1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_time.c 8.1 (Berkeley) 6/10/93 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ktrace.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/limits.h> 42 #include <sys/clock.h> 43 #include <sys/lock.h> 44 #include <sys/mutex.h> 45 #include <sys/sysproto.h> 46 #include <sys/resourcevar.h> 47 #include <sys/signalvar.h> 48 #include <sys/kernel.h> 49 #include <sys/sleepqueue.h> 50 #include <sys/syscallsubr.h> 51 #include <sys/sysctl.h> 52 #include <sys/priv.h> 53 #include <sys/proc.h> 54 #include <sys/posix4.h> 55 #include <sys/time.h> 56 #include <sys/timers.h> 57 #include <sys/timetc.h> 58 #include <sys/vnode.h> 59 #ifdef KTRACE 60 #include <sys/ktrace.h> 61 #endif 62 63 #include <vm/vm.h> 64 #include <vm/vm_extern.h> 65 66 #define MAX_CLOCKS (CLOCK_MONOTONIC+1) 67 #define CPUCLOCK_BIT 0x80000000 68 #define CPUCLOCK_PROCESS_BIT 0x40000000 69 #define CPUCLOCK_ID_MASK (~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT)) 70 #define MAKE_THREAD_CPUCLOCK(tid) (CPUCLOCK_BIT|(tid)) 71 #define MAKE_PROCESS_CPUCLOCK(pid) \ 72 (CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid)) 73 74 #define NS_PER_SEC 1000000000 75 76 static struct kclock posix_clocks[MAX_CLOCKS]; 77 static uma_zone_t itimer_zone = NULL; 78 79 /* 80 * Time of day and interval timer support. 81 * 82 * These routines provide the kernel entry points to get and set 83 * the time-of-day and per-process interval timers. Subroutines 84 * here provide support for adding and subtracting timeval structures 85 * and decrementing interval timers, optionally reloading the interval 86 * timers when they expire. 87 */ 88 89 static int settime(struct thread *, struct timeval *); 90 static void timevalfix(struct timeval *); 91 static int user_clock_nanosleep(struct thread *td, clockid_t clock_id, 92 int flags, const struct timespec *ua_rqtp, 93 struct timespec *ua_rmtp); 94 95 static void itimer_start(void); 96 static int itimer_init(void *, int, int); 97 static void itimer_fini(void *, int); 98 static void itimer_enter(struct itimer *); 99 static void itimer_leave(struct itimer *); 100 static struct itimer *itimer_find(struct proc *, int); 101 static void itimers_alloc(struct proc *); 102 static int realtimer_create(struct itimer *); 103 static int realtimer_gettime(struct itimer *, struct itimerspec *); 104 static int realtimer_settime(struct itimer *, int, 105 struct itimerspec *, struct itimerspec *); 106 static int realtimer_delete(struct itimer *); 107 static void realtimer_clocktime(clockid_t, struct timespec *); 108 static void realtimer_expire(void *); 109 static void realtimer_expire_l(struct itimer *it, bool proc_locked); 110 111 static void realitexpire(void *arg); 112 113 static int register_posix_clock(int, const struct kclock *); 114 static void itimer_fire(struct itimer *it); 115 static int itimespecfix(struct timespec *ts); 116 117 #define CLOCK_CALL(clock, call, arglist) \ 118 ((*posix_clocks[clock].call) arglist) 119 120 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL); 121 122 static int 123 settime(struct thread *td, struct timeval *tv) 124 { 125 struct timeval delta, tv1, tv2; 126 static struct timeval maxtime, laststep; 127 struct timespec ts; 128 129 microtime(&tv1); 130 delta = *tv; 131 timevalsub(&delta, &tv1); 132 133 /* 134 * If the system is secure, we do not allow the time to be 135 * set to a value earlier than 1 second less than the highest 136 * time we have yet seen. The worst a miscreant can do in 137 * this circumstance is "freeze" time. He couldn't go 138 * back to the past. 139 * 140 * We similarly do not allow the clock to be stepped more 141 * than one second, nor more than once per second. This allows 142 * a miscreant to make the clock march double-time, but no worse. 143 */ 144 if (securelevel_gt(td->td_ucred, 1) != 0) { 145 if (delta.tv_sec < 0 || delta.tv_usec < 0) { 146 /* 147 * Update maxtime to latest time we've seen. 148 */ 149 if (tv1.tv_sec > maxtime.tv_sec) 150 maxtime = tv1; 151 tv2 = *tv; 152 timevalsub(&tv2, &maxtime); 153 if (tv2.tv_sec < -1) { 154 tv->tv_sec = maxtime.tv_sec - 1; 155 printf("Time adjustment clamped to -1 second\n"); 156 } 157 } else { 158 if (tv1.tv_sec == laststep.tv_sec) 159 return (EPERM); 160 if (delta.tv_sec > 1) { 161 tv->tv_sec = tv1.tv_sec + 1; 162 printf("Time adjustment clamped to +1 second\n"); 163 } 164 laststep = *tv; 165 } 166 } 167 168 ts.tv_sec = tv->tv_sec; 169 ts.tv_nsec = tv->tv_usec * 1000; 170 tc_setclock(&ts); 171 resettodr(); 172 return (0); 173 } 174 175 #ifndef _SYS_SYSPROTO_H_ 176 struct clock_getcpuclockid2_args { 177 id_t id; 178 int which, 179 clockid_t *clock_id; 180 }; 181 #endif 182 /* ARGSUSED */ 183 int 184 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap) 185 { 186 clockid_t clk_id; 187 int error; 188 189 error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id); 190 if (error == 0) 191 error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t)); 192 return (error); 193 } 194 195 int 196 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which, 197 clockid_t *clk_id) 198 { 199 struct proc *p; 200 pid_t pid; 201 lwpid_t tid; 202 int error; 203 204 switch (which) { 205 case CPUCLOCK_WHICH_PID: 206 if (id != 0) { 207 error = pget(id, PGET_CANSEE | PGET_NOTID, &p); 208 if (error != 0) 209 return (error); 210 PROC_UNLOCK(p); 211 pid = id; 212 } else { 213 pid = td->td_proc->p_pid; 214 } 215 *clk_id = MAKE_PROCESS_CPUCLOCK(pid); 216 return (0); 217 case CPUCLOCK_WHICH_TID: 218 tid = id == 0 ? td->td_tid : id; 219 *clk_id = MAKE_THREAD_CPUCLOCK(tid); 220 return (0); 221 default: 222 return (EINVAL); 223 } 224 } 225 226 #ifndef _SYS_SYSPROTO_H_ 227 struct clock_gettime_args { 228 clockid_t clock_id; 229 struct timespec *tp; 230 }; 231 #endif 232 /* ARGSUSED */ 233 int 234 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap) 235 { 236 struct timespec ats; 237 int error; 238 239 error = kern_clock_gettime(td, uap->clock_id, &ats); 240 if (error == 0) 241 error = copyout(&ats, uap->tp, sizeof(ats)); 242 243 return (error); 244 } 245 246 static inline void 247 cputick2timespec(uint64_t runtime, struct timespec *ats) 248 { 249 uint64_t tr; 250 tr = cpu_tickrate(); 251 ats->tv_sec = runtime / tr; 252 ats->tv_nsec = ((runtime % tr) * 1000000000ULL) / tr; 253 } 254 255 void 256 kern_thread_cputime(struct thread *targettd, struct timespec *ats) 257 { 258 uint64_t runtime, curtime, switchtime; 259 260 if (targettd == NULL) { /* current thread */ 261 spinlock_enter(); 262 switchtime = PCPU_GET(switchtime); 263 curtime = cpu_ticks(); 264 runtime = curthread->td_runtime; 265 spinlock_exit(); 266 runtime += curtime - switchtime; 267 } else { 268 PROC_LOCK_ASSERT(targettd->td_proc, MA_OWNED); 269 thread_lock(targettd); 270 runtime = targettd->td_runtime; 271 thread_unlock(targettd); 272 } 273 cputick2timespec(runtime, ats); 274 } 275 276 void 277 kern_process_cputime(struct proc *targetp, struct timespec *ats) 278 { 279 uint64_t runtime; 280 struct rusage ru; 281 282 PROC_LOCK_ASSERT(targetp, MA_OWNED); 283 PROC_STATLOCK(targetp); 284 rufetch(targetp, &ru); 285 runtime = targetp->p_rux.rux_runtime; 286 if (curthread->td_proc == targetp) 287 runtime += cpu_ticks() - PCPU_GET(switchtime); 288 PROC_STATUNLOCK(targetp); 289 cputick2timespec(runtime, ats); 290 } 291 292 static int 293 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats) 294 { 295 struct proc *p, *p2; 296 struct thread *td2; 297 lwpid_t tid; 298 pid_t pid; 299 int error; 300 301 p = td->td_proc; 302 if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) { 303 tid = clock_id & CPUCLOCK_ID_MASK; 304 td2 = tdfind(tid, p->p_pid); 305 if (td2 == NULL) 306 return (EINVAL); 307 kern_thread_cputime(td2, ats); 308 PROC_UNLOCK(td2->td_proc); 309 } else { 310 pid = clock_id & CPUCLOCK_ID_MASK; 311 error = pget(pid, PGET_CANSEE, &p2); 312 if (error != 0) 313 return (EINVAL); 314 kern_process_cputime(p2, ats); 315 PROC_UNLOCK(p2); 316 } 317 return (0); 318 } 319 320 int 321 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats) 322 { 323 struct timeval sys, user; 324 struct proc *p; 325 326 p = td->td_proc; 327 switch (clock_id) { 328 case CLOCK_REALTIME: /* Default to precise. */ 329 case CLOCK_REALTIME_PRECISE: 330 nanotime(ats); 331 break; 332 case CLOCK_REALTIME_FAST: 333 getnanotime(ats); 334 break; 335 case CLOCK_VIRTUAL: 336 PROC_LOCK(p); 337 PROC_STATLOCK(p); 338 calcru(p, &user, &sys); 339 PROC_STATUNLOCK(p); 340 PROC_UNLOCK(p); 341 TIMEVAL_TO_TIMESPEC(&user, ats); 342 break; 343 case CLOCK_PROF: 344 PROC_LOCK(p); 345 PROC_STATLOCK(p); 346 calcru(p, &user, &sys); 347 PROC_STATUNLOCK(p); 348 PROC_UNLOCK(p); 349 timevaladd(&user, &sys); 350 TIMEVAL_TO_TIMESPEC(&user, ats); 351 break; 352 case CLOCK_MONOTONIC: /* Default to precise. */ 353 case CLOCK_MONOTONIC_PRECISE: 354 case CLOCK_UPTIME: 355 case CLOCK_UPTIME_PRECISE: 356 nanouptime(ats); 357 break; 358 case CLOCK_UPTIME_FAST: 359 case CLOCK_MONOTONIC_FAST: 360 getnanouptime(ats); 361 break; 362 case CLOCK_SECOND: 363 ats->tv_sec = time_second; 364 ats->tv_nsec = 0; 365 break; 366 case CLOCK_THREAD_CPUTIME_ID: 367 kern_thread_cputime(NULL, ats); 368 break; 369 case CLOCK_PROCESS_CPUTIME_ID: 370 PROC_LOCK(p); 371 kern_process_cputime(p, ats); 372 PROC_UNLOCK(p); 373 break; 374 default: 375 if ((int)clock_id >= 0) 376 return (EINVAL); 377 return (get_cputime(td, clock_id, ats)); 378 } 379 return (0); 380 } 381 382 #ifndef _SYS_SYSPROTO_H_ 383 struct clock_settime_args { 384 clockid_t clock_id; 385 const struct timespec *tp; 386 }; 387 #endif 388 /* ARGSUSED */ 389 int 390 sys_clock_settime(struct thread *td, struct clock_settime_args *uap) 391 { 392 struct timespec ats; 393 int error; 394 395 if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0) 396 return (error); 397 return (kern_clock_settime(td, uap->clock_id, &ats)); 398 } 399 400 static int allow_insane_settime = 0; 401 SYSCTL_INT(_debug, OID_AUTO, allow_insane_settime, CTLFLAG_RWTUN, 402 &allow_insane_settime, 0, 403 "do not perform possibly restrictive checks on settime(2) args"); 404 405 int 406 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats) 407 { 408 struct timeval atv; 409 int error; 410 411 if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0) 412 return (error); 413 if (clock_id != CLOCK_REALTIME) 414 return (EINVAL); 415 if (!timespecvalid_interval(ats)) 416 return (EINVAL); 417 if (!allow_insane_settime && 418 (ats->tv_sec > 8000ULL * 365 * 24 * 60 * 60 || 419 ats->tv_sec < utc_offset())) 420 return (EINVAL); 421 /* XXX Don't convert nsec->usec and back */ 422 TIMESPEC_TO_TIMEVAL(&atv, ats); 423 error = settime(td, &atv); 424 return (error); 425 } 426 427 #ifndef _SYS_SYSPROTO_H_ 428 struct clock_getres_args { 429 clockid_t clock_id; 430 struct timespec *tp; 431 }; 432 #endif 433 int 434 sys_clock_getres(struct thread *td, struct clock_getres_args *uap) 435 { 436 struct timespec ts; 437 int error; 438 439 if (uap->tp == NULL) 440 return (0); 441 442 error = kern_clock_getres(td, uap->clock_id, &ts); 443 if (error == 0) 444 error = copyout(&ts, uap->tp, sizeof(ts)); 445 return (error); 446 } 447 448 int 449 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts) 450 { 451 452 ts->tv_sec = 0; 453 switch (clock_id) { 454 case CLOCK_REALTIME: 455 case CLOCK_REALTIME_FAST: 456 case CLOCK_REALTIME_PRECISE: 457 case CLOCK_MONOTONIC: 458 case CLOCK_MONOTONIC_FAST: 459 case CLOCK_MONOTONIC_PRECISE: 460 case CLOCK_UPTIME: 461 case CLOCK_UPTIME_FAST: 462 case CLOCK_UPTIME_PRECISE: 463 /* 464 * Round up the result of the division cheaply by adding 1. 465 * Rounding up is especially important if rounding down 466 * would give 0. Perfect rounding is unimportant. 467 */ 468 ts->tv_nsec = NS_PER_SEC / tc_getfrequency() + 1; 469 break; 470 case CLOCK_VIRTUAL: 471 case CLOCK_PROF: 472 /* Accurately round up here because we can do so cheaply. */ 473 ts->tv_nsec = howmany(NS_PER_SEC, hz); 474 break; 475 case CLOCK_SECOND: 476 ts->tv_sec = 1; 477 ts->tv_nsec = 0; 478 break; 479 case CLOCK_THREAD_CPUTIME_ID: 480 case CLOCK_PROCESS_CPUTIME_ID: 481 cputime: 482 ts->tv_nsec = 1000000000 / cpu_tickrate() + 1; 483 break; 484 default: 485 if ((int)clock_id < 0) 486 goto cputime; 487 return (EINVAL); 488 } 489 return (0); 490 } 491 492 int 493 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt) 494 { 495 496 return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt, 497 rmt)); 498 } 499 500 static uint8_t nanowait[MAXCPU]; 501 502 int 503 kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 504 const struct timespec *rqt, struct timespec *rmt) 505 { 506 struct timespec ts, now; 507 sbintime_t sbt, sbtt, prec, tmp; 508 time_t over; 509 int error; 510 bool is_abs_real; 511 512 if (rqt->tv_nsec < 0 || rqt->tv_nsec >= NS_PER_SEC) 513 return (EINVAL); 514 if ((flags & ~TIMER_ABSTIME) != 0) 515 return (EINVAL); 516 switch (clock_id) { 517 case CLOCK_REALTIME: 518 case CLOCK_REALTIME_PRECISE: 519 case CLOCK_REALTIME_FAST: 520 case CLOCK_SECOND: 521 is_abs_real = (flags & TIMER_ABSTIME) != 0; 522 break; 523 case CLOCK_MONOTONIC: 524 case CLOCK_MONOTONIC_PRECISE: 525 case CLOCK_MONOTONIC_FAST: 526 case CLOCK_UPTIME: 527 case CLOCK_UPTIME_PRECISE: 528 case CLOCK_UPTIME_FAST: 529 is_abs_real = false; 530 break; 531 case CLOCK_VIRTUAL: 532 case CLOCK_PROF: 533 case CLOCK_PROCESS_CPUTIME_ID: 534 return (ENOTSUP); 535 case CLOCK_THREAD_CPUTIME_ID: 536 default: 537 return (EINVAL); 538 } 539 do { 540 ts = *rqt; 541 if ((flags & TIMER_ABSTIME) != 0) { 542 if (is_abs_real) 543 td->td_rtcgen = 544 atomic_load_acq_int(&rtc_generation); 545 error = kern_clock_gettime(td, clock_id, &now); 546 KASSERT(error == 0, ("kern_clock_gettime: %d", error)); 547 timespecsub(&ts, &now, &ts); 548 } 549 if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) { 550 error = EWOULDBLOCK; 551 break; 552 } 553 if (ts.tv_sec > INT32_MAX / 2) { 554 over = ts.tv_sec - INT32_MAX / 2; 555 ts.tv_sec -= over; 556 } else 557 over = 0; 558 tmp = tstosbt(ts); 559 prec = tmp; 560 prec >>= tc_precexp; 561 if (TIMESEL(&sbt, tmp)) 562 sbt += tc_tick_sbt; 563 sbt += tmp; 564 error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp", 565 sbt, prec, C_ABSOLUTE); 566 } while (error == 0 && is_abs_real && td->td_rtcgen == 0); 567 td->td_rtcgen = 0; 568 if (error != EWOULDBLOCK) { 569 if (TIMESEL(&sbtt, tmp)) 570 sbtt += tc_tick_sbt; 571 if (sbtt >= sbt) 572 return (0); 573 if (error == ERESTART) 574 error = EINTR; 575 if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) { 576 ts = sbttots(sbt - sbtt); 577 ts.tv_sec += over; 578 if (ts.tv_sec < 0) 579 timespecclear(&ts); 580 *rmt = ts; 581 } 582 return (error); 583 } 584 return (0); 585 } 586 587 #ifndef _SYS_SYSPROTO_H_ 588 struct nanosleep_args { 589 struct timespec *rqtp; 590 struct timespec *rmtp; 591 }; 592 #endif 593 /* ARGSUSED */ 594 int 595 sys_nanosleep(struct thread *td, struct nanosleep_args *uap) 596 { 597 598 return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, 599 uap->rqtp, uap->rmtp)); 600 } 601 602 #ifndef _SYS_SYSPROTO_H_ 603 struct clock_nanosleep_args { 604 clockid_t clock_id; 605 int flags; 606 struct timespec *rqtp; 607 struct timespec *rmtp; 608 }; 609 #endif 610 /* ARGSUSED */ 611 int 612 sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap) 613 { 614 int error; 615 616 error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp, 617 uap->rmtp); 618 return (kern_posix_error(td, error)); 619 } 620 621 static int 622 user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags, 623 const struct timespec *ua_rqtp, struct timespec *ua_rmtp) 624 { 625 struct timespec rmt, rqt; 626 int error, error2; 627 628 error = copyin(ua_rqtp, &rqt, sizeof(rqt)); 629 if (error) 630 return (error); 631 error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt); 632 if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) { 633 error2 = copyout(&rmt, ua_rmtp, sizeof(rmt)); 634 if (error2 != 0) 635 error = error2; 636 } 637 return (error); 638 } 639 640 #ifndef _SYS_SYSPROTO_H_ 641 struct gettimeofday_args { 642 struct timeval *tp; 643 struct timezone *tzp; 644 }; 645 #endif 646 /* ARGSUSED */ 647 int 648 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap) 649 { 650 struct timeval atv; 651 struct timezone rtz; 652 int error = 0; 653 654 if (uap->tp) { 655 microtime(&atv); 656 error = copyout(&atv, uap->tp, sizeof (atv)); 657 } 658 if (error == 0 && uap->tzp != NULL) { 659 rtz.tz_minuteswest = 0; 660 rtz.tz_dsttime = 0; 661 error = copyout(&rtz, uap->tzp, sizeof (rtz)); 662 } 663 return (error); 664 } 665 666 #ifndef _SYS_SYSPROTO_H_ 667 struct settimeofday_args { 668 struct timeval *tv; 669 struct timezone *tzp; 670 }; 671 #endif 672 /* ARGSUSED */ 673 int 674 sys_settimeofday(struct thread *td, struct settimeofday_args *uap) 675 { 676 struct timeval atv, *tvp; 677 struct timezone atz, *tzp; 678 int error; 679 680 if (uap->tv) { 681 error = copyin(uap->tv, &atv, sizeof(atv)); 682 if (error) 683 return (error); 684 tvp = &atv; 685 } else 686 tvp = NULL; 687 if (uap->tzp) { 688 error = copyin(uap->tzp, &atz, sizeof(atz)); 689 if (error) 690 return (error); 691 tzp = &atz; 692 } else 693 tzp = NULL; 694 return (kern_settimeofday(td, tvp, tzp)); 695 } 696 697 int 698 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp) 699 { 700 int error; 701 702 error = priv_check(td, PRIV_SETTIMEOFDAY); 703 if (error) 704 return (error); 705 /* Verify all parameters before changing time. */ 706 if (tv) { 707 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 || 708 tv->tv_sec < 0) 709 return (EINVAL); 710 error = settime(td, tv); 711 } 712 return (error); 713 } 714 715 /* 716 * Get value of an interval timer. The process virtual and profiling virtual 717 * time timers are kept in the p_stats area, since they can be swapped out. 718 * These are kept internally in the way they are specified externally: in 719 * time until they expire. 720 * 721 * The real time interval timer is kept in the process table slot for the 722 * process, and its value (it_value) is kept as an absolute time rather than 723 * as a delta, so that it is easy to keep periodic real-time signals from 724 * drifting. 725 * 726 * Virtual time timers are processed in the hardclock() routine of 727 * kern_clock.c. The real time timer is processed by a timeout routine, 728 * called from the softclock() routine. Since a callout may be delayed in 729 * real time due to interrupt processing in the system, it is possible for 730 * the real time timeout routine (realitexpire, given below), to be delayed 731 * in real time past when it is supposed to occur. It does not suffice, 732 * therefore, to reload the real timer .it_value from the real time timers 733 * .it_interval. Rather, we compute the next time in absolute time the timer 734 * should go off. 735 */ 736 #ifndef _SYS_SYSPROTO_H_ 737 struct getitimer_args { 738 u_int which; 739 struct itimerval *itv; 740 }; 741 #endif 742 int 743 sys_getitimer(struct thread *td, struct getitimer_args *uap) 744 { 745 struct itimerval aitv; 746 int error; 747 748 error = kern_getitimer(td, uap->which, &aitv); 749 if (error != 0) 750 return (error); 751 return (copyout(&aitv, uap->itv, sizeof (struct itimerval))); 752 } 753 754 int 755 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv) 756 { 757 struct proc *p = td->td_proc; 758 struct timeval ctv; 759 760 if (which > ITIMER_PROF) 761 return (EINVAL); 762 763 if (which == ITIMER_REAL) { 764 /* 765 * Convert from absolute to relative time in .it_value 766 * part of real time timer. If time for real time timer 767 * has passed return 0, else return difference between 768 * current time and time for the timer to go off. 769 */ 770 PROC_LOCK(p); 771 *aitv = p->p_realtimer; 772 PROC_UNLOCK(p); 773 if (timevalisset(&aitv->it_value)) { 774 microuptime(&ctv); 775 if (timevalcmp(&aitv->it_value, &ctv, <)) 776 timevalclear(&aitv->it_value); 777 else 778 timevalsub(&aitv->it_value, &ctv); 779 } 780 } else { 781 PROC_ITIMLOCK(p); 782 *aitv = p->p_stats->p_timer[which]; 783 PROC_ITIMUNLOCK(p); 784 } 785 #ifdef KTRACE 786 if (KTRPOINT(td, KTR_STRUCT)) 787 ktritimerval(aitv); 788 #endif 789 return (0); 790 } 791 792 #ifndef _SYS_SYSPROTO_H_ 793 struct setitimer_args { 794 u_int which; 795 struct itimerval *itv, *oitv; 796 }; 797 #endif 798 int 799 sys_setitimer(struct thread *td, struct setitimer_args *uap) 800 { 801 struct itimerval aitv, oitv; 802 int error; 803 804 if (uap->itv == NULL) { 805 uap->itv = uap->oitv; 806 return (sys_getitimer(td, (struct getitimer_args *)uap)); 807 } 808 809 if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval)))) 810 return (error); 811 error = kern_setitimer(td, uap->which, &aitv, &oitv); 812 if (error != 0 || uap->oitv == NULL) 813 return (error); 814 return (copyout(&oitv, uap->oitv, sizeof(struct itimerval))); 815 } 816 817 int 818 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv, 819 struct itimerval *oitv) 820 { 821 struct proc *p = td->td_proc; 822 struct timeval ctv; 823 sbintime_t sbt, pr; 824 825 if (aitv == NULL) 826 return (kern_getitimer(td, which, oitv)); 827 828 if (which > ITIMER_PROF) 829 return (EINVAL); 830 #ifdef KTRACE 831 if (KTRPOINT(td, KTR_STRUCT)) 832 ktritimerval(aitv); 833 #endif 834 if (itimerfix(&aitv->it_value) || 835 aitv->it_value.tv_sec > INT32_MAX / 2) 836 return (EINVAL); 837 if (!timevalisset(&aitv->it_value)) 838 timevalclear(&aitv->it_interval); 839 else if (itimerfix(&aitv->it_interval) || 840 aitv->it_interval.tv_sec > INT32_MAX / 2) 841 return (EINVAL); 842 843 if (which == ITIMER_REAL) { 844 PROC_LOCK(p); 845 if (timevalisset(&p->p_realtimer.it_value)) 846 callout_stop(&p->p_itcallout); 847 microuptime(&ctv); 848 if (timevalisset(&aitv->it_value)) { 849 pr = tvtosbt(aitv->it_value) >> tc_precexp; 850 timevaladd(&aitv->it_value, &ctv); 851 sbt = tvtosbt(aitv->it_value); 852 callout_reset_sbt(&p->p_itcallout, sbt, pr, 853 realitexpire, p, C_ABSOLUTE); 854 } 855 *oitv = p->p_realtimer; 856 p->p_realtimer = *aitv; 857 PROC_UNLOCK(p); 858 if (timevalisset(&oitv->it_value)) { 859 if (timevalcmp(&oitv->it_value, &ctv, <)) 860 timevalclear(&oitv->it_value); 861 else 862 timevalsub(&oitv->it_value, &ctv); 863 } 864 } else { 865 if (aitv->it_interval.tv_sec == 0 && 866 aitv->it_interval.tv_usec != 0 && 867 aitv->it_interval.tv_usec < tick) 868 aitv->it_interval.tv_usec = tick; 869 if (aitv->it_value.tv_sec == 0 && 870 aitv->it_value.tv_usec != 0 && 871 aitv->it_value.tv_usec < tick) 872 aitv->it_value.tv_usec = tick; 873 PROC_ITIMLOCK(p); 874 *oitv = p->p_stats->p_timer[which]; 875 p->p_stats->p_timer[which] = *aitv; 876 PROC_ITIMUNLOCK(p); 877 } 878 #ifdef KTRACE 879 if (KTRPOINT(td, KTR_STRUCT)) 880 ktritimerval(oitv); 881 #endif 882 return (0); 883 } 884 885 static void 886 realitexpire_reset_callout(struct proc *p, sbintime_t *isbtp) 887 { 888 sbintime_t prec; 889 890 prec = isbtp == NULL ? tvtosbt(p->p_realtimer.it_interval) : *isbtp; 891 callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value), 892 prec >> tc_precexp, realitexpire, p, C_ABSOLUTE); 893 } 894 895 void 896 itimer_proc_continue(struct proc *p) 897 { 898 struct timeval ctv; 899 struct itimer *it; 900 int id; 901 902 PROC_LOCK_ASSERT(p, MA_OWNED); 903 904 if ((p->p_flag2 & P2_ITSTOPPED) != 0) { 905 p->p_flag2 &= ~P2_ITSTOPPED; 906 microuptime(&ctv); 907 if (timevalcmp(&p->p_realtimer.it_value, &ctv, >=)) 908 realitexpire(p); 909 else 910 realitexpire_reset_callout(p, NULL); 911 } 912 913 if (p->p_itimers != NULL) { 914 for (id = 3; id < TIMER_MAX; id++) { 915 it = p->p_itimers->its_timers[id]; 916 if (it == NULL) 917 continue; 918 if ((it->it_flags & ITF_PSTOPPED) != 0) { 919 ITIMER_LOCK(it); 920 if ((it->it_flags & ITF_PSTOPPED) != 0) { 921 it->it_flags &= ~ITF_PSTOPPED; 922 if ((it->it_flags & ITF_DELETING) == 0) 923 realtimer_expire_l(it, true); 924 } 925 ITIMER_UNLOCK(it); 926 } 927 } 928 } 929 } 930 931 /* 932 * Real interval timer expired: 933 * send process whose timer expired an alarm signal. 934 * If time is not set up to reload, then just return. 935 * Else compute next time timer should go off which is > current time. 936 * This is where delay in processing this timeout causes multiple 937 * SIGALRM calls to be compressed into one. 938 * tvtohz() always adds 1 to allow for the time until the next clock 939 * interrupt being strictly less than 1 clock tick, but we don't want 940 * that here since we want to appear to be in sync with the clock 941 * interrupt even when we're delayed. 942 */ 943 static void 944 realitexpire(void *arg) 945 { 946 struct proc *p; 947 struct timeval ctv; 948 sbintime_t isbt; 949 950 p = (struct proc *)arg; 951 kern_psignal(p, SIGALRM); 952 if (!timevalisset(&p->p_realtimer.it_interval)) { 953 timevalclear(&p->p_realtimer.it_value); 954 return; 955 } 956 957 isbt = tvtosbt(p->p_realtimer.it_interval); 958 if (isbt >= sbt_timethreshold) 959 getmicrouptime(&ctv); 960 else 961 microuptime(&ctv); 962 do { 963 timevaladd(&p->p_realtimer.it_value, 964 &p->p_realtimer.it_interval); 965 } while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=)); 966 967 if (P_SHOULDSTOP(p) || P_KILLED(p)) { 968 p->p_flag2 |= P2_ITSTOPPED; 969 return; 970 } 971 972 p->p_flag2 &= ~P2_ITSTOPPED; 973 realitexpire_reset_callout(p, &isbt); 974 } 975 976 /* 977 * Check that a proposed value to load into the .it_value or 978 * .it_interval part of an interval timer is acceptable, and 979 * fix it to have at least minimal value (i.e. if it is less 980 * than the resolution of the clock, round it up.) 981 */ 982 int 983 itimerfix(struct timeval *tv) 984 { 985 986 if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000) 987 return (EINVAL); 988 if (tv->tv_sec == 0 && tv->tv_usec != 0 && 989 tv->tv_usec < (u_int)tick / 16) 990 tv->tv_usec = (u_int)tick / 16; 991 return (0); 992 } 993 994 /* 995 * Decrement an interval timer by a specified number 996 * of microseconds, which must be less than a second, 997 * i.e. < 1000000. If the timer expires, then reload 998 * it. In this case, carry over (usec - old value) to 999 * reduce the value reloaded into the timer so that 1000 * the timer does not drift. This routine assumes 1001 * that it is called in a context where the timers 1002 * on which it is operating cannot change in value. 1003 */ 1004 int 1005 itimerdecr(struct itimerval *itp, int usec) 1006 { 1007 1008 if (itp->it_value.tv_usec < usec) { 1009 if (itp->it_value.tv_sec == 0) { 1010 /* expired, and already in next interval */ 1011 usec -= itp->it_value.tv_usec; 1012 goto expire; 1013 } 1014 itp->it_value.tv_usec += 1000000; 1015 itp->it_value.tv_sec--; 1016 } 1017 itp->it_value.tv_usec -= usec; 1018 usec = 0; 1019 if (timevalisset(&itp->it_value)) 1020 return (1); 1021 /* expired, exactly at end of interval */ 1022 expire: 1023 if (timevalisset(&itp->it_interval)) { 1024 itp->it_value = itp->it_interval; 1025 itp->it_value.tv_usec -= usec; 1026 if (itp->it_value.tv_usec < 0) { 1027 itp->it_value.tv_usec += 1000000; 1028 itp->it_value.tv_sec--; 1029 } 1030 } else 1031 itp->it_value.tv_usec = 0; /* sec is already 0 */ 1032 return (0); 1033 } 1034 1035 /* 1036 * Add and subtract routines for timevals. 1037 * N.B.: subtract routine doesn't deal with 1038 * results which are before the beginning, 1039 * it just gets very confused in this case. 1040 * Caveat emptor. 1041 */ 1042 void 1043 timevaladd(struct timeval *t1, const struct timeval *t2) 1044 { 1045 1046 t1->tv_sec += t2->tv_sec; 1047 t1->tv_usec += t2->tv_usec; 1048 timevalfix(t1); 1049 } 1050 1051 void 1052 timevalsub(struct timeval *t1, const struct timeval *t2) 1053 { 1054 1055 t1->tv_sec -= t2->tv_sec; 1056 t1->tv_usec -= t2->tv_usec; 1057 timevalfix(t1); 1058 } 1059 1060 static void 1061 timevalfix(struct timeval *t1) 1062 { 1063 1064 if (t1->tv_usec < 0) { 1065 t1->tv_sec--; 1066 t1->tv_usec += 1000000; 1067 } 1068 if (t1->tv_usec >= 1000000) { 1069 t1->tv_sec++; 1070 t1->tv_usec -= 1000000; 1071 } 1072 } 1073 1074 /* 1075 * ratecheck(): simple time-based rate-limit checking. 1076 */ 1077 int 1078 ratecheck(struct timeval *lasttime, const struct timeval *mininterval) 1079 { 1080 struct timeval tv, delta; 1081 int rv = 0; 1082 1083 getmicrouptime(&tv); /* NB: 10ms precision */ 1084 delta = tv; 1085 timevalsub(&delta, lasttime); 1086 1087 /* 1088 * check for 0,0 is so that the message will be seen at least once, 1089 * even if interval is huge. 1090 */ 1091 if (timevalcmp(&delta, mininterval, >=) || 1092 (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) { 1093 *lasttime = tv; 1094 rv = 1; 1095 } 1096 1097 return (rv); 1098 } 1099 1100 /* 1101 * ppsratecheck(): packets (or events) per second limitation. 1102 * 1103 * Return 0 if the limit is to be enforced (e.g. the caller 1104 * should drop a packet because of the rate limitation). 1105 * 1106 * maxpps of 0 always causes zero to be returned. maxpps of -1 1107 * always causes 1 to be returned; this effectively defeats rate 1108 * limiting. 1109 * 1110 * Note that we maintain the struct timeval for compatibility 1111 * with other bsd systems. We reuse the storage and just monitor 1112 * clock ticks for minimal overhead. 1113 */ 1114 int 1115 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps) 1116 { 1117 int now; 1118 1119 /* 1120 * Reset the last time and counter if this is the first call 1121 * or more than a second has passed since the last update of 1122 * lasttime. 1123 */ 1124 now = ticks; 1125 if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) { 1126 lasttime->tv_sec = now; 1127 *curpps = 1; 1128 return (maxpps != 0); 1129 } else { 1130 (*curpps)++; /* NB: ignore potential overflow */ 1131 return (maxpps < 0 || *curpps <= maxpps); 1132 } 1133 } 1134 1135 static void 1136 itimer_start(void) 1137 { 1138 static const struct kclock rt_clock = { 1139 .timer_create = realtimer_create, 1140 .timer_delete = realtimer_delete, 1141 .timer_settime = realtimer_settime, 1142 .timer_gettime = realtimer_gettime, 1143 }; 1144 1145 itimer_zone = uma_zcreate("itimer", sizeof(struct itimer), 1146 NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0); 1147 register_posix_clock(CLOCK_REALTIME, &rt_clock); 1148 register_posix_clock(CLOCK_MONOTONIC, &rt_clock); 1149 p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L); 1150 p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX); 1151 p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX); 1152 } 1153 1154 static int 1155 register_posix_clock(int clockid, const struct kclock *clk) 1156 { 1157 if ((unsigned)clockid >= MAX_CLOCKS) { 1158 printf("%s: invalid clockid\n", __func__); 1159 return (0); 1160 } 1161 posix_clocks[clockid] = *clk; 1162 return (1); 1163 } 1164 1165 static int 1166 itimer_init(void *mem, int size, int flags) 1167 { 1168 struct itimer *it; 1169 1170 it = (struct itimer *)mem; 1171 mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF); 1172 return (0); 1173 } 1174 1175 static void 1176 itimer_fini(void *mem, int size) 1177 { 1178 struct itimer *it; 1179 1180 it = (struct itimer *)mem; 1181 mtx_destroy(&it->it_mtx); 1182 } 1183 1184 static void 1185 itimer_enter(struct itimer *it) 1186 { 1187 1188 mtx_assert(&it->it_mtx, MA_OWNED); 1189 it->it_usecount++; 1190 } 1191 1192 static void 1193 itimer_leave(struct itimer *it) 1194 { 1195 1196 mtx_assert(&it->it_mtx, MA_OWNED); 1197 KASSERT(it->it_usecount > 0, ("invalid it_usecount")); 1198 1199 if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0) 1200 wakeup(it); 1201 } 1202 1203 #ifndef _SYS_SYSPROTO_H_ 1204 struct ktimer_create_args { 1205 clockid_t clock_id; 1206 struct sigevent * evp; 1207 int * timerid; 1208 }; 1209 #endif 1210 int 1211 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap) 1212 { 1213 struct sigevent *evp, ev; 1214 int id; 1215 int error; 1216 1217 if (uap->evp == NULL) { 1218 evp = NULL; 1219 } else { 1220 error = copyin(uap->evp, &ev, sizeof(ev)); 1221 if (error != 0) 1222 return (error); 1223 evp = &ev; 1224 } 1225 error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1); 1226 if (error == 0) { 1227 error = copyout(&id, uap->timerid, sizeof(int)); 1228 if (error != 0) 1229 kern_ktimer_delete(td, id); 1230 } 1231 return (error); 1232 } 1233 1234 int 1235 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp, 1236 int *timerid, int preset_id) 1237 { 1238 struct proc *p = td->td_proc; 1239 struct itimer *it; 1240 int id; 1241 int error; 1242 1243 if (clock_id < 0 || clock_id >= MAX_CLOCKS) 1244 return (EINVAL); 1245 1246 if (posix_clocks[clock_id].timer_create == NULL) 1247 return (EINVAL); 1248 1249 if (evp != NULL) { 1250 if (evp->sigev_notify != SIGEV_NONE && 1251 evp->sigev_notify != SIGEV_SIGNAL && 1252 evp->sigev_notify != SIGEV_THREAD_ID) 1253 return (EINVAL); 1254 if ((evp->sigev_notify == SIGEV_SIGNAL || 1255 evp->sigev_notify == SIGEV_THREAD_ID) && 1256 !_SIG_VALID(evp->sigev_signo)) 1257 return (EINVAL); 1258 } 1259 1260 if (p->p_itimers == NULL) 1261 itimers_alloc(p); 1262 1263 it = uma_zalloc(itimer_zone, M_WAITOK); 1264 it->it_flags = 0; 1265 it->it_usecount = 0; 1266 timespecclear(&it->it_time.it_value); 1267 timespecclear(&it->it_time.it_interval); 1268 it->it_overrun = 0; 1269 it->it_overrun_last = 0; 1270 it->it_clockid = clock_id; 1271 it->it_proc = p; 1272 ksiginfo_init(&it->it_ksi); 1273 it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT; 1274 error = CLOCK_CALL(clock_id, timer_create, (it)); 1275 if (error != 0) 1276 goto out; 1277 1278 PROC_LOCK(p); 1279 if (preset_id != -1) { 1280 KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id")); 1281 id = preset_id; 1282 if (p->p_itimers->its_timers[id] != NULL) { 1283 PROC_UNLOCK(p); 1284 error = 0; 1285 goto out; 1286 } 1287 } else { 1288 /* 1289 * Find a free timer slot, skipping those reserved 1290 * for setitimer(). 1291 */ 1292 for (id = 3; id < TIMER_MAX; id++) 1293 if (p->p_itimers->its_timers[id] == NULL) 1294 break; 1295 if (id == TIMER_MAX) { 1296 PROC_UNLOCK(p); 1297 error = EAGAIN; 1298 goto out; 1299 } 1300 } 1301 p->p_itimers->its_timers[id] = it; 1302 if (evp != NULL) 1303 it->it_sigev = *evp; 1304 else { 1305 it->it_sigev.sigev_notify = SIGEV_SIGNAL; 1306 switch (clock_id) { 1307 default: 1308 case CLOCK_REALTIME: 1309 it->it_sigev.sigev_signo = SIGALRM; 1310 break; 1311 case CLOCK_VIRTUAL: 1312 it->it_sigev.sigev_signo = SIGVTALRM; 1313 break; 1314 case CLOCK_PROF: 1315 it->it_sigev.sigev_signo = SIGPROF; 1316 break; 1317 } 1318 it->it_sigev.sigev_value.sival_int = id; 1319 } 1320 1321 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1322 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1323 it->it_ksi.ksi_signo = it->it_sigev.sigev_signo; 1324 it->it_ksi.ksi_code = SI_TIMER; 1325 it->it_ksi.ksi_value = it->it_sigev.sigev_value; 1326 it->it_ksi.ksi_timerid = id; 1327 } 1328 PROC_UNLOCK(p); 1329 *timerid = id; 1330 return (0); 1331 1332 out: 1333 ITIMER_LOCK(it); 1334 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1335 ITIMER_UNLOCK(it); 1336 uma_zfree(itimer_zone, it); 1337 return (error); 1338 } 1339 1340 #ifndef _SYS_SYSPROTO_H_ 1341 struct ktimer_delete_args { 1342 int timerid; 1343 }; 1344 #endif 1345 int 1346 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap) 1347 { 1348 1349 return (kern_ktimer_delete(td, uap->timerid)); 1350 } 1351 1352 static struct itimer * 1353 itimer_find(struct proc *p, int timerid) 1354 { 1355 struct itimer *it; 1356 1357 PROC_LOCK_ASSERT(p, MA_OWNED); 1358 if ((p->p_itimers == NULL) || 1359 (timerid < 0) || (timerid >= TIMER_MAX) || 1360 (it = p->p_itimers->its_timers[timerid]) == NULL) { 1361 return (NULL); 1362 } 1363 ITIMER_LOCK(it); 1364 if ((it->it_flags & ITF_DELETING) != 0) { 1365 ITIMER_UNLOCK(it); 1366 it = NULL; 1367 } 1368 return (it); 1369 } 1370 1371 int 1372 kern_ktimer_delete(struct thread *td, int timerid) 1373 { 1374 struct proc *p = td->td_proc; 1375 struct itimer *it; 1376 1377 PROC_LOCK(p); 1378 it = itimer_find(p, timerid); 1379 if (it == NULL) { 1380 PROC_UNLOCK(p); 1381 return (EINVAL); 1382 } 1383 PROC_UNLOCK(p); 1384 1385 it->it_flags |= ITF_DELETING; 1386 while (it->it_usecount > 0) { 1387 it->it_flags |= ITF_WANTED; 1388 msleep(it, &it->it_mtx, PPAUSE, "itimer", 0); 1389 } 1390 it->it_flags &= ~ITF_WANTED; 1391 CLOCK_CALL(it->it_clockid, timer_delete, (it)); 1392 ITIMER_UNLOCK(it); 1393 1394 PROC_LOCK(p); 1395 if (KSI_ONQ(&it->it_ksi)) 1396 sigqueue_take(&it->it_ksi); 1397 p->p_itimers->its_timers[timerid] = NULL; 1398 PROC_UNLOCK(p); 1399 uma_zfree(itimer_zone, it); 1400 return (0); 1401 } 1402 1403 #ifndef _SYS_SYSPROTO_H_ 1404 struct ktimer_settime_args { 1405 int timerid; 1406 int flags; 1407 const struct itimerspec * value; 1408 struct itimerspec * ovalue; 1409 }; 1410 #endif 1411 int 1412 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap) 1413 { 1414 struct itimerspec val, oval, *ovalp; 1415 int error; 1416 1417 error = copyin(uap->value, &val, sizeof(val)); 1418 if (error != 0) 1419 return (error); 1420 ovalp = uap->ovalue != NULL ? &oval : NULL; 1421 error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp); 1422 if (error == 0 && uap->ovalue != NULL) 1423 error = copyout(ovalp, uap->ovalue, sizeof(*ovalp)); 1424 return (error); 1425 } 1426 1427 int 1428 kern_ktimer_settime(struct thread *td, int timer_id, int flags, 1429 struct itimerspec *val, struct itimerspec *oval) 1430 { 1431 struct proc *p; 1432 struct itimer *it; 1433 int error; 1434 1435 p = td->td_proc; 1436 PROC_LOCK(p); 1437 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1438 PROC_UNLOCK(p); 1439 error = EINVAL; 1440 } else { 1441 PROC_UNLOCK(p); 1442 itimer_enter(it); 1443 error = CLOCK_CALL(it->it_clockid, timer_settime, (it, 1444 flags, val, oval)); 1445 itimer_leave(it); 1446 ITIMER_UNLOCK(it); 1447 } 1448 return (error); 1449 } 1450 1451 #ifndef _SYS_SYSPROTO_H_ 1452 struct ktimer_gettime_args { 1453 int timerid; 1454 struct itimerspec * value; 1455 }; 1456 #endif 1457 int 1458 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap) 1459 { 1460 struct itimerspec val; 1461 int error; 1462 1463 error = kern_ktimer_gettime(td, uap->timerid, &val); 1464 if (error == 0) 1465 error = copyout(&val, uap->value, sizeof(val)); 1466 return (error); 1467 } 1468 1469 int 1470 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val) 1471 { 1472 struct proc *p; 1473 struct itimer *it; 1474 int error; 1475 1476 p = td->td_proc; 1477 PROC_LOCK(p); 1478 if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) { 1479 PROC_UNLOCK(p); 1480 error = EINVAL; 1481 } else { 1482 PROC_UNLOCK(p); 1483 itimer_enter(it); 1484 error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val)); 1485 itimer_leave(it); 1486 ITIMER_UNLOCK(it); 1487 } 1488 return (error); 1489 } 1490 1491 #ifndef _SYS_SYSPROTO_H_ 1492 struct timer_getoverrun_args { 1493 int timerid; 1494 }; 1495 #endif 1496 int 1497 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap) 1498 { 1499 1500 return (kern_ktimer_getoverrun(td, uap->timerid)); 1501 } 1502 1503 int 1504 kern_ktimer_getoverrun(struct thread *td, int timer_id) 1505 { 1506 struct proc *p = td->td_proc; 1507 struct itimer *it; 1508 int error ; 1509 1510 PROC_LOCK(p); 1511 if (timer_id < 3 || 1512 (it = itimer_find(p, timer_id)) == NULL) { 1513 PROC_UNLOCK(p); 1514 error = EINVAL; 1515 } else { 1516 td->td_retval[0] = it->it_overrun_last; 1517 ITIMER_UNLOCK(it); 1518 PROC_UNLOCK(p); 1519 error = 0; 1520 } 1521 return (error); 1522 } 1523 1524 static int 1525 realtimer_create(struct itimer *it) 1526 { 1527 callout_init_mtx(&it->it_callout, &it->it_mtx, 0); 1528 return (0); 1529 } 1530 1531 static int 1532 realtimer_delete(struct itimer *it) 1533 { 1534 mtx_assert(&it->it_mtx, MA_OWNED); 1535 1536 /* 1537 * clear timer's value and interval to tell realtimer_expire 1538 * to not rearm the timer. 1539 */ 1540 timespecclear(&it->it_time.it_value); 1541 timespecclear(&it->it_time.it_interval); 1542 ITIMER_UNLOCK(it); 1543 callout_drain(&it->it_callout); 1544 ITIMER_LOCK(it); 1545 return (0); 1546 } 1547 1548 static int 1549 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue) 1550 { 1551 struct timespec cts; 1552 1553 mtx_assert(&it->it_mtx, MA_OWNED); 1554 1555 realtimer_clocktime(it->it_clockid, &cts); 1556 *ovalue = it->it_time; 1557 if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) { 1558 timespecsub(&ovalue->it_value, &cts, &ovalue->it_value); 1559 if (ovalue->it_value.tv_sec < 0 || 1560 (ovalue->it_value.tv_sec == 0 && 1561 ovalue->it_value.tv_nsec == 0)) { 1562 ovalue->it_value.tv_sec = 0; 1563 ovalue->it_value.tv_nsec = 1; 1564 } 1565 } 1566 return (0); 1567 } 1568 1569 static int 1570 realtimer_settime(struct itimer *it, int flags, struct itimerspec *value, 1571 struct itimerspec *ovalue) 1572 { 1573 struct timespec cts, ts; 1574 struct timeval tv; 1575 struct itimerspec val; 1576 1577 mtx_assert(&it->it_mtx, MA_OWNED); 1578 1579 val = *value; 1580 if (itimespecfix(&val.it_value)) 1581 return (EINVAL); 1582 1583 if (timespecisset(&val.it_value)) { 1584 if (itimespecfix(&val.it_interval)) 1585 return (EINVAL); 1586 } else { 1587 timespecclear(&val.it_interval); 1588 } 1589 1590 if (ovalue != NULL) 1591 realtimer_gettime(it, ovalue); 1592 1593 it->it_time = val; 1594 if (timespecisset(&val.it_value)) { 1595 realtimer_clocktime(it->it_clockid, &cts); 1596 ts = val.it_value; 1597 if ((flags & TIMER_ABSTIME) == 0) { 1598 /* Convert to absolute time. */ 1599 timespecadd(&it->it_time.it_value, &cts, 1600 &it->it_time.it_value); 1601 } else { 1602 timespecsub(&ts, &cts, &ts); 1603 /* 1604 * We don't care if ts is negative, tztohz will 1605 * fix it. 1606 */ 1607 } 1608 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1609 callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire, 1610 it); 1611 } else { 1612 callout_stop(&it->it_callout); 1613 } 1614 1615 return (0); 1616 } 1617 1618 static void 1619 realtimer_clocktime(clockid_t id, struct timespec *ts) 1620 { 1621 if (id == CLOCK_REALTIME) 1622 getnanotime(ts); 1623 else /* CLOCK_MONOTONIC */ 1624 getnanouptime(ts); 1625 } 1626 1627 int 1628 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi) 1629 { 1630 struct itimer *it; 1631 1632 PROC_LOCK_ASSERT(p, MA_OWNED); 1633 it = itimer_find(p, timerid); 1634 if (it != NULL) { 1635 ksi->ksi_overrun = it->it_overrun; 1636 it->it_overrun_last = it->it_overrun; 1637 it->it_overrun = 0; 1638 ITIMER_UNLOCK(it); 1639 return (0); 1640 } 1641 return (EINVAL); 1642 } 1643 1644 static int 1645 itimespecfix(struct timespec *ts) 1646 { 1647 1648 if (!timespecvalid_interval(ts)) 1649 return (EINVAL); 1650 if ((UINT64_MAX - ts->tv_nsec) / NS_PER_SEC < ts->tv_sec) 1651 return (EINVAL); 1652 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000) 1653 ts->tv_nsec = tick * 1000; 1654 return (0); 1655 } 1656 1657 #define timespectons(tsp) \ 1658 ((uint64_t)(tsp)->tv_sec * NS_PER_SEC + (tsp)->tv_nsec) 1659 #define timespecfromns(ns) (struct timespec){ \ 1660 .tv_sec = (ns) / NS_PER_SEC, \ 1661 .tv_nsec = (ns) % NS_PER_SEC \ 1662 } 1663 1664 static void 1665 realtimer_expire_l(struct itimer *it, bool proc_locked) 1666 { 1667 struct timespec cts, ts; 1668 struct timeval tv; 1669 struct proc *p; 1670 uint64_t interval, now, overruns, value; 1671 1672 realtimer_clocktime(it->it_clockid, &cts); 1673 /* Only fire if time is reached. */ 1674 if (timespeccmp(&cts, &it->it_time.it_value, >=)) { 1675 if (timespecisset(&it->it_time.it_interval)) { 1676 timespecadd(&it->it_time.it_value, 1677 &it->it_time.it_interval, 1678 &it->it_time.it_value); 1679 1680 interval = timespectons(&it->it_time.it_interval); 1681 value = timespectons(&it->it_time.it_value); 1682 now = timespectons(&cts); 1683 1684 if (now >= value) { 1685 /* 1686 * We missed at least one period. 1687 */ 1688 overruns = howmany(now - value + 1, interval); 1689 if (it->it_overrun + overruns >= 1690 it->it_overrun && 1691 it->it_overrun + overruns <= INT_MAX) { 1692 it->it_overrun += (int)overruns; 1693 } else { 1694 it->it_overrun = INT_MAX; 1695 it->it_ksi.ksi_errno = ERANGE; 1696 } 1697 value = 1698 now + interval - (now - value) % interval; 1699 it->it_time.it_value = timespecfromns(value); 1700 } 1701 } else { 1702 /* single shot timer ? */ 1703 timespecclear(&it->it_time.it_value); 1704 } 1705 1706 p = it->it_proc; 1707 if (timespecisset(&it->it_time.it_value)) { 1708 if (P_SHOULDSTOP(p) || P_KILLED(p)) { 1709 it->it_flags |= ITF_PSTOPPED; 1710 } else { 1711 timespecsub(&it->it_time.it_value, &cts, &ts); 1712 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1713 callout_reset(&it->it_callout, tvtohz(&tv), 1714 realtimer_expire, it); 1715 } 1716 } 1717 1718 itimer_enter(it); 1719 ITIMER_UNLOCK(it); 1720 if (proc_locked) 1721 PROC_UNLOCK(p); 1722 itimer_fire(it); 1723 if (proc_locked) 1724 PROC_LOCK(p); 1725 ITIMER_LOCK(it); 1726 itimer_leave(it); 1727 } else if (timespecisset(&it->it_time.it_value)) { 1728 p = it->it_proc; 1729 if (P_SHOULDSTOP(p) || P_KILLED(p)) { 1730 it->it_flags |= ITF_PSTOPPED; 1731 } else { 1732 ts = it->it_time.it_value; 1733 timespecsub(&ts, &cts, &ts); 1734 TIMESPEC_TO_TIMEVAL(&tv, &ts); 1735 callout_reset(&it->it_callout, tvtohz(&tv), 1736 realtimer_expire, it); 1737 } 1738 } 1739 } 1740 1741 /* Timeout callback for realtime timer */ 1742 static void 1743 realtimer_expire(void *arg) 1744 { 1745 realtimer_expire_l(arg, false); 1746 } 1747 1748 static void 1749 itimer_fire(struct itimer *it) 1750 { 1751 struct proc *p = it->it_proc; 1752 struct thread *td; 1753 1754 if (it->it_sigev.sigev_notify == SIGEV_SIGNAL || 1755 it->it_sigev.sigev_notify == SIGEV_THREAD_ID) { 1756 if (sigev_findtd(p, &it->it_sigev, &td) != 0) { 1757 ITIMER_LOCK(it); 1758 timespecclear(&it->it_time.it_value); 1759 timespecclear(&it->it_time.it_interval); 1760 callout_stop(&it->it_callout); 1761 ITIMER_UNLOCK(it); 1762 return; 1763 } 1764 if (!KSI_ONQ(&it->it_ksi)) { 1765 it->it_ksi.ksi_errno = 0; 1766 ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev); 1767 tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi); 1768 } else { 1769 if (it->it_overrun < INT_MAX) 1770 it->it_overrun++; 1771 else 1772 it->it_ksi.ksi_errno = ERANGE; 1773 } 1774 PROC_UNLOCK(p); 1775 } 1776 } 1777 1778 static void 1779 itimers_alloc(struct proc *p) 1780 { 1781 struct itimers *its; 1782 1783 its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO); 1784 PROC_LOCK(p); 1785 if (p->p_itimers == NULL) { 1786 p->p_itimers = its; 1787 PROC_UNLOCK(p); 1788 } 1789 else { 1790 PROC_UNLOCK(p); 1791 free(its, M_SUBPROC); 1792 } 1793 } 1794 1795 /* Clean up timers when some process events are being triggered. */ 1796 static void 1797 itimers_event_exit_exec(int start_idx, struct proc *p) 1798 { 1799 struct itimers *its; 1800 struct itimer *it; 1801 int i; 1802 1803 its = p->p_itimers; 1804 if (its == NULL) 1805 return; 1806 1807 for (i = start_idx; i < TIMER_MAX; ++i) { 1808 if ((it = its->its_timers[i]) != NULL) 1809 kern_ktimer_delete(curthread, i); 1810 } 1811 if (its->its_timers[0] == NULL && its->its_timers[1] == NULL && 1812 its->its_timers[2] == NULL) { 1813 /* Synchronize with itimer_proc_continue(). */ 1814 PROC_LOCK(p); 1815 p->p_itimers = NULL; 1816 PROC_UNLOCK(p); 1817 free(its, M_SUBPROC); 1818 } 1819 } 1820 1821 void 1822 itimers_exec(struct proc *p) 1823 { 1824 /* 1825 * According to susv3, XSI interval timers should be inherited 1826 * by new image. 1827 */ 1828 itimers_event_exit_exec(3, p); 1829 } 1830 1831 void 1832 itimers_exit(struct proc *p) 1833 { 1834 itimers_event_exit_exec(0, p); 1835 } 1836