1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 #include "opt_ktrace.h" 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/limits.h> 38 #include <sys/clock.h> 39 #include <sys/lock.h> 40 #include <sys/mutex.h> 41 #include <sys/sysproto.h> 42 #include <sys/resourcevar.h> 43 #include <sys/signalvar.h> 44 #include <sys/kernel.h> 45 #include <sys/sleepqueue.h> 46 #include <sys/syscallsubr.h> 47 #include <sys/sysctl.h> 48 #include <sys/priv.h> 49 #include <sys/proc.h> 50 #include <sys/posix4.h> 51 #include <sys/time.h> 52 #include <sys/timeffc.h> 53 #include <sys/timers.h> 54 #include <sys/timetc.h> 55 #include <sys/vnode.h> 56 #ifdef KTRACE 57 #include <sys/ktrace.h> 58 #endif 59 60 #include <vm/vm.h> 61 #include <vm/vm_extern.h> 62 #include <vm/uma.h> 63 64 #define MAX_CLOCKS (CLOCK_TAI+1) 65 #define CPUCLOCK_BIT 0x80000000 66 #define CPUCLOCK_PROCESS_BIT 0x40000000 67 #define CPUCLOCK_ID_MASK (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT)) 68 #define MAKE_THREAD_CPUCLOCK(tid) (CPUCLOCK_BIT|(tid)) 69 #define MAKE_PROCESS_CPUCLOCK(pid) \ 70 (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid)) 71 72 #define NS_PER_SEC 1000000000 73 74 static struct kclock posix_clocks[MAX_CLOCKS]; 75 static uma_zone_t itimer_zone = NULL; 76 77 /* 78 * Time of day and interval timer support. 79 * 80 * These routines provide the kernel entry points to get and set 81 * the time-of-day and per-process interval timers. Subroutines 82 * here provide support for adding and subtracting timeval structures 83 * and decrementing interval timers, optionally reloading the interval 84 * timers when they expire. 85 */ 86 87 static int settime(struct thread *, struct timeval *); 88 static void timevalfix(struct timeval *); 89 static int user_clock_nanosleep(struct thread *td, clockid_t clock_id, 90 int flags, const struct timespec *ua_rqtp, 91 struct timespec *ua_rmtp); 92 93 static void itimer_start(void); 94 static int itimer_init(void *, int, int); 95 static void itimer_fini(void *, int); 96 static void itimer_enter(struct itimer *); 97 static void itimer_leave(struct itimer *); 98 static struct itimer *itimer_find(struct proc *, int); 99 static void itimers_alloc(struct proc *); 100 static int realtimer_create(struct itimer *); 101 static int realtimer_gettime(struct itimer *, struct itimerspec *); 102 static int realtimer_settime(struct itimer *, int, 103 struct itimerspec *, struct itimerspec *); 104 static int realtimer_delete(struct itimer *); 105 static void realtimer_expire(void *); 106 static void realtimer_expire_l(struct itimer *it, bool proc_locked); 107 108 static void realitexpire(void *arg); 109 110 static int register_posix_clock(int, const struct kclock *); 111 static void itimer_fire(struct itimer *it); 112 static int itimespecfix(struct timespec *ts); 113 114 #define CLOCK_CALL(clock, call, arglist) \ 115 ((*posix_clocks[clock].call) arglist) 116 117 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL); 118 119 static int 120 settime(struct thread *td, struct timeval *tv) 121 { 122 struct timeval delta, tv1, tv2; 123 static struct timeval maxtime, laststep; 124 struct timespec ts; 125 126 microtime(&tv1); 127 delta = *tv; 128 timevalsub(&delta, &tv1); 129 130 /* 131 * If the system is secure, we do not allow the time to be 132 * set to a value earlier than 1 second less than the highest 133 * time we have yet seen. The worst a miscreant can do in 134 * this circumstance is "freeze" time. He couldn't go 135 * back to the past. 136 * 137 * We similarly do not allow the clock to be stepped more 138 * than one second, nor more than once per second. This allows 139 * a miscreant to make the clock march double-time, but no worse. 140 */ 141 if (securelevel_gt(td->td_ucred, 1) != 0) { 142 if (delta.tv_sec < 0 || delta.tv_usec < 0) { 143 /* 144 * Update maxtime to latest time we've seen. 145 */ 146 if (tv1.tv_sec > maxtime.tv_sec) 147 maxtime = tv1; 148 tv2 = *tv; 149 timevalsub(&tv2, &maxtime); 150 if (tv2.tv_sec < -1) { 151 tv->tv_sec = maxtime.tv_sec - 1; 152 printf("Time adjustment clamped to -1 second\n"); 153 } 154 } else { 155 if (tv1.tv_sec == laststep.tv_sec) 156 return (EPERM); 157 if (delta.tv_sec > 1) { 158 tv->tv_sec = tv1.tv_sec + 1; 159 printf("Time adjustment clamped to +1 second\n"); 160 } 161 laststep = *tv; 162 } 163 } 164 165 ts.tv_sec = tv->tv_sec; 166 ts.tv_nsec = tv->tv_usec * 1000; 167 tc_setclock(&ts); 168 resettodr(); 169 return (0); 170 } 171 172 #ifndef _SYS_SYSPROTO_H_ 173 struct clock_getcpuclockid2_args { 174 id_t id; 175 int which, 176 clockid_t *clock_id; 177 }; 178 #endif 179 /* ARGSUSED */ 180 int 181 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap) 182 { 183 clockid_t clk_id; 184 int error; 185 186 error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id); 187 if (error == 0) 188 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 189 return (error); 190 } 191 192 int 193 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which, 194 clockid_t *clk_id) 195 { 196 struct proc *p; 197 pid_t pid; 198 lwpid_t tid; 199 int error; 200 201 switch (which) { 202 case CPUCLOCK_WHICH_PID: 203 if (id != 0) { 204 error = pget(id, PGET_CANSEE | PGET_NOTID, &p); 205 if (error != 0) 206 return (error); 207 PROC_UNLOCK(p); 208 pid = id; 209 } else { 210 pid = td->td_proc->p_pid; 211 } 212 *clk_id = MAKE_PROCESS_CPUCLOCK(pid); 213 return (0); 214 case CPUCLOCK_WHICH_TID: 215 tid = id == 0 ? td->td_tid : id; 216 *clk_id = MAKE_THREAD_CPUCLOCK(tid); 217 return (0); 218 default: 219 return (EINVAL); 220 } 221 } 222 223 #ifndef _SYS_SYSPROTO_H_ 224 struct clock_gettime_args { 225 clockid_t clock_id; 226 struct timespec *tp; 227 }; 228 #endif 229 /* ARGSUSED */ 230 int 231 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap) 232 { 233 struct timespec ats; 234 int error; 235 236 error = kern_clock_gettime(td, uap->clock_id, &ats); 237 if (error == 0) 238 error = copyout(&ats, uap->tp, sizeof(ats)); 239 240 return (error); 241 } 242 243 static inline void 244 cputick2timespec(uint64_t runtime, struct timespec *ats) 245 { 246 uint64_t tr; 247 tr = cpu_tickrate(); 248 ats->tv_sec = runtime / tr; 249 ats->tv_nsec = ((runtime % tr) * 1000000000ULL) / tr; 250 } 251 252 void 253 kern_thread_cputime(struct thread *targettd, struct timespec *ats) 254 { 255 uint64_t runtime, curtime, switchtime; 256 257 if (targettd == NULL) { /* current thread */ 258 spinlock_enter(); 259 switchtime = PCPU_GET(switchtime); 260 curtime = cpu_ticks(); 261 runtime = curthread->td_runtime; 262 spinlock_exit(); 263 runtime += curtime - switchtime; 264 } else { 265 PROC_LOCK_ASSERT(targettd->td_proc, MA_OWNED); 266 thread_lock(targettd); 267 runtime = targettd->td_runtime; 268 thread_unlock(targettd); 269 } 270 cputick2timespec(runtime, ats); 271 } 272 273 void 274 kern_process_cputime(struct proc *targetp, struct timespec *ats) 275 { 276 uint64_t runtime; 277 struct rusage ru; 278 279 PROC_LOCK_ASSERT(targetp, MA_OWNED); 280 PROC_STATLOCK(targetp); 281 rufetch(targetp, &ru); 282 runtime = targetp->p_rux.rux_runtime; 283 if (curthread->td_proc == targetp) 284 runtime += cpu_ticks() - PCPU_GET(switchtime); 285 PROC_STATUNLOCK(targetp); 286 cputick2timespec(runtime, ats); 287 } 288 289 static int 290 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats) 291 { 292 struct proc *p, *p2; 293 struct thread *td2; 294 lwpid_t tid; 295 pid_t pid; 296 int error; 297 298 p = td->td_proc; 299 if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) { 300 tid = clock_id & CPUCLOCK_ID_MASK; 301 td2 = tdfind(tid, p->p_pid); 302 if (td2 == NULL) 303 return (EINVAL); 304 kern_thread_cputime(td2, ats); 305 PROC_UNLOCK(td2->td_proc); 306 } else { 307 pid = clock_id & CPUCLOCK_ID_MASK; 308 error = pget(pid, PGET_CANSEE, &p2); 309 if (error != 0) 310 return (EINVAL); 311 kern_process_cputime(p2, ats); 312 PROC_UNLOCK(p2); 313 } 314 return (0); 315 } 316 317 int 318 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats) 319 { 320 struct timeval sys, user; 321 struct sysclock_snap clk; 322 struct bintime bt; 323 struct proc *p; 324 int error; 325 326 p = td->td_proc; 327 switch (clock_id) { 328 case CLOCK_REALTIME: /* Default to precise. */ 329 case CLOCK_REALTIME_PRECISE: 330 nanotime(ats); 331 break; 332 case CLOCK_REALTIME_FAST: 333 getnanotime(ats); 334 break; 335 case CLOCK_TAI: 336 sysclock_getsnapshot(&clk, 0); 337 error = sysclock_snap2bintime(&clk, &bt, clk.sysclock_active, 338 clk.sysclock_active == SYSCLOCK_FFWD ? FFCLOCK_LERP : 0); 339 if (error != 0) 340 return (error); 341 bintime2timespec(&bt, ats); 342 break; 343 case CLOCK_VIRTUAL: 344 PROC_LOCK(p); 345 PROC_STATLOCK(p); 346 calcru(p, &user, &sys); 347 PROC_STATUNLOCK(p); 348 PROC_UNLOCK(p); 349 TIMEVAL_TO_TIMESPEC(&user, ats); 350 break; 351 case CLOCK_PROF: 352 PROC_LOCK(p); 353 PROC_STATLOCK(p); 354 calcru(p, &user, &sys); 355 PROC_STATUNLOCK(p); 356 PROC_UNLOCK(p); 357 timevaladd(&user, &sys); 358 TIMEVAL_TO_TIMESPEC(&user, ats); 359 break; 360 case CLOCK_MONOTONIC: /* Default to precise. */ 361 case CLOCK_MONOTONIC_PRECISE: 362 case CLOCK_UPTIME: 363 case CLOCK_UPTIME_PRECISE: 364 nanouptime(ats); 365 break; 366 case CLOCK_UPTIME_FAST: 367 case CLOCK_MONOTONIC_FAST: 368 getnanouptime(ats); 369 break; 370 case CLOCK_SECOND: 371 ats->tv_sec = time_second; 372 ats->tv_nsec = 0; 373 break; 374 case CLOCK_THREAD_CPUTIME_ID: 375 kern_thread_cputime(NULL, ats); 376 break; 377 case CLOCK_PROCESS_CPUTIME_ID: 378 PROC_LOCK(p); 379 kern_process_cputime(p, ats); 380 PROC_UNLOCK(p); 381 break; 382 default: 383 if ((int)clock_id >= 0) 384 return (EINVAL); 385 return (get_cputime(td, clock_id, ats)); 386 } 387 return (0); 388 } 389 390 #ifndef _SYS_SYSPROTO_H_ 391 struct clock_settime_args { 392 clockid_t clock_id; 393 const struct timespec *tp; 394 }; 395 #endif 396 /* ARGSUSED */ 397 int 398 sys_clock_settime(struct thread *td, struct clock_settime_args *uap) 399 { 400 struct timespec ats; 401 int error; 402 403 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0) 404 return (error); 405 return (kern_clock_settime(td, uap->clock_id, &ats)); 406 } 407 408 static int allow_insane_settime = 0; 409 SYSCTL_INT(_debug, OID_AUTO, allow_insane_settime, CTLFLAG_RWTUN, 410 &allow_insane_settime, 0, 411 "do not perform possibly restrictive checks on settime(2) args"); 412 413 int 414 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats) 415 { 416 struct timeval atv; 417 int error; 418 419 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 420 return (error); 421 if (clock_id != CLOCK_REALTIME) 422 return (EINVAL); 423 if (!timespecvalid_interval(ats)) 424 return (EINVAL); 425 if (!allow_insane_settime && 426 (ats->tv_sec > 8000ULL * 365 * 24 * 60 * 60 || 427 ats->tv_sec < utc_offset())) 428 return (EINVAL); 429 /* XXX Don't convert nsec->usec and back */ 430 TIMESPEC_TO_TIMEVAL(&atv, ats); 431 error = settime(td, &atv); 432 return (error); 433 } 434 435 #ifndef _SYS_SYSPROTO_H_ 436 struct clock_getres_args { 437 clockid_t clock_id; 438 struct timespec *tp; 439 }; 440 #endif 441 int 442 sys_clock_getres(struct thread *td, struct clock_getres_args *uap) 443 { 444 struct timespec ts; 445 int error; 446 447 if (uap->tp == NULL) 448 return (0); 449 450 error = kern_clock_getres(td, uap->clock_id, &ts); 451 if (error == 0) 452 error = copyout(&ts, uap->tp, sizeof(ts)); 453 return (error); 454 } 455 456 int 457 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts) 458 { 459 460 ts->tv_sec = 0; 461 switch (clock_id) { 462 case CLOCK_REALTIME: 463 case CLOCK_REALTIME_FAST: 464 case CLOCK_REALTIME_PRECISE: 465 case CLOCK_TAI: 466 case CLOCK_MONOTONIC: 467 case CLOCK_MONOTONIC_FAST: 468 case CLOCK_MONOTONIC_PRECISE: 469 case CLOCK_UPTIME: 470 case CLOCK_UPTIME_FAST: 471 case CLOCK_UPTIME_PRECISE: 472 /* 473 * Round up the result of the division cheaply by adding 1. 474 * Rounding up is especially important if rounding down 475 * would give 0. Perfect rounding is unimportant. 476 */ 477 ts->tv_nsec = NS_PER_SEC / tc_getfrequency() + 1; 478 break; 479 case CLOCK_VIRTUAL: 480 case CLOCK_PROF: 481 /* Accurately round up here because we can do so cheaply. */ 482 ts->tv_nsec = howmany(NS_PER_SEC, hz); 483 break; 484 case CLOCK_SECOND: 485 ts->tv_sec = 1; 486 ts->tv_nsec = 0; 487 break; 488 case CLOCK_THREAD_CPUTIME_ID: 489 case CLOCK_PROCESS_CPUTIME_ID: 490 cputime: 491 ts->tv_nsec = 1000000000 / cpu_tickrate() + 1; 492 break; 493 default: 494 if ((int)clock_id < 0) 495 goto cputime; 496 return (EINVAL); 497 } 498 return (0); 499 } 500 501 int 502 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt) 503 { 504 505 return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt, 506 rmt)); 507 } 508 509 static __read_mostly bool nanosleep_precise = true; 510 SYSCTL_BOOL(_kern_timecounter, OID_AUTO, nanosleep_precise, CTLFLAG_RW, 511 &nanosleep_precise, 0, "clock_nanosleep() with CLOCK_REALTIME, " 512 "CLOCK_MONOTONIC, CLOCK_UPTIME and nanosleep(2) use precise clock"); 513 static uint8_t nanowait[MAXCPU]; 514 515 int 516 kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 517 const struct timespec *rqt, struct timespec *rmt) 518 { 519 struct timespec ts, now; 520 sbintime_t sbt, sbtt, prec, tmp; 521 time_t over; 522 int error; 523 bool is_abs_real, precise; 524 525 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= NS_PER_SEC) 526 return (EINVAL); 527 if ((flags & ~TIMER_ABSTIME) != 0) 528 return (EINVAL); 529 switch (clock_id) { 530 case CLOCK_REALTIME: 531 case CLOCK_TAI: 532 precise = nanosleep_precise; 533 is_abs_real = (flags & TIMER_ABSTIME) != 0; 534 break; 535 case CLOCK_REALTIME_PRECISE: 536 precise = true; 537 is_abs_real = (flags & TIMER_ABSTIME) != 0; 538 break; 539 case CLOCK_REALTIME_FAST: 540 case CLOCK_SECOND: 541 precise = false; 542 is_abs_real = (flags & TIMER_ABSTIME) != 0; 543 break; 544 case CLOCK_MONOTONIC: 545 case CLOCK_UPTIME: 546 precise = nanosleep_precise; 547 is_abs_real = false; 548 break; 549 case CLOCK_MONOTONIC_PRECISE: 550 case CLOCK_UPTIME_PRECISE: 551 precise = true; 552 is_abs_real = false; 553 break; 554 case CLOCK_MONOTONIC_FAST: 555 case CLOCK_UPTIME_FAST: 556 precise = false; 557 is_abs_real = false; 558 break; 559 case CLOCK_VIRTUAL: 560 case CLOCK_PROF: 561 case CLOCK_PROCESS_CPUTIME_ID: 562 return (ENOTSUP); 563 case CLOCK_THREAD_CPUTIME_ID: 564 default: 565 return (EINVAL); 566 } 567 do { 568 ts = *rqt; 569 if ((flags & TIMER_ABSTIME) != 0) { 570 if (is_abs_real) 571 td->td_rtcgen = 572 atomic_load_acq_int(&rtc_generation); 573 error = kern_clock_gettime(td, clock_id, &now); 574 KASSERT(error == 0, ("kern_clock_gettime: %d", error)); 575 timespecsub(&ts, &now, &ts); 576 } 577 if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) { 578 error = EWOULDBLOCK; 579 break; 580 } 581 if (ts.tv_sec > INT32_MAX / 2) { 582 over = ts.tv_sec - INT32_MAX / 2; 583 ts.tv_sec -= over; 584 } else 585 over = 0; 586 tmp = tstosbt(ts); 587 if (precise) { 588 prec = 0; 589 sbt = sbinuptime(); 590 } else { 591 prec = tmp >> tc_precexp; 592 if (TIMESEL(&sbt, tmp)) 593 sbt += tc_tick_sbt; 594 } 595 sbt += tmp; 596 error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp", 597 sbt, prec, C_ABSOLUTE); 598 } while (error == 0 && is_abs_real && td->td_rtcgen == 0); 599 td->td_rtcgen = 0; 600 if (error != EWOULDBLOCK) { 601 if (TIMESEL(&sbtt, tmp)) 602 sbtt += tc_tick_sbt; 603 if (sbtt >= sbt) 604 return (0); 605 if (error == ERESTART) 606 error = EINTR; 607 if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) { 608 ts = sbttots(sbt - sbtt); 609 ts.tv_sec += over; 610 if (ts.tv_sec < 0) 611 timespecclear(&ts); 612 *rmt = ts; 613 } 614 return (error); 615 } 616 return (0); 617 } 618 619 #ifndef _SYS_SYSPROTO_H_ 620 struct nanosleep_args { 621 struct timespec *rqtp; 622 struct timespec *rmtp; 623 }; 624 #endif 625 /* ARGSUSED */ 626 int 627 sys_nanosleep(struct thread *td, struct nanosleep_args *uap) 628 { 629 630 return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, 631 uap->rqtp, uap->rmtp)); 632 } 633 634 #ifndef _SYS_SYSPROTO_H_ 635 struct clock_nanosleep_args { 636 clockid_t clock_id; 637 int flags; 638 struct timespec *rqtp; 639 struct timespec *rmtp; 640 }; 641 #endif 642 /* ARGSUSED */ 643 int 644 sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap) 645 { 646 int error; 647 648 error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp, 649 uap->rmtp); 650 return (kern_posix_error(td, error)); 651 } 652 653 static int 654 user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 655 const struct timespec *ua_rqtp, struct timespec *ua_rmtp) 656 { 657 struct timespec rmt, rqt; 658 int error, error2; 659 660 error = copyin(ua_rqtp, &rqt, sizeof(rqt)); 661 if (error) 662 return (error); 663 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 664 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 665 error2 = copyout(&rmt, ua_rmtp, sizeof(rmt)); 666 if (error2 != 0) 667 error = error2; 668 } 669 return (error); 670 } 671 672 #ifndef _SYS_SYSPROTO_H_ 673 struct gettimeofday_args { 674 struct timeval *tp; 675 struct timezone *tzp; 676 }; 677 #endif 678 /* ARGSUSED */ 679 int 680 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap) 681 { 682 struct timeval atv; 683 struct timezone rtz; 684 int error = 0; 685 686 if (uap->tp) { 687 microtime(&atv); 688 error = copyout(&atv, uap->tp, sizeof (atv)); 689 } 690 if (error == 0 && uap->tzp != NULL) { 691 rtz.tz_minuteswest = 0; 692 rtz.tz_dsttime = 0; 693 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 694 } 695 return (error); 696 } 697 698 #ifndef _SYS_SYSPROTO_H_ 699 struct settimeofday_args { 700 struct timeval *tv; 701 struct timezone *tzp; 702 }; 703 #endif 704 /* ARGSUSED */ 705 int 706 sys_settimeofday(struct thread *td, struct settimeofday_args *uap) 707 { 708 struct timeval atv, *tvp; 709 struct timezone atz, *tzp; 710 int error; 711 712 if (uap->tv) { 713 error = copyin(uap->tv, &atv, sizeof(atv)); 714 if (error) 715 return (error); 716 tvp = &atv; 717 } else 718 tvp = NULL; 719 if (uap->tzp) { 720 error = copyin(uap->tzp, &atz, sizeof(atz)); 721 if (error) 722 return (error); 723 tzp = &atz; 724 } else 725 tzp = NULL; 726 return (kern_settimeofday(td, tvp, tzp)); 727 } 728 729 int 730 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp) 731 { 732 int error; 733 734 error = priv_check(td, PRIV_SETTIMEOFDAY); 735 if (error) 736 return (error); 737 /* Verify all parameters before changing time. */ 738 if (tv) { 739 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 || 740 tv->tv_sec < 0) 741 return (EINVAL); 742 error = settime(td, tv); 743 } 744 return (error); 745 } 746 747 /* 748 * Get value of an interval timer. The process virtual and profiling virtual 749 * time timers are kept in the p_stats area, since they can be swapped out. 750 * These are kept internally in the way they are specified externally: in 751 * time until they expire. 752 * 753 * The real time interval timer is kept in the process table slot for the 754 * process, and its value (it_value) is kept as an absolute time rather than 755 * as a delta, so that it is easy to keep periodic real-time signals from 756 * drifting. 757 * 758 * Virtual time timers are processed in the hardclock() routine of 759 * kern_clock.c. The real time timer is processed by a timeout routine, 760 * called from the softclock() routine. Since a callout may be delayed in 761 * real time due to interrupt processing in the system, it is possible for 762 * the real time timeout routine (realitexpire, given below), to be delayed 763 * in real time past when it is supposed to occur. It does not suffice, 764 * therefore, to reload the real timer .it_value from the real time timers 765 * .it_interval. Rather, we compute the next time in absolute time the timer 766 * should go off. 767 */ 768 #ifndef _SYS_SYSPROTO_H_ 769 struct getitimer_args { 770 u_int which; 771 struct itimerval *itv; 772 }; 773 #endif 774 int 775 sys_getitimer(struct thread *td, struct getitimer_args *uap) 776 { 777 struct itimerval aitv; 778 int error; 779 780 error = kern_getitimer(td, uap->which, &aitv); 781 if (error != 0) 782 return (error); 783 return (copyout(&aitv, uap->itv, sizeof (struct itimerval))); 784 } 785 786 int 787 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv) 788 { 789 struct proc *p = td->td_proc; 790 struct timeval ctv; 791 792 if (which > ITIMER_PROF) 793 return (EINVAL); 794 795 if (which == ITIMER_REAL) { 796 /* 797 * Convert from absolute to relative time in .it_value 798 * part of real time timer. If time for real time timer 799 * has passed return 0, else return difference between 800 * current time and time for the timer to go off. 801 */ 802 PROC_LOCK(p); 803 *aitv = p->p_realtimer; 804 PROC_UNLOCK(p); 805 if (timevalisset(&aitv->it_value)) { 806 microuptime(&ctv); 807 if (timevalcmp(&aitv->it_value, &ctv, <)) 808 timevalclear(&aitv->it_value); 809 else 810 timevalsub(&aitv->it_value, &ctv); 811 } 812 } else { 813 PROC_ITIMLOCK(p); 814 *aitv = p->p_stats->p_timer[which]; 815 PROC_ITIMUNLOCK(p); 816 } 817 #ifdef KTRACE 818 if (KTRPOINT(td, KTR_STRUCT)) 819 ktritimerval(aitv); 820 #endif 821 return (0); 822 } 823 824 #ifndef _SYS_SYSPROTO_H_ 825 struct setitimer_args { 826 u_int which; 827 struct itimerval *itv, *oitv; 828 }; 829 #endif 830 int 831 sys_setitimer(struct thread *td, struct setitimer_args *uap) 832 { 833 struct itimerval aitv, oitv; 834 int error; 835 836 if (uap->itv == NULL) { 837 uap->itv = uap->oitv; 838 return (sys_getitimer(td, (struct getitimer_args *)uap)); 839 } 840 841 if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval)))) 842 return (error); 843 error = kern_setitimer(td, uap->which, &aitv, &oitv); 844 if (error != 0 || uap->oitv == NULL) 845 return (error); 846 return (copyout(&oitv, uap->oitv, sizeof(struct itimerval))); 847 } 848 849 int 850 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv, 851 struct itimerval *oitv) 852 { 853 struct proc *p = td->td_proc; 854 struct timeval ctv; 855 sbintime_t sbt, pr; 856 857 if (aitv == NULL) 858 return (kern_getitimer(td, which, oitv)); 859 860 if (which > ITIMER_PROF) 861 return (EINVAL); 862 #ifdef KTRACE 863 if (KTRPOINT(td, KTR_STRUCT)) 864 ktritimerval(aitv); 865 #endif 866 if (itimerfix(&aitv->it_value) || 867 aitv->it_value.tv_sec > INT32_MAX / 2) 868 return (EINVAL); 869 if (!timevalisset(&aitv->it_value)) 870 timevalclear(&aitv->it_interval); 871 else if (itimerfix(&aitv->it_interval) || 872 aitv->it_interval.tv_sec > INT32_MAX / 2) 873 return (EINVAL); 874 875 if (which == ITIMER_REAL) { 876 PROC_LOCK(p); 877 if (timevalisset(&p->p_realtimer.it_value)) 878 callout_stop(&p->p_itcallout); 879 microuptime(&ctv); 880 if (timevalisset(&aitv->it_value)) { 881 pr = tvtosbt(aitv->it_value) >> tc_precexp; 882 timevaladd(&aitv->it_value, &ctv); 883 sbt = tvtosbt(aitv->it_value); 884 callout_reset_sbt(&p->p_itcallout, sbt, pr, 885 realitexpire, p, C_ABSOLUTE); 886 } 887 *oitv = p->p_realtimer; 888 p->p_realtimer = *aitv; 889 PROC_UNLOCK(p); 890 if (timevalisset(&oitv->it_value)) { 891 if (timevalcmp(&oitv->it_value, &ctv, <)) 892 timevalclear(&oitv->it_value); 893 else 894 timevalsub(&oitv->it_value, &ctv); 895 } 896 } else { 897 if (aitv->it_interval.tv_sec == 0 && 898 aitv->it_interval.tv_usec != 0 && 899 aitv->it_interval.tv_usec < tick) 900 aitv->it_interval.tv_usec = tick; 901 if (aitv->it_value.tv_sec == 0 && 902 aitv->it_value.tv_usec != 0 && 903 aitv->it_value.tv_usec < tick) 904 aitv->it_value.tv_usec = tick; 905 PROC_ITIMLOCK(p); 906 *oitv = p->p_stats->p_timer[which]; 907 p->p_stats->p_timer[which] = *aitv; 908 PROC_ITIMUNLOCK(p); 909 } 910 #ifdef KTRACE 911 if (KTRPOINT(td, KTR_STRUCT)) 912 ktritimerval(oitv); 913 #endif 914 return (0); 915 } 916 917 static void 918 realitexpire_reset_callout(struct proc *p, sbintime_t *isbtp) 919 { 920 sbintime_t prec; 921 922 if ((p->p_flag & P_WEXIT) != 0) 923 return; 924 prec = isbtp == NULL ? tvtosbt(p->p_realtimer.it_interval) : *isbtp; 925 callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value), 926 prec >> tc_precexp, realitexpire, p, C_ABSOLUTE); 927 } 928 929 void 930 itimer_proc_continue(struct proc *p) 931 { 932 struct timeval ctv; 933 struct itimer *it; 934 int id; 935 936 PROC_LOCK_ASSERT(p, MA_OWNED); 937 938 if ((p->p_flag2 & P2_ITSTOPPED) != 0) { 939 p->p_flag2 &= ~P2_ITSTOPPED; 940 microuptime(&ctv); 941 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >=)) 942 realitexpire(p); 943 else 944 realitexpire_reset_callout(p, NULL); 945 } 946 947 if (p->p_itimers != NULL) { 948 for (id = 3; id < TIMER_MAX; id++) { 949 it = p->p_itimers->its_timers[id]; 950 if (it == NULL) 951 continue; 952 if ((it->it_flags & ITF_PSTOPPED) != 0) { 953 ITIMER_LOCK(it); 954 if ((it->it_flags & ITF_PSTOPPED) != 0) { 955 it->it_flags &= ~ITF_PSTOPPED; 956 if ((it->it_flags & ITF_DELETING) == 0) 957 realtimer_expire_l(it, true); 958 } 959 ITIMER_UNLOCK(it); 960 } 961 } 962 } 963 } 964 965 /* 966 * Real interval timer expired: 967 * send process whose timer expired an alarm signal. 968 * If time is not set up to reload, then just return. 969 * Else compute next time timer should go off which is > current time. 970 * This is where delay in processing this timeout causes multiple 971 * SIGALRM calls to be compressed into one. 972 * tvtohz() always adds 1 to allow for the time until the next clock 973 * interrupt being strictly less than 1 clock tick, but we don't want 974 * that here since we want to appear to be in sync with the clock 975 * interrupt even when we're delayed. 976 */ 977 static void 978 realitexpire(void *arg) 979 { 980 struct proc *p; 981 struct timeval ctv; 982 sbintime_t isbt; 983 984 p = (struct proc *)arg; 985 kern_psignal(p, SIGALRM); 986 if (!timevalisset(&p->p_realtimer.it_interval)) { 987 timevalclear(&p->p_realtimer.it_value); 988 return; 989 } 990 991 isbt = tvtosbt(p->p_realtimer.it_interval); 992 if (isbt >= sbt_timethreshold) 993 getmicrouptime(&ctv); 994 else 995 microuptime(&ctv); 996 do { 997 timevaladd(&p->p_realtimer.it_value, 998 &p->p_realtimer.it_interval); 999 } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=)); 1000 1001 if (P_SHOULDSTOP(p) || P_KILLED(p)) { 1002 p->p_flag2 |= P2_ITSTOPPED; 1003 return; 1004 } 1005 1006 p->p_flag2 &= ~P2_ITSTOPPED; 1007 realitexpire_reset_callout(p, &isbt); 1008 } 1009 1010 /* 1011 * Check that a proposed value to load into the .it_value or 1012 * .it_interval part of an interval timer is acceptable, and 1013 * fix it to have at least minimal value (i.e. if it is less 1014 * than the resolution of the clock, round it up.) 1015 */ 1016 int 1017 itimerfix(struct timeval *tv) 1018 { 1019 1020 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000) 1021 return (EINVAL); 1022 if (tv->tv_sec == 0 && tv->tv_usec != 0 && 1023 tv->tv_usec < (u_int)tick / 16) 1024 tv->tv_usec = (u_int)tick / 16; 1025 return (0); 1026 } 1027 1028 /* 1029 * Decrement an interval timer by a specified number 1030 * of microseconds, which must be less than a second, 1031 * i.e. < 1000000. If the timer expires, then reload 1032 * it. In this case, carry over (usec - old value) to 1033 * reduce the value reloaded into the timer so that 1034 * the timer does not drift. This routine assumes 1035 * that it is called in a context where the timers 1036 * on which it is operating cannot change in value. 1037 */ 1038 int 1039 itimerdecr(struct itimerval *itp, int usec) 1040 { 1041 1042 if (itp->it_value.tv_usec < usec) { 1043 if (itp->it_value.tv_sec == 0) { 1044 /* expired, and already in next interval */ 1045 usec -= itp->it_value.tv_usec; 1046 goto expire; 1047 } 1048 itp->it_value.tv_usec += 1000000; 1049 itp->it_value.tv_sec--; 1050 } 1051 itp->it_value.tv_usec -= usec; 1052 usec = 0; 1053 if (timevalisset(&itp->it_value)) 1054 return (1); 1055 /* expired, exactly at end of interval */ 1056 expire: 1057 if (timevalisset(&itp->it_interval)) { 1058 itp->it_value = itp->it_interval; 1059 itp->it_value.tv_usec -= usec; 1060 if (itp->it_value.tv_usec < 0) { 1061 itp->it_value.tv_usec += 1000000; 1062 itp->it_value.tv_sec--; 1063 } 1064 } else 1065 itp->it_value.tv_usec = 0; /* sec is already 0 */ 1066 return (0); 1067 } 1068 1069 /* 1070 * Add and subtract routines for timevals. 1071 * N.B.: subtract routine doesn't deal with 1072 * results which are before the beginning, 1073 * it just gets very confused in this case. 1074 * Caveat emptor. 1075 */ 1076 void 1077 timevaladd(struct timeval *t1, const struct timeval *t2) 1078 { 1079 1080 t1->tv_sec += t2->tv_sec; 1081 t1->tv_usec += t2->tv_usec; 1082 timevalfix(t1); 1083 } 1084 1085 void 1086 timevalsub(struct timeval *t1, const struct timeval *t2) 1087 { 1088 1089 t1->tv_sec -= t2->tv_sec; 1090 t1->tv_usec -= t2->tv_usec; 1091 timevalfix(t1); 1092 } 1093 1094 static void 1095 timevalfix(struct timeval *t1) 1096 { 1097 1098 if (t1->tv_usec < 0) { 1099 t1->tv_sec--; 1100 t1->tv_usec += 1000000; 1101 } 1102 if (t1->tv_usec >= 1000000) { 1103 t1->tv_sec++; 1104 t1->tv_usec -= 1000000; 1105 } 1106 } 1107 1108 /* 1109 * ratecheck(): simple time-based rate-limit checking. 1110 */ 1111 int 1112 ratecheck(struct timeval *lasttime, const struct timeval *mininterval) 1113 { 1114 struct timeval tv, delta; 1115 int rv = 0; 1116 1117 getmicrouptime(&tv); /* NB: 10ms precision */ 1118 delta = tv; 1119 timevalsub(&delta, lasttime); 1120 1121 /* 1122 * check for 0,0 is so that the message will be seen at least once, 1123 * even if interval is huge. 1124 */ 1125 if (timevalcmp(&delta, mininterval, >=) || 1126 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { 1127 *lasttime = tv; 1128 rv = 1; 1129 } 1130 1131 return (rv); 1132 } 1133 1134 /* 1135 * eventratecheck(): events per second limitation. 1136 * 1137 * Return 0 if the limit is to be enforced (e.g. the caller 1138 * should ignore the event because of the rate limitation). 1139 * 1140 * maxeps of 0 always causes zero to be returned. maxeps of -1 1141 * always causes 1 to be returned; this effectively defeats rate 1142 * limiting. 1143 * 1144 * Note that we maintain the struct timeval for compatibility 1145 * with other bsd systems. We reuse the storage and just monitor 1146 * clock ticks for minimal overhead. 1147 */ 1148 int 1149 eventratecheck(struct timeval *lasttime, int *cureps, int maxeps) 1150 { 1151 int now; 1152 1153 /* 1154 * Reset the last time and counter if this is the first call 1155 * or more than a second has passed since the last update of 1156 * lasttime. 1157 */ 1158 now = ticks; 1159 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) { 1160 lasttime->tv_sec = now; 1161 *cureps = 1; 1162 return (maxeps != 0); 1163 } else { 1164 (*cureps)++; /* NB: ignore potential overflow */ 1165 return (maxeps < 0 || *cureps <= maxeps); 1166 } 1167 } 1168 1169 static void 1170 itimer_start(void) 1171 { 1172 static const struct kclock rt_clock = { 1173 .timer_create = realtimer_create, 1174 .timer_delete = realtimer_delete, 1175 .timer_settime = realtimer_settime, 1176 .timer_gettime = realtimer_gettime, 1177 }; 1178 1179 itimer_zone = uma_zcreate("itimer", sizeof(struct itimer), 1180 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0); 1181 register_posix_clock(CLOCK_REALTIME, &rt_clock); 1182 register_posix_clock(CLOCK_MONOTONIC, &rt_clock); 1183 register_posix_clock(CLOCK_TAI, &rt_clock); 1184 p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L); 1185 p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX); 1186 p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX); 1187 } 1188 1189 static int 1190 register_posix_clock(int clockid, const struct kclock *clk) 1191 { 1192 if ((unsigned)clockid >= MAX_CLOCKS) { 1193 printf("%s: invalid clockid\n", __func__); 1194 return (0); 1195 } 1196 posix_clocks[clockid] = *clk; 1197 return (1); 1198 } 1199 1200 static int 1201 itimer_init(void *mem, int size, int flags) 1202 { 1203 struct itimer *it; 1204 1205 it = (struct itimer *)mem; 1206 mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF); 1207 return (0); 1208 } 1209 1210 static void 1211 itimer_fini(void *mem, int size) 1212 { 1213 struct itimer *it; 1214 1215 it = (struct itimer *)mem; 1216 mtx_destroy(&it->it_mtx); 1217 } 1218 1219 static void 1220 itimer_enter(struct itimer *it) 1221 { 1222 1223 mtx_assert(&it->it_mtx, MA_OWNED); 1224 it->it_usecount++; 1225 } 1226 1227 static void 1228 itimer_leave(struct itimer *it) 1229 { 1230 1231 mtx_assert(&it->it_mtx, MA_OWNED); 1232 KASSERT(it->it_usecount > 0, ("invalid it_usecount")); 1233 1234 if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0) 1235 wakeup(it); 1236 } 1237 1238 #ifndef _SYS_SYSPROTO_H_ 1239 struct ktimer_create_args { 1240 clockid_t clock_id; 1241 struct sigevent * evp; 1242 int * timerid; 1243 }; 1244 #endif 1245 int 1246 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap) 1247 { 1248 struct sigevent *evp, ev; 1249 int id; 1250 int error; 1251 1252 if (uap->evp == NULL) { 1253 evp = NULL; 1254 } else { 1255 error = copyin(uap->evp, &ev, sizeof(ev)); 1256 if (error != 0) 1257 return (error); 1258 evp = &ev; 1259 } 1260 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 1261 if (error == 0) { 1262 error = copyout(&id, uap->timerid, sizeof(int)); 1263 if (error != 0) 1264 kern_ktimer_delete(td, id); 1265 } 1266 return (error); 1267 } 1268 1269 int 1270 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp, 1271 int *timerid, int preset_id) 1272 { 1273 struct proc *p = td->td_proc; 1274 struct itimer *it; 1275 int id; 1276 int error; 1277 1278 if (clock_id < 0 || clock_id >= MAX_CLOCKS) 1279 return (EINVAL); 1280 1281 if (posix_clocks[clock_id].timer_create == NULL) 1282 return (EINVAL); 1283 1284 if (evp != NULL) { 1285 if (evp->sigev_notify != SIGEV_NONE && 1286 evp->sigev_notify != SIGEV_SIGNAL && 1287 evp->sigev_notify != SIGEV_THREAD_ID) 1288 return (EINVAL); 1289 if ((evp->sigev_notify == SIGEV_SIGNAL || 1290 evp->sigev_notify == SIGEV_THREAD_ID) && 1291 !_SIG_VALID(evp->sigev_signo)) 1292 return (EINVAL); 1293 } 1294 1295 if (p->p_itimers == NULL) 1296 itimers_alloc(p); 1297 1298 it = uma_zalloc(itimer_zone, M_WAITOK); 1299 it->it_flags = 0; 1300 it->it_usecount = 0; 1301 timespecclear(&it->it_time.it_value); 1302 timespecclear(&it->it_time.it_interval); 1303 it->it_overrun = 0; 1304 it->it_overrun_last = 0; 1305 it->it_clockid = clock_id; 1306 it->it_proc = p; 1307 ksiginfo_init(&it->it_ksi); 1308 it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT; 1309 error = CLOCK_CALL(clock_id, timer_create, (it)); 1310 if (error != 0) 1311 goto out; 1312 1313 PROC_LOCK(p); 1314 if (preset_id != -1) { 1315 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id")); 1316 id = preset_id; 1317 if (p->p_itimers->its_timers[id] != NULL) { 1318 PROC_UNLOCK(p); 1319 error = 0; 1320 goto out; 1321 } 1322 } else { 1323 /* 1324 * Find a free timer slot, skipping those reserved 1325 * for setitimer(). 1326 */ 1327 for (id = 3; id < TIMER_MAX; id++) 1328 if (p->p_itimers->its_timers[id] == NULL) 1329 break; 1330 if (id == TIMER_MAX) { 1331 PROC_UNLOCK(p); 1332 error = EAGAIN; 1333 goto out; 1334 } 1335 } 1336 p->p_itimers->its_timers[id] = it; 1337 if (evp != NULL) 1338 it->it_sigev = *evp; 1339 else { 1340 it->it_sigev.sigev_notify = SIGEV_SIGNAL; 1341 switch (clock_id) { 1342 default: 1343 case CLOCK_REALTIME: 1344 case CLOCK_TAI: 1345 it->it_sigev.sigev_signo = SIGALRM; 1346 break; 1347 case CLOCK_VIRTUAL: 1348 it->it_sigev.sigev_signo = SIGVTALRM; 1349 break; 1350 case CLOCK_PROF: 1351 it->it_sigev.sigev_signo = SIGPROF; 1352 break; 1353 } 1354 it->it_sigev.sigev_value.sival_int = id; 1355 } 1356 1357 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1358 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1359 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo; 1360 it->it_ksi.ksi_code = SI_TIMER; 1361 it->it_ksi.ksi_value = it->it_sigev.sigev_value; 1362 it->it_ksi.ksi_timerid = id; 1363 } 1364 PROC_UNLOCK(p); 1365 *timerid = id; 1366 return (0); 1367 1368 out: 1369 ITIMER_LOCK(it); 1370 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1371 ITIMER_UNLOCK(it); 1372 uma_zfree(itimer_zone, it); 1373 return (error); 1374 } 1375 1376 #ifndef _SYS_SYSPROTO_H_ 1377 struct ktimer_delete_args { 1378 int timerid; 1379 }; 1380 #endif 1381 int 1382 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap) 1383 { 1384 1385 return (kern_ktimer_delete(td, uap->timerid)); 1386 } 1387 1388 static struct itimer * 1389 itimer_find(struct proc *p, int timerid) 1390 { 1391 struct itimer *it; 1392 1393 PROC_LOCK_ASSERT(p, MA_OWNED); 1394 if ((p->p_itimers == NULL) || 1395 (timerid < 0) || (timerid >= TIMER_MAX) || 1396 (it = p->p_itimers->its_timers[timerid]) == NULL) { 1397 return (NULL); 1398 } 1399 ITIMER_LOCK(it); 1400 if ((it->it_flags & ITF_DELETING) != 0) { 1401 ITIMER_UNLOCK(it); 1402 it = NULL; 1403 } 1404 return (it); 1405 } 1406 1407 int 1408 kern_ktimer_delete(struct thread *td, int timerid) 1409 { 1410 struct proc *p = td->td_proc; 1411 struct itimer *it; 1412 1413 PROC_LOCK(p); 1414 it = itimer_find(p, timerid); 1415 if (it == NULL) { 1416 PROC_UNLOCK(p); 1417 return (EINVAL); 1418 } 1419 PROC_UNLOCK(p); 1420 1421 it->it_flags |= ITF_DELETING; 1422 while (it->it_usecount > 0) { 1423 it->it_flags |= ITF_WANTED; 1424 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0); 1425 } 1426 it->it_flags &= ~ITF_WANTED; 1427 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1428 ITIMER_UNLOCK(it); 1429 1430 PROC_LOCK(p); 1431 if (KSI_ONQ(&it->it_ksi)) 1432 sigqueue_take(&it->it_ksi); 1433 p->p_itimers->its_timers[timerid] = NULL; 1434 PROC_UNLOCK(p); 1435 uma_zfree(itimer_zone, it); 1436 return (0); 1437 } 1438 1439 #ifndef _SYS_SYSPROTO_H_ 1440 struct ktimer_settime_args { 1441 int timerid; 1442 int flags; 1443 const struct itimerspec * value; 1444 struct itimerspec * ovalue; 1445 }; 1446 #endif 1447 int 1448 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap) 1449 { 1450 struct itimerspec val, oval, *ovalp; 1451 int error; 1452 1453 error = copyin(uap->value, &val, sizeof(val)); 1454 if (error != 0) 1455 return (error); 1456 ovalp = uap->ovalue != NULL ? &oval : NULL; 1457 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 1458 if (error == 0 && uap->ovalue != NULL) 1459 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp)); 1460 return (error); 1461 } 1462 1463 int 1464 kern_ktimer_settime(struct thread *td, int timer_id, int flags, 1465 struct itimerspec *val, struct itimerspec *oval) 1466 { 1467 struct proc *p; 1468 struct itimer *it; 1469 int error; 1470 1471 p = td->td_proc; 1472 PROC_LOCK(p); 1473 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1474 PROC_UNLOCK(p); 1475 error = EINVAL; 1476 } else { 1477 PROC_UNLOCK(p); 1478 itimer_enter(it); 1479 error = CLOCK_CALL(it->it_clockid, timer_settime, (it, 1480 flags, val, oval)); 1481 itimer_leave(it); 1482 ITIMER_UNLOCK(it); 1483 } 1484 return (error); 1485 } 1486 1487 #ifndef _SYS_SYSPROTO_H_ 1488 struct ktimer_gettime_args { 1489 int timerid; 1490 struct itimerspec * value; 1491 }; 1492 #endif 1493 int 1494 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap) 1495 { 1496 struct itimerspec val; 1497 int error; 1498 1499 error = kern_ktimer_gettime(td, uap->timerid, &val); 1500 if (error == 0) 1501 error = copyout(&val, uap->value, sizeof(val)); 1502 return (error); 1503 } 1504 1505 int 1506 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val) 1507 { 1508 struct proc *p; 1509 struct itimer *it; 1510 int error; 1511 1512 p = td->td_proc; 1513 PROC_LOCK(p); 1514 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1515 PROC_UNLOCK(p); 1516 error = EINVAL; 1517 } else { 1518 PROC_UNLOCK(p); 1519 itimer_enter(it); 1520 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val)); 1521 itimer_leave(it); 1522 ITIMER_UNLOCK(it); 1523 } 1524 return (error); 1525 } 1526 1527 #ifndef _SYS_SYSPROTO_H_ 1528 struct timer_getoverrun_args { 1529 int timerid; 1530 }; 1531 #endif 1532 int 1533 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap) 1534 { 1535 1536 return (kern_ktimer_getoverrun(td, uap->timerid)); 1537 } 1538 1539 int 1540 kern_ktimer_getoverrun(struct thread *td, int timer_id) 1541 { 1542 struct proc *p = td->td_proc; 1543 struct itimer *it; 1544 int error ; 1545 1546 PROC_LOCK(p); 1547 if (timer_id < 3 || 1548 (it = itimer_find(p, timer_id)) == NULL) { 1549 PROC_UNLOCK(p); 1550 error = EINVAL; 1551 } else { 1552 td->td_retval[0] = it->it_overrun_last; 1553 ITIMER_UNLOCK(it); 1554 PROC_UNLOCK(p); 1555 error = 0; 1556 } 1557 return (error); 1558 } 1559 1560 static int 1561 realtimer_create(struct itimer *it) 1562 { 1563 callout_init_mtx(&it->it_callout, &it->it_mtx, 0); 1564 return (0); 1565 } 1566 1567 static int 1568 realtimer_delete(struct itimer *it) 1569 { 1570 mtx_assert(&it->it_mtx, MA_OWNED); 1571 1572 /* 1573 * clear timer's value and interval to tell realtimer_expire 1574 * to not rearm the timer. 1575 */ 1576 timespecclear(&it->it_time.it_value); 1577 timespecclear(&it->it_time.it_interval); 1578 ITIMER_UNLOCK(it); 1579 callout_drain(&it->it_callout); 1580 ITIMER_LOCK(it); 1581 return (0); 1582 } 1583 1584 static int 1585 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue) 1586 { 1587 struct timespec cts; 1588 int error; 1589 1590 mtx_assert(&it->it_mtx, MA_OWNED); 1591 1592 error = kern_clock_gettime(curthread, it->it_clockid, &cts); 1593 if (error != 0) 1594 return (error); 1595 1596 *ovalue = it->it_time; 1597 if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) { 1598 timespecsub(&ovalue->it_value, &cts, &ovalue->it_value); 1599 if (ovalue->it_value.tv_sec < 0 || 1600 (ovalue->it_value.tv_sec == 0 && 1601 ovalue->it_value.tv_nsec == 0)) { 1602 ovalue->it_value.tv_sec = 0; 1603 ovalue->it_value.tv_nsec = 1; 1604 } 1605 } 1606 return (0); 1607 } 1608 1609 static int 1610 realtimer_settime(struct itimer *it, int flags, struct itimerspec *value, 1611 struct itimerspec *ovalue) 1612 { 1613 struct timespec cts, ts; 1614 struct timeval tv; 1615 struct itimerspec val; 1616 int error; 1617 1618 mtx_assert(&it->it_mtx, MA_OWNED); 1619 1620 val = *value; 1621 if (itimespecfix(&val.it_value)) 1622 return (EINVAL); 1623 1624 if (timespecisset(&val.it_value)) { 1625 if (itimespecfix(&val.it_interval)) 1626 return (EINVAL); 1627 } else { 1628 timespecclear(&val.it_interval); 1629 } 1630 1631 if (ovalue != NULL) 1632 realtimer_gettime(it, ovalue); 1633 1634 it->it_time = val; 1635 if (timespecisset(&val.it_value)) { 1636 error = kern_clock_gettime(curthread, it->it_clockid, &cts); 1637 if (error != 0) 1638 return (error); 1639 1640 ts = val.it_value; 1641 if ((flags & TIMER_ABSTIME) == 0) { 1642 /* Convert to absolute time. */ 1643 timespecadd(&it->it_time.it_value, &cts, 1644 &it->it_time.it_value); 1645 } else { 1646 timespecsub(&ts, &cts, &ts); 1647 /* 1648 * We don't care if ts is negative, tztohz will 1649 * fix it. 1650 */ 1651 } 1652 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1653 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire, 1654 it); 1655 } else { 1656 callout_stop(&it->it_callout); 1657 } 1658 1659 return (0); 1660 } 1661 1662 int 1663 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi) 1664 { 1665 struct itimer *it; 1666 1667 PROC_LOCK_ASSERT(p, MA_OWNED); 1668 it = itimer_find(p, timerid); 1669 if (it != NULL) { 1670 ksi->ksi_overrun = it->it_overrun; 1671 it->it_overrun_last = it->it_overrun; 1672 it->it_overrun = 0; 1673 ITIMER_UNLOCK(it); 1674 return (0); 1675 } 1676 return (EINVAL); 1677 } 1678 1679 static int 1680 itimespecfix(struct timespec *ts) 1681 { 1682 1683 if (!timespecvalid_interval(ts)) 1684 return (EINVAL); 1685 if ((UINT64_MAX - ts->tv_nsec) / NS_PER_SEC < ts->tv_sec) 1686 return (EINVAL); 1687 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000) 1688 ts->tv_nsec = tick * 1000; 1689 return (0); 1690 } 1691 1692 #define timespectons(tsp) \ 1693 ((uint64_t)(tsp)->tv_sec * NS_PER_SEC + (tsp)->tv_nsec) 1694 #define timespecfromns(ns) (struct timespec){ \ 1695 .tv_sec = (ns) / NS_PER_SEC, \ 1696 .tv_nsec = (ns) % NS_PER_SEC \ 1697 } 1698 1699 static void 1700 realtimer_expire_l(struct itimer *it, bool proc_locked) 1701 { 1702 struct timespec cts, ts; 1703 struct timeval tv; 1704 struct proc *p; 1705 uint64_t interval, now, overruns, value; 1706 int error; 1707 1708 error = kern_clock_gettime(curthread, it->it_clockid, &cts); 1709 1710 /* Only fire if time is reached. */ 1711 if (error == 0 && timespeccmp(&cts, &it->it_time.it_value, >=)) { 1712 if (timespecisset(&it->it_time.it_interval)) { 1713 timespecadd(&it->it_time.it_value, 1714 &it->it_time.it_interval, 1715 &it->it_time.it_value); 1716 1717 interval = timespectons(&it->it_time.it_interval); 1718 value = timespectons(&it->it_time.it_value); 1719 now = timespectons(&cts); 1720 1721 if (now >= value) { 1722 /* 1723 * We missed at least one period. 1724 */ 1725 overruns = howmany(now - value + 1, interval); 1726 if (it->it_overrun + overruns >= 1727 it->it_overrun && 1728 it->it_overrun + overruns <= INT_MAX) { 1729 it->it_overrun += (int)overruns; 1730 } else { 1731 it->it_overrun = INT_MAX; 1732 it->it_ksi.ksi_errno = ERANGE; 1733 } 1734 value = 1735 now + interval - (now - value) % interval; 1736 it->it_time.it_value = timespecfromns(value); 1737 } 1738 } else { 1739 /* single shot timer ? */ 1740 timespecclear(&it->it_time.it_value); 1741 } 1742 1743 p = it->it_proc; 1744 if (timespecisset(&it->it_time.it_value)) { 1745 if (P_SHOULDSTOP(p) || P_KILLED(p)) { 1746 it->it_flags |= ITF_PSTOPPED; 1747 } else { 1748 timespecsub(&it->it_time.it_value, &cts, &ts); 1749 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1750 callout_reset(&it->it_callout, tvtohz(&tv), 1751 realtimer_expire, it); 1752 } 1753 } 1754 1755 itimer_enter(it); 1756 ITIMER_UNLOCK(it); 1757 if (proc_locked) 1758 PROC_UNLOCK(p); 1759 itimer_fire(it); 1760 if (proc_locked) 1761 PROC_LOCK(p); 1762 ITIMER_LOCK(it); 1763 itimer_leave(it); 1764 } else if (timespecisset(&it->it_time.it_value)) { 1765 p = it->it_proc; 1766 if (P_SHOULDSTOP(p) || P_KILLED(p)) { 1767 it->it_flags |= ITF_PSTOPPED; 1768 } else { 1769 ts = it->it_time.it_value; 1770 timespecsub(&ts, &cts, &ts); 1771 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1772 callout_reset(&it->it_callout, tvtohz(&tv), 1773 realtimer_expire, it); 1774 } 1775 } 1776 } 1777 1778 /* Timeout callback for realtime timer */ 1779 static void 1780 realtimer_expire(void *arg) 1781 { 1782 realtimer_expire_l(arg, false); 1783 } 1784 1785 static void 1786 itimer_fire(struct itimer *it) 1787 { 1788 struct proc *p = it->it_proc; 1789 struct thread *td; 1790 1791 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1792 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1793 if (sigev_findtd(p, &it->it_sigev, &td) != 0) { 1794 ITIMER_LOCK(it); 1795 timespecclear(&it->it_time.it_value); 1796 timespecclear(&it->it_time.it_interval); 1797 callout_stop(&it->it_callout); 1798 ITIMER_UNLOCK(it); 1799 return; 1800 } 1801 if (!KSI_ONQ(&it->it_ksi)) { 1802 it->it_ksi.ksi_errno = 0; 1803 ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev); 1804 tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi); 1805 } else { 1806 if (it->it_overrun < INT_MAX) 1807 it->it_overrun++; 1808 else 1809 it->it_ksi.ksi_errno = ERANGE; 1810 } 1811 PROC_UNLOCK(p); 1812 } 1813 } 1814 1815 static void 1816 itimers_alloc(struct proc *p) 1817 { 1818 struct itimers *its; 1819 1820 its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO); 1821 PROC_LOCK(p); 1822 if (p->p_itimers == NULL) { 1823 p->p_itimers = its; 1824 PROC_UNLOCK(p); 1825 } 1826 else { 1827 PROC_UNLOCK(p); 1828 free(its, M_SUBPROC); 1829 } 1830 } 1831 1832 /* Clean up timers when some process events are being triggered. */ 1833 static void 1834 itimers_event_exit_exec(int start_idx, struct proc *p) 1835 { 1836 struct itimers *its; 1837 struct itimer *it; 1838 int i; 1839 1840 its = p->p_itimers; 1841 if (its == NULL) 1842 return; 1843 1844 for (i = start_idx; i < TIMER_MAX; ++i) { 1845 if ((it = its->its_timers[i]) != NULL) 1846 kern_ktimer_delete(curthread, i); 1847 } 1848 if (its->its_timers[0] == NULL && its->its_timers[1] == NULL && 1849 its->its_timers[2] == NULL) { 1850 /* Synchronize with itimer_proc_continue(). */ 1851 PROC_LOCK(p); 1852 p->p_itimers = NULL; 1853 PROC_UNLOCK(p); 1854 free(its, M_SUBPROC); 1855 } 1856 } 1857 1858 void 1859 itimers_exec(struct proc *p) 1860 { 1861 /* 1862 * According to susv3, XSI interval timers should be inherited 1863 * by new image. 1864 */ 1865 itimers_event_exit_exec(3, p); 1866 } 1867 1868 void 1869 itimers_exit(struct proc *p) 1870 { 1871 itimers_event_exit_exec(0, p); 1872 } 1873