xref: /freebsd/sys/kern/kern_time.c (revision 3642298923e528d795e3a30ec165d2b469e28b40)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_mac.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/mac.h>
46 #include <sys/syscallsubr.h>
47 #include <sys/sysent.h>
48 #include <sys/proc.h>
49 #include <sys/time.h>
50 #include <sys/timetc.h>
51 #include <sys/vnode.h>
52 
53 #include <vm/vm.h>
54 #include <vm/vm_extern.h>
55 
56 int tz_minuteswest;
57 int tz_dsttime;
58 
59 /*
60  * Time of day and interval timer support.
61  *
62  * These routines provide the kernel entry points to get and set
63  * the time-of-day and per-process interval timers.  Subroutines
64  * here provide support for adding and subtracting timeval structures
65  * and decrementing interval timers, optionally reloading the interval
66  * timers when they expire.
67  */
68 
69 static int	settime(struct thread *, struct timeval *);
70 static void	timevalfix(struct timeval *);
71 static void	no_lease_updatetime(int);
72 
73 static void
74 no_lease_updatetime(deltat)
75 	int deltat;
76 {
77 }
78 
79 void (*lease_updatetime)(int)  = no_lease_updatetime;
80 
81 static int
82 settime(struct thread *td, struct timeval *tv)
83 {
84 	struct timeval delta, tv1, tv2;
85 	static struct timeval maxtime, laststep;
86 	struct timespec ts;
87 	int s;
88 
89 	s = splclock();
90 	microtime(&tv1);
91 	delta = *tv;
92 	timevalsub(&delta, &tv1);
93 
94 	/*
95 	 * If the system is secure, we do not allow the time to be
96 	 * set to a value earlier than 1 second less than the highest
97 	 * time we have yet seen. The worst a miscreant can do in
98 	 * this circumstance is "freeze" time. He couldn't go
99 	 * back to the past.
100 	 *
101 	 * We similarly do not allow the clock to be stepped more
102 	 * than one second, nor more than once per second. This allows
103 	 * a miscreant to make the clock march double-time, but no worse.
104 	 */
105 	if (securelevel_gt(td->td_ucred, 1) != 0) {
106 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
107 			/*
108 			 * Update maxtime to latest time we've seen.
109 			 */
110 			if (tv1.tv_sec > maxtime.tv_sec)
111 				maxtime = tv1;
112 			tv2 = *tv;
113 			timevalsub(&tv2, &maxtime);
114 			if (tv2.tv_sec < -1) {
115 				tv->tv_sec = maxtime.tv_sec - 1;
116 				printf("Time adjustment clamped to -1 second\n");
117 			}
118 		} else {
119 			if (tv1.tv_sec == laststep.tv_sec) {
120 				splx(s);
121 				return (EPERM);
122 			}
123 			if (delta.tv_sec > 1) {
124 				tv->tv_sec = tv1.tv_sec + 1;
125 				printf("Time adjustment clamped to +1 second\n");
126 			}
127 			laststep = *tv;
128 		}
129 	}
130 
131 	ts.tv_sec = tv->tv_sec;
132 	ts.tv_nsec = tv->tv_usec * 1000;
133 	mtx_lock(&Giant);
134 	tc_setclock(&ts);
135 	(void) splsoftclock();
136 	lease_updatetime(delta.tv_sec);
137 	splx(s);
138 	resettodr();
139 	mtx_unlock(&Giant);
140 	return (0);
141 }
142 
143 #ifndef _SYS_SYSPROTO_H_
144 struct clock_gettime_args {
145 	clockid_t clock_id;
146 	struct	timespec *tp;
147 };
148 #endif
149 
150 /*
151  * MPSAFE
152  */
153 /* ARGSUSED */
154 int
155 clock_gettime(struct thread *td, struct clock_gettime_args *uap)
156 {
157 	struct timespec ats;
158 	struct timeval sys, user;
159 	struct proc *p;
160 
161 	p = td->td_proc;
162 	switch (uap->clock_id) {
163 	case CLOCK_REALTIME:
164 		nanotime(&ats);
165 		break;
166 	case CLOCK_VIRTUAL:
167 		PROC_LOCK(p);
168 		calcru(p, &user, &sys);
169 		PROC_UNLOCK(p);
170 		TIMEVAL_TO_TIMESPEC(&user, &ats);
171 		break;
172 	case CLOCK_PROF:
173 		PROC_LOCK(p);
174 		calcru(p, &user, &sys);
175 		PROC_UNLOCK(p);
176 		timevaladd(&user, &sys);
177 		TIMEVAL_TO_TIMESPEC(&user, &ats);
178 		break;
179 	case CLOCK_MONOTONIC:
180 		nanouptime(&ats);
181 		break;
182 	default:
183 		return (EINVAL);
184 	}
185 	return (copyout(&ats, uap->tp, sizeof(ats)));
186 }
187 
188 #ifndef _SYS_SYSPROTO_H_
189 struct clock_settime_args {
190 	clockid_t clock_id;
191 	const struct	timespec *tp;
192 };
193 #endif
194 
195 /*
196  * MPSAFE
197  */
198 /* ARGSUSED */
199 int
200 clock_settime(struct thread *td, struct clock_settime_args *uap)
201 {
202 	struct timeval atv;
203 	struct timespec ats;
204 	int error;
205 
206 #ifdef MAC
207 	error = mac_check_system_settime(td->td_ucred);
208 	if (error)
209 		return (error);
210 #endif
211 	if ((error = suser(td)) != 0)
212 		return (error);
213 	if (uap->clock_id != CLOCK_REALTIME)
214 		return (EINVAL);
215 	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
216 		return (error);
217 	if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
218 		return (EINVAL);
219 	/* XXX Don't convert nsec->usec and back */
220 	TIMESPEC_TO_TIMEVAL(&atv, &ats);
221 	error = settime(td, &atv);
222 	return (error);
223 }
224 
225 #ifndef _SYS_SYSPROTO_H_
226 struct clock_getres_args {
227 	clockid_t clock_id;
228 	struct	timespec *tp;
229 };
230 #endif
231 
232 int
233 clock_getres(struct thread *td, struct clock_getres_args *uap)
234 {
235 	struct timespec ts;
236 
237 	ts.tv_sec = 0;
238 	switch (uap->clock_id) {
239 	case CLOCK_REALTIME:
240 	case CLOCK_MONOTONIC:
241 		/*
242 		 * Round up the result of the division cheaply by adding 1.
243 		 * Rounding up is especially important if rounding down
244 		 * would give 0.  Perfect rounding is unimportant.
245 		 */
246 		ts.tv_nsec = 1000000000 / tc_getfrequency() + 1;
247 		break;
248 	case CLOCK_VIRTUAL:
249 	case CLOCK_PROF:
250 		/* Accurately round up here because we can do so cheaply. */
251 		ts.tv_nsec = (1000000000 + hz - 1) / hz;
252 		break;
253 	default:
254 		return (EINVAL);
255 	}
256 	if (uap->tp == NULL)
257 		return (0);
258 	return (copyout(&ts, uap->tp, sizeof(ts)));
259 }
260 
261 static int nanowait;
262 
263 int
264 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
265 {
266 	struct timespec ts, ts2, ts3;
267 	struct timeval tv;
268 	int error;
269 
270 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
271 		return (EINVAL);
272 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
273 		return (0);
274 	getnanouptime(&ts);
275 	timespecadd(&ts, rqt);
276 	TIMESPEC_TO_TIMEVAL(&tv, rqt);
277 	for (;;) {
278 		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
279 		    tvtohz(&tv));
280 		getnanouptime(&ts2);
281 		if (error != EWOULDBLOCK) {
282 			if (error == ERESTART)
283 				error = EINTR;
284 			if (rmt != NULL) {
285 				timespecsub(&ts, &ts2);
286 				if (ts.tv_sec < 0)
287 					timespecclear(&ts);
288 				*rmt = ts;
289 			}
290 			return (error);
291 		}
292 		if (timespeccmp(&ts2, &ts, >=))
293 			return (0);
294 		ts3 = ts;
295 		timespecsub(&ts3, &ts2);
296 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
297 	}
298 }
299 
300 #ifndef _SYS_SYSPROTO_H_
301 struct nanosleep_args {
302 	struct	timespec *rqtp;
303 	struct	timespec *rmtp;
304 };
305 #endif
306 
307 /*
308  * MPSAFE
309  */
310 /* ARGSUSED */
311 int
312 nanosleep(struct thread *td, struct nanosleep_args *uap)
313 {
314 	struct timespec rmt, rqt;
315 	int error;
316 
317 	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
318 	if (error)
319 		return (error);
320 
321 	if (uap->rmtp &&
322 	    !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
323 			return (EFAULT);
324 	error = kern_nanosleep(td, &rqt, &rmt);
325 	if (error && uap->rmtp) {
326 		int error2;
327 
328 		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
329 		if (error2)
330 			error = error2;
331 	}
332 	return (error);
333 }
334 
335 #ifndef _SYS_SYSPROTO_H_
336 struct gettimeofday_args {
337 	struct	timeval *tp;
338 	struct	timezone *tzp;
339 };
340 #endif
341 /*
342  * MPSAFE
343  */
344 /* ARGSUSED */
345 int
346 gettimeofday(struct thread *td, struct gettimeofday_args *uap)
347 {
348 	struct timeval atv;
349 	struct timezone rtz;
350 	int error = 0;
351 
352 	if (uap->tp) {
353 		microtime(&atv);
354 		error = copyout(&atv, uap->tp, sizeof (atv));
355 	}
356 	if (error == 0 && uap->tzp != NULL) {
357 		rtz.tz_minuteswest = tz_minuteswest;
358 		rtz.tz_dsttime = tz_dsttime;
359 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
360 	}
361 	return (error);
362 }
363 
364 #ifndef _SYS_SYSPROTO_H_
365 struct settimeofday_args {
366 	struct	timeval *tv;
367 	struct	timezone *tzp;
368 };
369 #endif
370 /*
371  * MPSAFE
372  */
373 /* ARGSUSED */
374 int
375 settimeofday(struct thread *td, struct settimeofday_args *uap)
376 {
377 	struct timeval atv, *tvp;
378 	struct timezone atz, *tzp;
379 	int error;
380 
381 	if (uap->tv) {
382 		error = copyin(uap->tv, &atv, sizeof(atv));
383 		if (error)
384 			return (error);
385 		tvp = &atv;
386 	} else
387 		tvp = NULL;
388 	if (uap->tzp) {
389 		error = copyin(uap->tzp, &atz, sizeof(atz));
390 		if (error)
391 			return (error);
392 		tzp = &atz;
393 	} else
394 		tzp = NULL;
395 	return (kern_settimeofday(td, tvp, tzp));
396 }
397 
398 int
399 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
400 {
401 	int error;
402 
403 #ifdef MAC
404 	error = mac_check_system_settime(td->td_ucred);
405 	if (error)
406 		return (error);
407 #endif
408 	error = suser(td);
409 	if (error)
410 		return (error);
411 	/* Verify all parameters before changing time. */
412 	if (tv) {
413 		if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
414 			return (EINVAL);
415 		error = settime(td, tv);
416 	}
417 	if (tzp && error == 0) {
418 		tz_minuteswest = tzp->tz_minuteswest;
419 		tz_dsttime = tzp->tz_dsttime;
420 	}
421 	return (error);
422 }
423 
424 /*
425  * Get value of an interval timer.  The process virtual and
426  * profiling virtual time timers are kept in the p_stats area, since
427  * they can be swapped out.  These are kept internally in the
428  * way they are specified externally: in time until they expire.
429  *
430  * The real time interval timer is kept in the process table slot
431  * for the process, and its value (it_value) is kept as an
432  * absolute time rather than as a delta, so that it is easy to keep
433  * periodic real-time signals from drifting.
434  *
435  * Virtual time timers are processed in the hardclock() routine of
436  * kern_clock.c.  The real time timer is processed by a timeout
437  * routine, called from the softclock() routine.  Since a callout
438  * may be delayed in real time due to interrupt processing in the system,
439  * it is possible for the real time timeout routine (realitexpire, given below),
440  * to be delayed in real time past when it is supposed to occur.  It
441  * does not suffice, therefore, to reload the real timer .it_value from the
442  * real time timers .it_interval.  Rather, we compute the next time in
443  * absolute time the timer should go off.
444  */
445 #ifndef _SYS_SYSPROTO_H_
446 struct getitimer_args {
447 	u_int	which;
448 	struct	itimerval *itv;
449 };
450 #endif
451 /*
452  * MPSAFE
453  */
454 int
455 getitimer(struct thread *td, struct getitimer_args *uap)
456 {
457 	struct itimerval aitv;
458 	int error;
459 
460 	error = kern_getitimer(td, uap->which, &aitv);
461 	if (error != 0)
462 		return (error);
463 	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
464 }
465 
466 int
467 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
468 {
469 	struct proc *p = td->td_proc;
470 	struct timeval ctv;
471 
472 	if (which > ITIMER_PROF)
473 		return (EINVAL);
474 
475 	if (which == ITIMER_REAL) {
476 		/*
477 		 * Convert from absolute to relative time in .it_value
478 		 * part of real time timer.  If time for real time timer
479 		 * has passed return 0, else return difference between
480 		 * current time and time for the timer to go off.
481 		 */
482 		PROC_LOCK(p);
483 		*aitv = p->p_realtimer;
484 		PROC_UNLOCK(p);
485 		if (timevalisset(&aitv->it_value)) {
486 			getmicrouptime(&ctv);
487 			if (timevalcmp(&aitv->it_value, &ctv, <))
488 				timevalclear(&aitv->it_value);
489 			else
490 				timevalsub(&aitv->it_value, &ctv);
491 		}
492 	} else {
493 		mtx_lock_spin(&sched_lock);
494 		*aitv = p->p_stats->p_timer[which];
495 		mtx_unlock_spin(&sched_lock);
496 	}
497 	return (0);
498 }
499 
500 #ifndef _SYS_SYSPROTO_H_
501 struct setitimer_args {
502 	u_int	which;
503 	struct	itimerval *itv, *oitv;
504 };
505 #endif
506 
507 /*
508  * MPSAFE
509  */
510 int
511 setitimer(struct thread *td, struct setitimer_args *uap)
512 {
513 	struct itimerval aitv, oitv;
514 	int error;
515 
516 	if (uap->itv == NULL) {
517 		uap->itv = uap->oitv;
518 		return (getitimer(td, (struct getitimer_args *)uap));
519 	}
520 
521 	if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
522 		return (error);
523 	error = kern_setitimer(td, uap->which, &aitv, &oitv);
524 	if (error != 0 || uap->oitv == NULL)
525 		return (error);
526 	return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
527 }
528 
529 int
530 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
531     struct itimerval *oitv)
532 {
533 	struct proc *p = td->td_proc;
534 	struct timeval ctv;
535 
536 	if (aitv == NULL)
537 		return (kern_getitimer(td, which, oitv));
538 
539 	if (which > ITIMER_PROF)
540 		return (EINVAL);
541 	if (itimerfix(&aitv->it_value))
542 		return (EINVAL);
543 	if (!timevalisset(&aitv->it_value))
544 		timevalclear(&aitv->it_interval);
545 	else if (itimerfix(&aitv->it_interval))
546 		return (EINVAL);
547 
548 	if (which == ITIMER_REAL) {
549 		PROC_LOCK(p);
550 		if (timevalisset(&p->p_realtimer.it_value))
551 			callout_stop(&p->p_itcallout);
552 		getmicrouptime(&ctv);
553 		if (timevalisset(&aitv->it_value)) {
554 			callout_reset(&p->p_itcallout, tvtohz(&aitv->it_value),
555 			    realitexpire, p);
556 			timevaladd(&aitv->it_value, &ctv);
557 		}
558 		*oitv = p->p_realtimer;
559 		p->p_realtimer = *aitv;
560 		PROC_UNLOCK(p);
561 		if (timevalisset(&oitv->it_value)) {
562 			if (timevalcmp(&oitv->it_value, &ctv, <))
563 				timevalclear(&oitv->it_value);
564 			else
565 				timevalsub(&oitv->it_value, &ctv);
566 		}
567 	} else {
568 		mtx_lock_spin(&sched_lock);
569 		*oitv = p->p_stats->p_timer[which];
570 		p->p_stats->p_timer[which] = *aitv;
571 		mtx_unlock_spin(&sched_lock);
572 	}
573 	return (0);
574 }
575 
576 /*
577  * Real interval timer expired:
578  * send process whose timer expired an alarm signal.
579  * If time is not set up to reload, then just return.
580  * Else compute next time timer should go off which is > current time.
581  * This is where delay in processing this timeout causes multiple
582  * SIGALRM calls to be compressed into one.
583  * tvtohz() always adds 1 to allow for the time until the next clock
584  * interrupt being strictly less than 1 clock tick, but we don't want
585  * that here since we want to appear to be in sync with the clock
586  * interrupt even when we're delayed.
587  */
588 void
589 realitexpire(void *arg)
590 {
591 	struct proc *p;
592 	struct timeval ctv, ntv;
593 
594 	p = (struct proc *)arg;
595 	PROC_LOCK(p);
596 	psignal(p, SIGALRM);
597 	if (!timevalisset(&p->p_realtimer.it_interval)) {
598 		timevalclear(&p->p_realtimer.it_value);
599 		if (p->p_flag & P_WEXIT)
600 			wakeup(&p->p_itcallout);
601 		PROC_UNLOCK(p);
602 		return;
603 	}
604 	for (;;) {
605 		timevaladd(&p->p_realtimer.it_value,
606 		    &p->p_realtimer.it_interval);
607 		getmicrouptime(&ctv);
608 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
609 			ntv = p->p_realtimer.it_value;
610 			timevalsub(&ntv, &ctv);
611 			callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
612 			    realitexpire, p);
613 			PROC_UNLOCK(p);
614 			return;
615 		}
616 	}
617 	/*NOTREACHED*/
618 }
619 
620 /*
621  * Check that a proposed value to load into the .it_value or
622  * .it_interval part of an interval timer is acceptable, and
623  * fix it to have at least minimal value (i.e. if it is less
624  * than the resolution of the clock, round it up.)
625  */
626 int
627 itimerfix(struct timeval *tv)
628 {
629 
630 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
631 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
632 		return (EINVAL);
633 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
634 		tv->tv_usec = tick;
635 	return (0);
636 }
637 
638 /*
639  * Decrement an interval timer by a specified number
640  * of microseconds, which must be less than a second,
641  * i.e. < 1000000.  If the timer expires, then reload
642  * it.  In this case, carry over (usec - old value) to
643  * reduce the value reloaded into the timer so that
644  * the timer does not drift.  This routine assumes
645  * that it is called in a context where the timers
646  * on which it is operating cannot change in value.
647  */
648 int
649 itimerdecr(struct itimerval *itp, int usec)
650 {
651 
652 	if (itp->it_value.tv_usec < usec) {
653 		if (itp->it_value.tv_sec == 0) {
654 			/* expired, and already in next interval */
655 			usec -= itp->it_value.tv_usec;
656 			goto expire;
657 		}
658 		itp->it_value.tv_usec += 1000000;
659 		itp->it_value.tv_sec--;
660 	}
661 	itp->it_value.tv_usec -= usec;
662 	usec = 0;
663 	if (timevalisset(&itp->it_value))
664 		return (1);
665 	/* expired, exactly at end of interval */
666 expire:
667 	if (timevalisset(&itp->it_interval)) {
668 		itp->it_value = itp->it_interval;
669 		itp->it_value.tv_usec -= usec;
670 		if (itp->it_value.tv_usec < 0) {
671 			itp->it_value.tv_usec += 1000000;
672 			itp->it_value.tv_sec--;
673 		}
674 	} else
675 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
676 	return (0);
677 }
678 
679 /*
680  * Add and subtract routines for timevals.
681  * N.B.: subtract routine doesn't deal with
682  * results which are before the beginning,
683  * it just gets very confused in this case.
684  * Caveat emptor.
685  */
686 void
687 timevaladd(struct timeval *t1, const struct timeval *t2)
688 {
689 
690 	t1->tv_sec += t2->tv_sec;
691 	t1->tv_usec += t2->tv_usec;
692 	timevalfix(t1);
693 }
694 
695 void
696 timevalsub(struct timeval *t1, const struct timeval *t2)
697 {
698 
699 	t1->tv_sec -= t2->tv_sec;
700 	t1->tv_usec -= t2->tv_usec;
701 	timevalfix(t1);
702 }
703 
704 static void
705 timevalfix(struct timeval *t1)
706 {
707 
708 	if (t1->tv_usec < 0) {
709 		t1->tv_sec--;
710 		t1->tv_usec += 1000000;
711 	}
712 	if (t1->tv_usec >= 1000000) {
713 		t1->tv_sec++;
714 		t1->tv_usec -= 1000000;
715 	}
716 }
717 
718 /*
719  * ratecheck(): simple time-based rate-limit checking.
720  */
721 int
722 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
723 {
724 	struct timeval tv, delta;
725 	int rv = 0;
726 
727 	getmicrouptime(&tv);		/* NB: 10ms precision */
728 	delta = tv;
729 	timevalsub(&delta, lasttime);
730 
731 	/*
732 	 * check for 0,0 is so that the message will be seen at least once,
733 	 * even if interval is huge.
734 	 */
735 	if (timevalcmp(&delta, mininterval, >=) ||
736 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
737 		*lasttime = tv;
738 		rv = 1;
739 	}
740 
741 	return (rv);
742 }
743 
744 /*
745  * ppsratecheck(): packets (or events) per second limitation.
746  *
747  * Return 0 if the limit is to be enforced (e.g. the caller
748  * should drop a packet because of the rate limitation).
749  *
750  * maxpps of 0 always causes zero to be returned.  maxpps of -1
751  * always causes 1 to be returned; this effectively defeats rate
752  * limiting.
753  *
754  * Note that we maintain the struct timeval for compatibility
755  * with other bsd systems.  We reuse the storage and just monitor
756  * clock ticks for minimal overhead.
757  */
758 int
759 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
760 {
761 	int now;
762 
763 	/*
764 	 * Reset the last time and counter if this is the first call
765 	 * or more than a second has passed since the last update of
766 	 * lasttime.
767 	 */
768 	now = ticks;
769 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
770 		lasttime->tv_sec = now;
771 		*curpps = 1;
772 		return (maxpps != 0);
773 	} else {
774 		(*curpps)++;		/* NB: ignore potential overflow */
775 		return (maxpps < 0 || *curpps < maxpps);
776 	}
777 }
778