xref: /freebsd/sys/kern/kern_time.c (revision 2546665afcaf0d53dc2c7058fee96354b3680f5a)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_mac.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/mac.h>
46 #include <sys/sysent.h>
47 #include <sys/proc.h>
48 #include <sys/time.h>
49 #include <sys/timetc.h>
50 #include <sys/vnode.h>
51 
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 
55 int tz_minuteswest;
56 int tz_dsttime;
57 
58 /*
59  * Time of day and interval timer support.
60  *
61  * These routines provide the kernel entry points to get and set
62  * the time-of-day and per-process interval timers.  Subroutines
63  * here provide support for adding and subtracting timeval structures
64  * and decrementing interval timers, optionally reloading the interval
65  * timers when they expire.
66  */
67 
68 static int	nanosleep1(struct thread *td, struct timespec *rqt,
69 		    struct timespec *rmt);
70 static int	settime(struct thread *, struct timeval *);
71 static void	timevalfix(struct timeval *);
72 static void	no_lease_updatetime(int);
73 
74 static void
75 no_lease_updatetime(deltat)
76 	int deltat;
77 {
78 }
79 
80 void (*lease_updatetime)(int)  = no_lease_updatetime;
81 
82 static int
83 settime(struct thread *td, struct timeval *tv)
84 {
85 	struct timeval delta, tv1, tv2;
86 	static struct timeval maxtime, laststep;
87 	struct timespec ts;
88 	int s;
89 
90 	s = splclock();
91 	microtime(&tv1);
92 	delta = *tv;
93 	timevalsub(&delta, &tv1);
94 
95 	/*
96 	 * If the system is secure, we do not allow the time to be
97 	 * set to a value earlier than 1 second less than the highest
98 	 * time we have yet seen. The worst a miscreant can do in
99 	 * this circumstance is "freeze" time. He couldn't go
100 	 * back to the past.
101 	 *
102 	 * We similarly do not allow the clock to be stepped more
103 	 * than one second, nor more than once per second. This allows
104 	 * a miscreant to make the clock march double-time, but no worse.
105 	 */
106 	if (securelevel_gt(td->td_ucred, 1) != 0) {
107 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
108 			/*
109 			 * Update maxtime to latest time we've seen.
110 			 */
111 			if (tv1.tv_sec > maxtime.tv_sec)
112 				maxtime = tv1;
113 			tv2 = *tv;
114 			timevalsub(&tv2, &maxtime);
115 			if (tv2.tv_sec < -1) {
116 				tv->tv_sec = maxtime.tv_sec - 1;
117 				printf("Time adjustment clamped to -1 second\n");
118 			}
119 		} else {
120 			if (tv1.tv_sec == laststep.tv_sec) {
121 				splx(s);
122 				return (EPERM);
123 			}
124 			if (delta.tv_sec > 1) {
125 				tv->tv_sec = tv1.tv_sec + 1;
126 				printf("Time adjustment clamped to +1 second\n");
127 			}
128 			laststep = *tv;
129 		}
130 	}
131 
132 	ts.tv_sec = tv->tv_sec;
133 	ts.tv_nsec = tv->tv_usec * 1000;
134 	mtx_lock(&Giant);
135 	tc_setclock(&ts);
136 	(void) splsoftclock();
137 	lease_updatetime(delta.tv_sec);
138 	splx(s);
139 	resettodr();
140 	mtx_unlock(&Giant);
141 	return (0);
142 }
143 
144 #ifndef _SYS_SYSPROTO_H_
145 struct clock_gettime_args {
146 	clockid_t clock_id;
147 	struct	timespec *tp;
148 };
149 #endif
150 
151 /*
152  * MPSAFE
153  */
154 /* ARGSUSED */
155 int
156 clock_gettime(struct thread *td, struct clock_gettime_args *uap)
157 {
158 	struct timespec ats;
159 	struct timeval sys, user;
160 
161 	switch (uap->clock_id) {
162 	case CLOCK_REALTIME:
163 		nanotime(&ats);
164 		break;
165 	case CLOCK_VIRTUAL:
166 		mtx_lock_spin(&sched_lock);
167 		calcru(td->td_proc, &user, &sys, NULL);
168 		mtx_unlock_spin(&sched_lock);
169 		TIMEVAL_TO_TIMESPEC(&user, &ats);
170 		break;
171 	case CLOCK_PROF:
172 		mtx_lock_spin(&sched_lock);
173 		calcru(td->td_proc, &user, &sys, NULL);
174 		mtx_unlock_spin(&sched_lock);
175 		timevaladd(&user, &sys);
176 		TIMEVAL_TO_TIMESPEC(&user, &ats);
177 		break;
178 	case CLOCK_MONOTONIC:
179 		nanouptime(&ats);
180 		break;
181 	default:
182 		return (EINVAL);
183 	}
184 	return (copyout(&ats, uap->tp, sizeof(ats)));
185 }
186 
187 #ifndef _SYS_SYSPROTO_H_
188 struct clock_settime_args {
189 	clockid_t clock_id;
190 	const struct	timespec *tp;
191 };
192 #endif
193 
194 /*
195  * MPSAFE
196  */
197 /* ARGSUSED */
198 int
199 clock_settime(struct thread *td, struct clock_settime_args *uap)
200 {
201 	struct timeval atv;
202 	struct timespec ats;
203 	int error;
204 
205 #ifdef MAC
206 	error = mac_check_system_settime(td->td_ucred);
207 	if (error)
208 		return (error);
209 #endif
210 	if ((error = suser(td)) != 0)
211 		return (error);
212 	if (uap->clock_id != CLOCK_REALTIME)
213 		return (EINVAL);
214 	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
215 		return (error);
216 	if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
217 		return (EINVAL);
218 	/* XXX Don't convert nsec->usec and back */
219 	TIMESPEC_TO_TIMEVAL(&atv, &ats);
220 	error = settime(td, &atv);
221 	return (error);
222 }
223 
224 #ifndef _SYS_SYSPROTO_H_
225 struct clock_getres_args {
226 	clockid_t clock_id;
227 	struct	timespec *tp;
228 };
229 #endif
230 
231 int
232 clock_getres(struct thread *td, struct clock_getres_args *uap)
233 {
234 	struct timespec ts;
235 
236 	ts.tv_sec = 0;
237 	switch (uap->clock_id) {
238 	case CLOCK_REALTIME:
239 	case CLOCK_MONOTONIC:
240 		/*
241 		 * Round up the result of the division cheaply by adding 1.
242 		 * Rounding up is especially important if rounding down
243 		 * would give 0.  Perfect rounding is unimportant.
244 		 */
245 		ts.tv_nsec = 1000000000 / tc_getfrequency() + 1;
246 		break;
247 	case CLOCK_VIRTUAL:
248 	case CLOCK_PROF:
249 		/* Accurately round up here because we can do so cheaply. */
250 		ts.tv_nsec = (1000000000 + hz - 1) / hz;
251 		break;
252 	default:
253 		return (EINVAL);
254 	}
255 	if (uap->tp == NULL)
256 		return (0);
257 	return (copyout(&ts, uap->tp, sizeof(ts)));
258 }
259 
260 static int nanowait;
261 
262 static int
263 nanosleep1(struct thread *td, struct timespec *rqt, struct timespec *rmt)
264 {
265 	struct timespec ts, ts2, ts3;
266 	struct timeval tv;
267 	int error;
268 
269 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
270 		return (EINVAL);
271 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
272 		return (0);
273 	getnanouptime(&ts);
274 	timespecadd(&ts, rqt);
275 	TIMESPEC_TO_TIMEVAL(&tv, rqt);
276 	for (;;) {
277 		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
278 		    tvtohz(&tv));
279 		getnanouptime(&ts2);
280 		if (error != EWOULDBLOCK) {
281 			if (error == ERESTART)
282 				error = EINTR;
283 			if (rmt != NULL) {
284 				timespecsub(&ts, &ts2);
285 				if (ts.tv_sec < 0)
286 					timespecclear(&ts);
287 				*rmt = ts;
288 			}
289 			return (error);
290 		}
291 		if (timespeccmp(&ts2, &ts, >=))
292 			return (0);
293 		ts3 = ts;
294 		timespecsub(&ts3, &ts2);
295 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
296 	}
297 }
298 
299 #ifndef _SYS_SYSPROTO_H_
300 struct nanosleep_args {
301 	struct	timespec *rqtp;
302 	struct	timespec *rmtp;
303 };
304 #endif
305 
306 /*
307  * MPSAFE
308  */
309 /* ARGSUSED */
310 int
311 nanosleep(struct thread *td, struct nanosleep_args *uap)
312 {
313 	struct timespec rmt, rqt;
314 	int error;
315 
316 	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
317 	if (error)
318 		return (error);
319 
320 	if (uap->rmtp &&
321 	    !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
322 			return (EFAULT);
323 	error = nanosleep1(td, &rqt, &rmt);
324 	if (error && uap->rmtp) {
325 		int error2;
326 
327 		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
328 		if (error2)
329 			error = error2;
330 	}
331 	return (error);
332 }
333 
334 #ifndef _SYS_SYSPROTO_H_
335 struct gettimeofday_args {
336 	struct	timeval *tp;
337 	struct	timezone *tzp;
338 };
339 #endif
340 /*
341  * MPSAFE
342  */
343 /* ARGSUSED */
344 int
345 gettimeofday(struct thread *td, struct gettimeofday_args *uap)
346 {
347 	struct timeval atv;
348 	struct timezone rtz;
349 	int error = 0;
350 
351 	if (uap->tp) {
352 		microtime(&atv);
353 		error = copyout(&atv, uap->tp, sizeof (atv));
354 	}
355 	if (error == 0 && uap->tzp != NULL) {
356 		rtz.tz_minuteswest = tz_minuteswest;
357 		rtz.tz_dsttime = tz_dsttime;
358 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
359 	}
360 	return (error);
361 }
362 
363 #ifndef _SYS_SYSPROTO_H_
364 struct settimeofday_args {
365 	struct	timeval *tv;
366 	struct	timezone *tzp;
367 };
368 #endif
369 /*
370  * MPSAFE
371  */
372 /* ARGSUSED */
373 int
374 settimeofday(struct thread *td, struct settimeofday_args *uap)
375 {
376 	struct timeval atv;
377 	struct timezone atz;
378 	int error = 0;
379 
380 #ifdef MAC
381 	error = mac_check_system_settime(td->td_ucred);
382 	if (error)
383 		return (error);
384 #endif
385 	if ((error = suser(td)))
386 		return (error);
387 	/* Verify all parameters before changing time. */
388 	if (uap->tv) {
389 		if ((error = copyin(uap->tv, &atv, sizeof(atv))))
390 			return (error);
391 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
392 			return (EINVAL);
393 	}
394 	if (uap->tzp &&
395 	    (error = copyin(uap->tzp, &atz, sizeof(atz))))
396 		return (error);
397 
398 	if (uap->tv && (error = settime(td, &atv)))
399 		return (error);
400 	if (uap->tzp) {
401 		tz_minuteswest = atz.tz_minuteswest;
402 		tz_dsttime = atz.tz_dsttime;
403 	}
404 	return (error);
405 }
406 /*
407  * Get value of an interval timer.  The process virtual and
408  * profiling virtual time timers are kept in the p_stats area, since
409  * they can be swapped out.  These are kept internally in the
410  * way they are specified externally: in time until they expire.
411  *
412  * The real time interval timer is kept in the process table slot
413  * for the process, and its value (it_value) is kept as an
414  * absolute time rather than as a delta, so that it is easy to keep
415  * periodic real-time signals from drifting.
416  *
417  * Virtual time timers are processed in the hardclock() routine of
418  * kern_clock.c.  The real time timer is processed by a timeout
419  * routine, called from the softclock() routine.  Since a callout
420  * may be delayed in real time due to interrupt processing in the system,
421  * it is possible for the real time timeout routine (realitexpire, given below),
422  * to be delayed in real time past when it is supposed to occur.  It
423  * does not suffice, therefore, to reload the real timer .it_value from the
424  * real time timers .it_interval.  Rather, we compute the next time in
425  * absolute time the timer should go off.
426  */
427 #ifndef _SYS_SYSPROTO_H_
428 struct getitimer_args {
429 	u_int	which;
430 	struct	itimerval *itv;
431 };
432 #endif
433 /*
434  * MPSAFE
435  */
436 int
437 getitimer(struct thread *td, struct getitimer_args *uap)
438 {
439 	struct proc *p = td->td_proc;
440 	struct timeval ctv;
441 	struct itimerval aitv;
442 
443 	if (uap->which > ITIMER_PROF)
444 		return (EINVAL);
445 
446 	if (uap->which == ITIMER_REAL) {
447 		/*
448 		 * Convert from absolute to relative time in .it_value
449 		 * part of real time timer.  If time for real time timer
450 		 * has passed return 0, else return difference between
451 		 * current time and time for the timer to go off.
452 		 */
453 		PROC_LOCK(p);
454 		aitv = p->p_realtimer;
455 		PROC_UNLOCK(p);
456 		if (timevalisset(&aitv.it_value)) {
457 			getmicrouptime(&ctv);
458 			if (timevalcmp(&aitv.it_value, &ctv, <))
459 				timevalclear(&aitv.it_value);
460 			else
461 				timevalsub(&aitv.it_value, &ctv);
462 		}
463 	} else {
464 		mtx_lock_spin(&sched_lock);
465 		aitv = p->p_stats->p_timer[uap->which];
466 		mtx_unlock_spin(&sched_lock);
467 	}
468 	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
469 }
470 
471 #ifndef _SYS_SYSPROTO_H_
472 struct setitimer_args {
473 	u_int	which;
474 	struct	itimerval *itv, *oitv;
475 };
476 #endif
477 /*
478  * MPSAFE
479  */
480 int
481 setitimer(struct thread *td, struct setitimer_args *uap)
482 {
483 	struct proc *p = td->td_proc;
484 	struct itimerval aitv, oitv;
485 	struct timeval ctv;
486 	int error;
487 
488 	if (uap->itv == NULL) {
489 		uap->itv = uap->oitv;
490 		return (getitimer(td, (struct getitimer_args *)uap));
491 	}
492 
493 	if (uap->which > ITIMER_PROF)
494 		return (EINVAL);
495 	if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
496 		return (error);
497 	if (itimerfix(&aitv.it_value))
498 		return (EINVAL);
499 	if (!timevalisset(&aitv.it_value))
500 		timevalclear(&aitv.it_interval);
501 	else if (itimerfix(&aitv.it_interval))
502 		return (EINVAL);
503 
504 	if (uap->which == ITIMER_REAL) {
505 		PROC_LOCK(p);
506 		if (timevalisset(&p->p_realtimer.it_value))
507 			callout_stop(&p->p_itcallout);
508 		getmicrouptime(&ctv);
509 		if (timevalisset(&aitv.it_value)) {
510 			callout_reset(&p->p_itcallout, tvtohz(&aitv.it_value),
511 			    realitexpire, p);
512 			timevaladd(&aitv.it_value, &ctv);
513 		}
514 		oitv = p->p_realtimer;
515 		p->p_realtimer = aitv;
516 		PROC_UNLOCK(p);
517 		if (timevalisset(&oitv.it_value)) {
518 			if (timevalcmp(&oitv.it_value, &ctv, <))
519 				timevalclear(&oitv.it_value);
520 			else
521 				timevalsub(&oitv.it_value, &ctv);
522 		}
523 	} else {
524 		mtx_lock_spin(&sched_lock);
525 		oitv = p->p_stats->p_timer[uap->which];
526 		p->p_stats->p_timer[uap->which] = aitv;
527 		mtx_unlock_spin(&sched_lock);
528 	}
529 	if (uap->oitv == NULL)
530 		return (0);
531 	return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
532 }
533 
534 /*
535  * Real interval timer expired:
536  * send process whose timer expired an alarm signal.
537  * If time is not set up to reload, then just return.
538  * Else compute next time timer should go off which is > current time.
539  * This is where delay in processing this timeout causes multiple
540  * SIGALRM calls to be compressed into one.
541  * tvtohz() always adds 1 to allow for the time until the next clock
542  * interrupt being strictly less than 1 clock tick, but we don't want
543  * that here since we want to appear to be in sync with the clock
544  * interrupt even when we're delayed.
545  */
546 void
547 realitexpire(void *arg)
548 {
549 	struct proc *p;
550 	struct timeval ctv, ntv;
551 
552 	p = (struct proc *)arg;
553 	PROC_LOCK(p);
554 	psignal(p, SIGALRM);
555 	if (!timevalisset(&p->p_realtimer.it_interval)) {
556 		timevalclear(&p->p_realtimer.it_value);
557 		if (p->p_flag & P_WEXIT)
558 			wakeup(&p->p_itcallout);
559 		PROC_UNLOCK(p);
560 		return;
561 	}
562 	for (;;) {
563 		timevaladd(&p->p_realtimer.it_value,
564 		    &p->p_realtimer.it_interval);
565 		getmicrouptime(&ctv);
566 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
567 			ntv = p->p_realtimer.it_value;
568 			timevalsub(&ntv, &ctv);
569 			callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
570 			    realitexpire, p);
571 			PROC_UNLOCK(p);
572 			return;
573 		}
574 	}
575 	/*NOTREACHED*/
576 }
577 
578 /*
579  * Check that a proposed value to load into the .it_value or
580  * .it_interval part of an interval timer is acceptable, and
581  * fix it to have at least minimal value (i.e. if it is less
582  * than the resolution of the clock, round it up.)
583  */
584 int
585 itimerfix(struct timeval *tv)
586 {
587 
588 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
589 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
590 		return (EINVAL);
591 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
592 		tv->tv_usec = tick;
593 	return (0);
594 }
595 
596 /*
597  * Decrement an interval timer by a specified number
598  * of microseconds, which must be less than a second,
599  * i.e. < 1000000.  If the timer expires, then reload
600  * it.  In this case, carry over (usec - old value) to
601  * reduce the value reloaded into the timer so that
602  * the timer does not drift.  This routine assumes
603  * that it is called in a context where the timers
604  * on which it is operating cannot change in value.
605  */
606 int
607 itimerdecr(struct itimerval *itp, int usec)
608 {
609 
610 	if (itp->it_value.tv_usec < usec) {
611 		if (itp->it_value.tv_sec == 0) {
612 			/* expired, and already in next interval */
613 			usec -= itp->it_value.tv_usec;
614 			goto expire;
615 		}
616 		itp->it_value.tv_usec += 1000000;
617 		itp->it_value.tv_sec--;
618 	}
619 	itp->it_value.tv_usec -= usec;
620 	usec = 0;
621 	if (timevalisset(&itp->it_value))
622 		return (1);
623 	/* expired, exactly at end of interval */
624 expire:
625 	if (timevalisset(&itp->it_interval)) {
626 		itp->it_value = itp->it_interval;
627 		itp->it_value.tv_usec -= usec;
628 		if (itp->it_value.tv_usec < 0) {
629 			itp->it_value.tv_usec += 1000000;
630 			itp->it_value.tv_sec--;
631 		}
632 	} else
633 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
634 	return (0);
635 }
636 
637 /*
638  * Add and subtract routines for timevals.
639  * N.B.: subtract routine doesn't deal with
640  * results which are before the beginning,
641  * it just gets very confused in this case.
642  * Caveat emptor.
643  */
644 void
645 timevaladd(struct timeval *t1, const struct timeval *t2)
646 {
647 
648 	t1->tv_sec += t2->tv_sec;
649 	t1->tv_usec += t2->tv_usec;
650 	timevalfix(t1);
651 }
652 
653 void
654 timevalsub(struct timeval *t1, const struct timeval *t2)
655 {
656 
657 	t1->tv_sec -= t2->tv_sec;
658 	t1->tv_usec -= t2->tv_usec;
659 	timevalfix(t1);
660 }
661 
662 static void
663 timevalfix(struct timeval *t1)
664 {
665 
666 	if (t1->tv_usec < 0) {
667 		t1->tv_sec--;
668 		t1->tv_usec += 1000000;
669 	}
670 	if (t1->tv_usec >= 1000000) {
671 		t1->tv_sec++;
672 		t1->tv_usec -= 1000000;
673 	}
674 }
675 
676 /*
677  * ratecheck(): simple time-based rate-limit checking.
678  */
679 int
680 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
681 {
682 	struct timeval tv, delta;
683 	int rv = 0;
684 
685 	getmicrouptime(&tv);		/* NB: 10ms precision */
686 	delta = tv;
687 	timevalsub(&delta, lasttime);
688 
689 	/*
690 	 * check for 0,0 is so that the message will be seen at least once,
691 	 * even if interval is huge.
692 	 */
693 	if (timevalcmp(&delta, mininterval, >=) ||
694 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
695 		*lasttime = tv;
696 		rv = 1;
697 	}
698 
699 	return (rv);
700 }
701 
702 /*
703  * ppsratecheck(): packets (or events) per second limitation.
704  *
705  * Return 0 if the limit is to be enforced (e.g. the caller
706  * should drop a packet because of the rate limitation).
707  *
708  * maxpps of 0 always causes zero to be returned.  maxpps of -1
709  * always causes 1 to be returned; this effectively defeats rate
710  * limiting.
711  *
712  * Note that we maintain the struct timeval for compatibility
713  * with other bsd systems.  We reuse the storage and just monitor
714  * clock ticks for minimal overhead.
715  */
716 int
717 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
718 {
719 	int now;
720 
721 	/*
722 	 * Reset the last time and counter if this is the first call
723 	 * or more than a second has passed since the last update of
724 	 * lasttime.
725 	 */
726 	now = ticks;
727 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
728 		lasttime->tv_sec = now;
729 		*curpps = 1;
730 		return (maxpps != 0);
731 	} else {
732 		(*curpps)++;		/* NB: ignore potential overflow */
733 		return (maxpps < 0 || *curpps < maxpps);
734 	}
735 }
736