROC_UNLOCK(p); 1347 1348 it->it_flags |= ITF_DELETING; 1349 while (it->it_usecount > 0) { 1350 it->it_flags |= ITF_WANTED; 1351 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0); 1352 } 1353 it->it_flags &= ~ITF_WANTED; 1354 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1355 ITIMER_UNLOCK(it); 1356 1357 PROC_LOCK(p); 1358 if (KSI_ONQ(&it->it_ksi)) 1359 sigqueue_take(&it->it_ksi); 1360 p->p_itimers->its_timers[timerid] = NULL; 1361 PROC_UNLOCK(p); 1362 uma_zfree(itimer_zone, it); 1363 return (0); 1364 } 1365 1366 #ifndef _SYS_SYSPROTO_H_ 1367 struct ktimer_settime_args { 1368 int timerid; 1369 int flags; 1370 const struct itimerspec * value; 1371 struct itimerspec * ovalue; 1372 }; 1373 #endif 1374 int 1375 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap) 1376 { 1377 struct itimerspec val, oval, *ovalp; 1378 int error; 1379 1380 error = copyin(uap->value, &val, sizeof(val)); 1381 if (error != 0) 1382 return (error); 1383 ovalp = uap->ovalue != NULL ? &oval : NULL; 1384 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 1385 if (error == 0 && uap->ovalue != NULL) 1386 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp)); 1387 return (error); 1388 } 1389 1390 int 1391 kern_ktimer_settime(struct thread *td, int timer_id, int flags, 1392 struct itimerspec *val, struct itimerspec *oval) 1393 { 1394 struct proc *p; 1395 struct itimer *it; 1396 int error; 1397 1398 p = td->td_proc; 1399 PROC_LOCK(p); 1400 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1401 PROC_UNLOCK(p); 1402 error = EINVAL; 1403 } else { 1404 PROC_UNLOCK(p); 1405 itimer_enter(it); 1406 error = CLOCK_CALL(it->it_clockid, timer_settime, (it, 1407 flags, val, oval)); 1408 itimer_leave(it); 1409 ITIMER_UNLOCK(it); 1410 } 1411 return (error); 1412 } 1413 1414 #ifndef _SYS_SYSPROTO_H_ 1415 struct ktimer_gettime_args { 1416 int timerid; 1417 struct itimerspec * value; 1418 }; 1419 #endif 1420 int 1421 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap) 1422 { 1423 struct itimerspec val; 1424 int error; 1425 1426 error = kern_ktimer_gettime(td, uap->timerid, &val); 1427 if (error == 0) 1428 error = copyout(&val, uap->value, sizeof(val)); 1429 return (error); 1430 } 1431 1432 int 1433 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val) 1434 { 1435 struct proc *p; 1436 struct itimer *it; 1437 int error; 1438 1439 p = td->td_proc; 1440 PROC_LOCK(p); 1441 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1442 PROC_UNLOCK(p); 1443 error = EINVAL; 1444 } else { 1445 PROC_UNLOCK(p); 1446 itimer_enter(it); 1447 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val)); 1448 itimer_leave(it); 1449 ITIMER_UNLOCK(it); 1450 } 1451 return (error); 1452 } 1453 1454 #ifndef _SYS_SYSPROTO_H_ 1455 struct timer_getoverrun_args { 1456 int timerid; 1457 }; 1458 #endif 1459 int 1460 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap) 1461 { 1462 1463 return (kern_ktimer_getoverrun(td, uap->timerid)); 1464 } 1465 1466 int 1467 kern_ktimer_getoverrun(struct thread *td, int timer_id) 1468 { 1469 struct proc *p = td->td_proc; 1470 struct itimer *it; 1471 int error ; 1472 1473 PROC_LOCK(p); 1474 if (timer_id < 3 || 1475 (it = itimer_find(p, timer_id)) == NULL) { 1476 PROC_UNLOCK(p); 1477 error = EINVAL; 1478 } else { 1479 td->td_retval[0] = it->it_overrun_last; 1480 ITIMER_UNLOCK(it); 1481 PROC_UNLOCK(p); 1482 error = 0; 1483 } 1484 return (error); 1485 } 1486 1487 static int 1488 realtimer_create(struct itimer *it) 1489 { 1490 callout_init_mtx(&it->it_callout, &it->it_mtx, 0); 1491 return (0); 1492 } 1493 1494 static int 1495 realtimer_delete(struct itimer *it) 1496 { 1497 mtx_assert(&it->it_mtx, MA_OWNED); 1498 1499 /* 1500 * clear timer's value and interval to tell realtimer_expire 1501 * to not rearm the timer. 1502 */ 1503 timespecclear(&it->it_time.it_value); 1504 timespecclear(&it->it_time.it_interval); 1505 ITIMER_UNLOCK(it); 1506 callout_drain(&it->it_callout); 1507 ITIMER_LOCK(it); 1508 return (0); 1509 } 1510 1511 static int 1512 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue) 1513 { 1514 struct timespec cts; 1515 1516 mtx_assert(&it->it_mtx, MA_OWNED); 1517 1518 realtimer_clocktime(it->it_clockid, &cts); 1519 *ovalue = it->it_time; 1520 if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) { 1521 timespecsub(&ovalue->it_value, &cts, &ovalue->it_value); 1522 if (ovalue->it_value.tv_sec < 0 || 1523 (ovalue->it_value.tv_sec == 0 && 1524 ovalue->it_value.tv_nsec == 0)) { 1525 ovalue->it_value.tv_sec = 0; 1526 ovalue->it_value.tv_nsec = 1; 1527 } 1528 } 1529 return (0); 1530 } 1531 1532 static int 1533 realtimer_settime(struct itimer *it, int flags, 1534 struct itimerspec *value, struct itimerspec *ovalue) 1535 { 1536 struct timespec cts, ts; 1537 struct timeval tv; 1538 struct itimerspec val; 1539 1540 mtx_assert(&it->it_mtx, MA_OWNED); 1541 1542 val = *value; 1543 if (itimespecfix(&val.it_value)) 1544 return (EINVAL); 1545 1546 if (timespecisset(&val.it_value)) { 1547 if (itimespecfix(&val.it_interval)) 1548 return (EINVAL); 1549 } else { 1550 timespecclear(&val.it_interval); 1551 } 1552 1553 if (ovalue != NULL) 1554 realtimer_gettime(it, ovalue); 1555 1556 it->it_time = val; 1557 if (timespecisset(&val.it_value)) { 1558 realtimer_clocktime(it->it_clockid, &cts); 1559 ts = val.it_value; 1560 if ((flags & TIMER_ABSTIME) == 0) { 1561 /* Convert to absolute time. */ 1562 timespecadd(&it->it_time.it_value, &cts, 1563 &it->it_time.it_value); 1564 } else { 1565 timespecsub(&ts, &cts, &ts); 1566 /* 1567 * We don't care if ts is negative, tztohz will 1568 * fix it. 1569 */ 1570 } 1571 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1572 callout_reset(&it->it_callout, tvtohz(&tv), 1573 realtimer_expire, it); 1574 } else { 1575 callout_stop(&it->it_callout); 1576 } 1577 1578 return (0); 1579 } 1580 1581 static void 1582 realtimer_clocktime(clockid_t id, struct timespec *ts) 1583 { 1584 if (id == CLOCK_REALTIME) 1585 getnanotime(ts); 1586 else /* CLOCK_MONOTONIC */ 1587 getnanouptime(ts); 1588 } 1589 1590 int 1591 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi) 1592 { 1593 struct itimer *it; 1594 1595 PROC_LOCK_ASSERT(p, MA_OWNED); 1596 it = itimer_find(p, timerid); 1597 if (it != NULL) { 1598 ksi->ksi_overrun = it->it_overrun; 1599 it->it_overrun_last = it->it_overrun; 1600 it->it_overrun = 0; 1601 ITIMER_UNLOCK(it); 1602 return (0); 1603 } 1604 return (EINVAL); 1605 } 1606 1607 int 1608 itimespecfix(struct timespec *ts) 1609 { 1610 1611 if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000) 1612 return (EINVAL); 1613 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000) 1614 ts->tv_nsec = tick * 1000; 1615 return (0); 1616 } 1617 1618 /* Timeout callback for realtime timer */ 1619 static void 1620 realtimer_expire(void *arg) 1621 { 1622 struct timespec cts, ts; 1623 struct timeval tv; 1624 struct itimer *it; 1625 1626 it = (struct itimer *)arg; 1627 1628 realtimer_clocktime(it->it_clockid, &cts); 1629 /* Only fire if time is reached. */ 1630 if (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1631 if (timespecisset(&it->it_time.it_interval)) { 1632 timespecadd(&it->it_time.it_value, 1633 &it->it_time.it_interval, 1634 &it->it_time.it_value); 1635 while (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1636 if (it->it_overrun < INT_MAX) 1637 it->it_overrun++; 1638 else 1639 it->it_ksi.ksi_errno = ERANGE; 1640 timespecadd(&it->it_time.it_value, 1641 &it->it_time.it_interval, 1642 &it->it_time.it_value); 1643 } 1644 } else { 1645 /* single shot timer ? */ 1646 timespecclear(&it->it_time.it_value); 1647 } 1648 if (timespecisset(&it->it_time.it_value)) { 1649 timespecsub(&it->it_time.it_value, &cts, &ts); 1650 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1651 callout_reset(&it->it_callout, tvtohz(&tv), 1652 realtimer_expire, it); 1653 } 1654 itimer_enter(it); 1655 ITIMER_UNLOCK(it); 1656 itimer_fire(it); 1657 ITIMER_LOCK(it); 1658 itimer_leave(it); 1659 } else if (timespecisset(&it->it_time.it_value)) { 1660 ts = it->it_time.it_value; 1661 timespecsub(&ts, &cts, &ts); 1662 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1663 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire, 1664 it); 1665 } 1666 } 1667 1668 void 1669 itimer_fire(struct itimer *it) 1670 { 1671 struct proc *p = it->it_proc; 1672 struct thread *td; 1673 1674 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1675 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1676 if (sigev_findtd(p, &it->it_sigev, &td) != 0) { 1677 ITIMER_LOCK(it); 1678 timespecclear(&it->it_time.it_value); 1679 timespecclear(&it->it_time.it_interval); 1680 callout_stop(&it->it_callout); 1681 ITIMER_UNLOCK(it); 1682 return; 1683 } 1684 if (!KSI_ONQ(&it->it_ksi)) { 1685 it->it_ksi.ksi_errno = 0; 1686 ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev); 1687 tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi); 1688 } else { 1689 if (it->it_overrun < INT_MAX) 1690 it->it_overrun++; 1691 else 1692 it->it_ksi.ksi_errno = ERANGE; 1693 } 1694 PROC_UNLOCK(p); 1695 } 1696 } 1697 1698 static void 1699 itimers_alloc(struct proc *p) 1700 { 1701 struct itimers *its; 1702 int i; 1703 1704 its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO); 1705 LIST_INIT(&its->its_virtual); 1706 LIST_INIT(&its->its_prof); 1707 TAILQ_INIT(&its->its_worklist); 1708 for (i = 0; i < TIMER_MAX; i++) 1709 its->its_timers[i] = NULL; 1710 PROC_LOCK(p); 1711 if (p->p_itimers == NULL) { 1712 p->p_itimers = its; 1713 PROC_UNLOCK(p); 1714 } 1715 else { 1716 PROC_UNLOCK(p); 1717 free(its, M_SUBPROC); 1718 } 1719 } 1720 1721 static void 1722 itimers_event_hook_exec(void *arg, struct proc *p, struct image_params *imgp __unused) 1723 { 1724 itimers_event_hook_exit(arg, p); 1725 } 1726 1727 /* Clean up timers when some process events are being triggered. */ 1728 static void 1729 itimers_event_hook_exit(void *arg, struct proc *p) 1730 { 1731 struct itimers *its; 1732 struct itimer *it; 1733 int event = (int)(intptr_t)arg; 1734 int i; 1735 1736 if (p->p_itimers != NULL) { 1737 its = p->p_itimers; 1738 for (i = 0; i < MAX_CLOCKS; ++i) { 1739 if (posix_clocks[i].event_hook != NULL) 1740 CLOCK_CALL(i, event_hook, (p, i, event)); 1741 } 1742 /* 1743 * According to susv3, XSI interval timers should be inherited 1744 * by new image. 1745 */ 1746 if (event == ITIMER_EV_EXEC) 1747 i = 3; 1748 else if (event == ITIMER_EV_EXIT) 1749 i = 0; 1750 else 1751 panic("unhandled event"); 1752 for (; i < TIMER_MAX; ++i) { 1753 if ((it = its->its_timers[i]) != NULL) 1754 kern_ktimer_delete(curthread, i); 1755 } 1756 if (its->its_timers[0] == NULL && 1757 its->its_timers[1] == NULL && 1758 its->its_timers[2] == NULL) { 1759 free(its, M_SUBPROC); 1760 p->p_itimers = NULL; 1761 } 1762 } 1763 } 1764