xref: /freebsd/sys/kern/kern_time.c (revision 2357939bc239bd5334a169b62313806178dd8f30)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_mac.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/mac.h>
46 #include <sys/sysent.h>
47 #include <sys/proc.h>
48 #include <sys/time.h>
49 #include <sys/timetc.h>
50 #include <sys/vnode.h>
51 
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 
55 int tz_minuteswest;
56 int tz_dsttime;
57 
58 /*
59  * Time of day and interval timer support.
60  *
61  * These routines provide the kernel entry points to get and set
62  * the time-of-day and per-process interval timers.  Subroutines
63  * here provide support for adding and subtracting timeval structures
64  * and decrementing interval timers, optionally reloading the interval
65  * timers when they expire.
66  */
67 
68 static int	nanosleep1(struct thread *td, struct timespec *rqt,
69 		    struct timespec *rmt);
70 static int	settime(struct thread *, struct timeval *);
71 static void	timevalfix(struct timeval *);
72 static void	no_lease_updatetime(int);
73 
74 static void
75 no_lease_updatetime(deltat)
76 	int deltat;
77 {
78 }
79 
80 void (*lease_updatetime)(int)  = no_lease_updatetime;
81 
82 static int
83 settime(struct thread *td, struct timeval *tv)
84 {
85 	struct timeval delta, tv1, tv2;
86 	static struct timeval maxtime, laststep;
87 	struct timespec ts;
88 	int s;
89 
90 	s = splclock();
91 	microtime(&tv1);
92 	delta = *tv;
93 	timevalsub(&delta, &tv1);
94 
95 	/*
96 	 * If the system is secure, we do not allow the time to be
97 	 * set to a value earlier than 1 second less than the highest
98 	 * time we have yet seen. The worst a miscreant can do in
99 	 * this circumstance is "freeze" time. He couldn't go
100 	 * back to the past.
101 	 *
102 	 * We similarly do not allow the clock to be stepped more
103 	 * than one second, nor more than once per second. This allows
104 	 * a miscreant to make the clock march double-time, but no worse.
105 	 */
106 	if (securelevel_gt(td->td_ucred, 1) != 0) {
107 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
108 			/*
109 			 * Update maxtime to latest time we've seen.
110 			 */
111 			if (tv1.tv_sec > maxtime.tv_sec)
112 				maxtime = tv1;
113 			tv2 = *tv;
114 			timevalsub(&tv2, &maxtime);
115 			if (tv2.tv_sec < -1) {
116 				tv->tv_sec = maxtime.tv_sec - 1;
117 				printf("Time adjustment clamped to -1 second\n");
118 			}
119 		} else {
120 			if (tv1.tv_sec == laststep.tv_sec) {
121 				splx(s);
122 				return (EPERM);
123 			}
124 			if (delta.tv_sec > 1) {
125 				tv->tv_sec = tv1.tv_sec + 1;
126 				printf("Time adjustment clamped to +1 second\n");
127 			}
128 			laststep = *tv;
129 		}
130 	}
131 
132 	ts.tv_sec = tv->tv_sec;
133 	ts.tv_nsec = tv->tv_usec * 1000;
134 	mtx_lock(&Giant);
135 	tc_setclock(&ts);
136 	(void) splsoftclock();
137 	lease_updatetime(delta.tv_sec);
138 	splx(s);
139 	resettodr();
140 	mtx_unlock(&Giant);
141 	return (0);
142 }
143 
144 #ifndef _SYS_SYSPROTO_H_
145 struct clock_gettime_args {
146 	clockid_t clock_id;
147 	struct	timespec *tp;
148 };
149 #endif
150 
151 /*
152  * MPSAFE
153  */
154 /* ARGSUSED */
155 int
156 clock_gettime(struct thread *td, struct clock_gettime_args *uap)
157 {
158 	struct timespec ats;
159 
160 	if (uap->clock_id == CLOCK_REALTIME)
161 		nanotime(&ats);
162 	else if (uap->clock_id == CLOCK_MONOTONIC)
163 		nanouptime(&ats);
164 	else
165 		return (EINVAL);
166 	return (copyout(&ats, uap->tp, sizeof(ats)));
167 }
168 
169 #ifndef _SYS_SYSPROTO_H_
170 struct clock_settime_args {
171 	clockid_t clock_id;
172 	const struct	timespec *tp;
173 };
174 #endif
175 
176 /*
177  * MPSAFE
178  */
179 /* ARGSUSED */
180 int
181 clock_settime(struct thread *td, struct clock_settime_args *uap)
182 {
183 	struct timeval atv;
184 	struct timespec ats;
185 	int error;
186 
187 #ifdef MAC
188 	error = mac_check_system_settime(td->td_ucred);
189 	if (error)
190 		return (error);
191 #endif
192 	if ((error = suser(td)) != 0)
193 		return (error);
194 	if (uap->clock_id != CLOCK_REALTIME)
195 		return (EINVAL);
196 	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
197 		return (error);
198 	if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
199 		return (EINVAL);
200 	/* XXX Don't convert nsec->usec and back */
201 	TIMESPEC_TO_TIMEVAL(&atv, &ats);
202 	error = settime(td, &atv);
203 	return (error);
204 }
205 
206 #ifndef _SYS_SYSPROTO_H_
207 struct clock_getres_args {
208 	clockid_t clock_id;
209 	struct	timespec *tp;
210 };
211 #endif
212 
213 int
214 clock_getres(struct thread *td, struct clock_getres_args *uap)
215 {
216 	struct timespec ts;
217 	int error;
218 
219 	if (uap->clock_id != CLOCK_REALTIME)
220 		return (EINVAL);
221 	error = 0;
222 	if (uap->tp) {
223 		ts.tv_sec = 0;
224 		/*
225 		 * Round up the result of the division cheaply by adding 1.
226 		 * Rounding up is especially important if rounding down
227 		 * would give 0.  Perfect rounding is unimportant.
228 		 */
229 		ts.tv_nsec = 1000000000 / tc_getfrequency() + 1;
230 		error = copyout(&ts, uap->tp, sizeof(ts));
231 	}
232 	return (error);
233 }
234 
235 static int nanowait;
236 
237 static int
238 nanosleep1(struct thread *td, struct timespec *rqt, struct timespec *rmt)
239 {
240 	struct timespec ts, ts2, ts3;
241 	struct timeval tv;
242 	int error;
243 
244 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
245 		return (EINVAL);
246 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
247 		return (0);
248 	getnanouptime(&ts);
249 	timespecadd(&ts, rqt);
250 	TIMESPEC_TO_TIMEVAL(&tv, rqt);
251 	for (;;) {
252 		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
253 		    tvtohz(&tv));
254 		getnanouptime(&ts2);
255 		if (error != EWOULDBLOCK) {
256 			if (error == ERESTART)
257 				error = EINTR;
258 			if (rmt != NULL) {
259 				timespecsub(&ts, &ts2);
260 				if (ts.tv_sec < 0)
261 					timespecclear(&ts);
262 				*rmt = ts;
263 			}
264 			return (error);
265 		}
266 		if (timespeccmp(&ts2, &ts, >=))
267 			return (0);
268 		ts3 = ts;
269 		timespecsub(&ts3, &ts2);
270 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
271 	}
272 }
273 
274 #ifndef _SYS_SYSPROTO_H_
275 struct nanosleep_args {
276 	struct	timespec *rqtp;
277 	struct	timespec *rmtp;
278 };
279 #endif
280 
281 /*
282  * MPSAFE
283  */
284 /* ARGSUSED */
285 int
286 nanosleep(struct thread *td, struct nanosleep_args *uap)
287 {
288 	struct timespec rmt, rqt;
289 	int error;
290 
291 	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
292 	if (error)
293 		return (error);
294 
295 	if (uap->rmtp &&
296 	    !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
297 			return (EFAULT);
298 	error = nanosleep1(td, &rqt, &rmt);
299 	if (error && uap->rmtp) {
300 		int error2;
301 
302 		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
303 		if (error2)
304 			error = error2;
305 	}
306 	return (error);
307 }
308 
309 #ifndef _SYS_SYSPROTO_H_
310 struct gettimeofday_args {
311 	struct	timeval *tp;
312 	struct	timezone *tzp;
313 };
314 #endif
315 /*
316  * MPSAFE
317  */
318 /* ARGSUSED */
319 int
320 gettimeofday(struct thread *td, struct gettimeofday_args *uap)
321 {
322 	struct timeval atv;
323 	struct timezone rtz;
324 	int error = 0;
325 
326 	if (uap->tp) {
327 		microtime(&atv);
328 		error = copyout(&atv, uap->tp, sizeof (atv));
329 	}
330 	if (error == 0 && uap->tzp != NULL) {
331 		rtz.tz_minuteswest = tz_minuteswest;
332 		rtz.tz_dsttime = tz_dsttime;
333 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
334 	}
335 	return (error);
336 }
337 
338 #ifndef _SYS_SYSPROTO_H_
339 struct settimeofday_args {
340 	struct	timeval *tv;
341 	struct	timezone *tzp;
342 };
343 #endif
344 /*
345  * MPSAFE
346  */
347 /* ARGSUSED */
348 int
349 settimeofday(struct thread *td, struct settimeofday_args *uap)
350 {
351 	struct timeval atv;
352 	struct timezone atz;
353 	int error = 0;
354 
355 #ifdef MAC
356 	error = mac_check_system_settime(td->td_ucred);
357 	if (error)
358 		return (error);
359 #endif
360 	if ((error = suser(td)))
361 		return (error);
362 	/* Verify all parameters before changing time. */
363 	if (uap->tv) {
364 		if ((error = copyin(uap->tv, &atv, sizeof(atv))))
365 			return (error);
366 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
367 			return (EINVAL);
368 	}
369 	if (uap->tzp &&
370 	    (error = copyin(uap->tzp, &atz, sizeof(atz))))
371 		return (error);
372 
373 	if (uap->tv && (error = settime(td, &atv)))
374 		return (error);
375 	if (uap->tzp) {
376 		tz_minuteswest = atz.tz_minuteswest;
377 		tz_dsttime = atz.tz_dsttime;
378 	}
379 	return (error);
380 }
381 /*
382  * Get value of an interval timer.  The process virtual and
383  * profiling virtual time timers are kept in the p_stats area, since
384  * they can be swapped out.  These are kept internally in the
385  * way they are specified externally: in time until they expire.
386  *
387  * The real time interval timer is kept in the process table slot
388  * for the process, and its value (it_value) is kept as an
389  * absolute time rather than as a delta, so that it is easy to keep
390  * periodic real-time signals from drifting.
391  *
392  * Virtual time timers are processed in the hardclock() routine of
393  * kern_clock.c.  The real time timer is processed by a timeout
394  * routine, called from the softclock() routine.  Since a callout
395  * may be delayed in real time due to interrupt processing in the system,
396  * it is possible for the real time timeout routine (realitexpire, given below),
397  * to be delayed in real time past when it is supposed to occur.  It
398  * does not suffice, therefore, to reload the real timer .it_value from the
399  * real time timers .it_interval.  Rather, we compute the next time in
400  * absolute time the timer should go off.
401  */
402 #ifndef _SYS_SYSPROTO_H_
403 struct getitimer_args {
404 	u_int	which;
405 	struct	itimerval *itv;
406 };
407 #endif
408 /*
409  * MPSAFE
410  */
411 int
412 getitimer(struct thread *td, struct getitimer_args *uap)
413 {
414 	struct proc *p = td->td_proc;
415 	struct timeval ctv;
416 	struct itimerval aitv;
417 
418 	if (uap->which > ITIMER_PROF)
419 		return (EINVAL);
420 
421 	if (uap->which == ITIMER_REAL) {
422 		/*
423 		 * Convert from absolute to relative time in .it_value
424 		 * part of real time timer.  If time for real time timer
425 		 * has passed return 0, else return difference between
426 		 * current time and time for the timer to go off.
427 		 */
428 		PROC_LOCK(p);
429 		aitv = p->p_realtimer;
430 		PROC_UNLOCK(p);
431 		if (timevalisset(&aitv.it_value)) {
432 			getmicrouptime(&ctv);
433 			if (timevalcmp(&aitv.it_value, &ctv, <))
434 				timevalclear(&aitv.it_value);
435 			else
436 				timevalsub(&aitv.it_value, &ctv);
437 		}
438 	} else {
439 		mtx_lock_spin(&sched_lock);
440 		aitv = p->p_stats->p_timer[uap->which];
441 		mtx_unlock_spin(&sched_lock);
442 	}
443 	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
444 }
445 
446 #ifndef _SYS_SYSPROTO_H_
447 struct setitimer_args {
448 	u_int	which;
449 	struct	itimerval *itv, *oitv;
450 };
451 #endif
452 /*
453  * MPSAFE
454  */
455 int
456 setitimer(struct thread *td, struct setitimer_args *uap)
457 {
458 	struct proc *p = td->td_proc;
459 	struct itimerval aitv, oitv;
460 	struct timeval ctv;
461 	int error;
462 
463 	if (uap->itv == NULL) {
464 		uap->itv = uap->oitv;
465 		return (getitimer(td, (struct getitimer_args *)uap));
466 	}
467 
468 	if (uap->which > ITIMER_PROF)
469 		return (EINVAL);
470 	if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
471 		return (error);
472 	if (itimerfix(&aitv.it_value))
473 		return (EINVAL);
474 	if (!timevalisset(&aitv.it_value))
475 		timevalclear(&aitv.it_interval);
476 	else if (itimerfix(&aitv.it_interval))
477 		return (EINVAL);
478 
479 	if (uap->which == ITIMER_REAL) {
480 		PROC_LOCK(p);
481 		if (timevalisset(&p->p_realtimer.it_value))
482 			callout_stop(&p->p_itcallout);
483 		getmicrouptime(&ctv);
484 		if (timevalisset(&aitv.it_value)) {
485 			callout_reset(&p->p_itcallout, tvtohz(&aitv.it_value),
486 			    realitexpire, p);
487 			timevaladd(&aitv.it_value, &ctv);
488 		}
489 		oitv = p->p_realtimer;
490 		p->p_realtimer = aitv;
491 		PROC_UNLOCK(p);
492 		if (timevalisset(&oitv.it_value)) {
493 			if (timevalcmp(&oitv.it_value, &ctv, <))
494 				timevalclear(&oitv.it_value);
495 			else
496 				timevalsub(&oitv.it_value, &ctv);
497 		}
498 	} else {
499 		mtx_lock_spin(&sched_lock);
500 		oitv = p->p_stats->p_timer[uap->which];
501 		p->p_stats->p_timer[uap->which] = aitv;
502 		mtx_unlock_spin(&sched_lock);
503 	}
504 	if (uap->oitv == NULL)
505 		return (0);
506 	return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
507 }
508 
509 /*
510  * Real interval timer expired:
511  * send process whose timer expired an alarm signal.
512  * If time is not set up to reload, then just return.
513  * Else compute next time timer should go off which is > current time.
514  * This is where delay in processing this timeout causes multiple
515  * SIGALRM calls to be compressed into one.
516  * tvtohz() always adds 1 to allow for the time until the next clock
517  * interrupt being strictly less than 1 clock tick, but we don't want
518  * that here since we want to appear to be in sync with the clock
519  * interrupt even when we're delayed.
520  */
521 void
522 realitexpire(void *arg)
523 {
524 	struct proc *p;
525 	struct timeval ctv, ntv;
526 
527 	p = (struct proc *)arg;
528 	PROC_LOCK(p);
529 	psignal(p, SIGALRM);
530 	if (!timevalisset(&p->p_realtimer.it_interval)) {
531 		timevalclear(&p->p_realtimer.it_value);
532 		if (p->p_flag & P_WEXIT)
533 			wakeup(&p->p_itcallout);
534 		PROC_UNLOCK(p);
535 		return;
536 	}
537 	for (;;) {
538 		timevaladd(&p->p_realtimer.it_value,
539 		    &p->p_realtimer.it_interval);
540 		getmicrouptime(&ctv);
541 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
542 			ntv = p->p_realtimer.it_value;
543 			timevalsub(&ntv, &ctv);
544 			callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
545 			    realitexpire, p);
546 			PROC_UNLOCK(p);
547 			return;
548 		}
549 	}
550 	/*NOTREACHED*/
551 }
552 
553 /*
554  * Check that a proposed value to load into the .it_value or
555  * .it_interval part of an interval timer is acceptable, and
556  * fix it to have at least minimal value (i.e. if it is less
557  * than the resolution of the clock, round it up.)
558  */
559 int
560 itimerfix(struct timeval *tv)
561 {
562 
563 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
564 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
565 		return (EINVAL);
566 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
567 		tv->tv_usec = tick;
568 	return (0);
569 }
570 
571 /*
572  * Decrement an interval timer by a specified number
573  * of microseconds, which must be less than a second,
574  * i.e. < 1000000.  If the timer expires, then reload
575  * it.  In this case, carry over (usec - old value) to
576  * reduce the value reloaded into the timer so that
577  * the timer does not drift.  This routine assumes
578  * that it is called in a context where the timers
579  * on which it is operating cannot change in value.
580  */
581 int
582 itimerdecr(struct itimerval *itp, int usec)
583 {
584 
585 	if (itp->it_value.tv_usec < usec) {
586 		if (itp->it_value.tv_sec == 0) {
587 			/* expired, and already in next interval */
588 			usec -= itp->it_value.tv_usec;
589 			goto expire;
590 		}
591 		itp->it_value.tv_usec += 1000000;
592 		itp->it_value.tv_sec--;
593 	}
594 	itp->it_value.tv_usec -= usec;
595 	usec = 0;
596 	if (timevalisset(&itp->it_value))
597 		return (1);
598 	/* expired, exactly at end of interval */
599 expire:
600 	if (timevalisset(&itp->it_interval)) {
601 		itp->it_value = itp->it_interval;
602 		itp->it_value.tv_usec -= usec;
603 		if (itp->it_value.tv_usec < 0) {
604 			itp->it_value.tv_usec += 1000000;
605 			itp->it_value.tv_sec--;
606 		}
607 	} else
608 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
609 	return (0);
610 }
611 
612 /*
613  * Add and subtract routines for timevals.
614  * N.B.: subtract routine doesn't deal with
615  * results which are before the beginning,
616  * it just gets very confused in this case.
617  * Caveat emptor.
618  */
619 void
620 timevaladd(struct timeval *t1, const struct timeval *t2)
621 {
622 
623 	t1->tv_sec += t2->tv_sec;
624 	t1->tv_usec += t2->tv_usec;
625 	timevalfix(t1);
626 }
627 
628 void
629 timevalsub(struct timeval *t1, const struct timeval *t2)
630 {
631 
632 	t1->tv_sec -= t2->tv_sec;
633 	t1->tv_usec -= t2->tv_usec;
634 	timevalfix(t1);
635 }
636 
637 static void
638 timevalfix(struct timeval *t1)
639 {
640 
641 	if (t1->tv_usec < 0) {
642 		t1->tv_sec--;
643 		t1->tv_usec += 1000000;
644 	}
645 	if (t1->tv_usec >= 1000000) {
646 		t1->tv_sec++;
647 		t1->tv_usec -= 1000000;
648 	}
649 }
650 
651 /*
652  * ratecheck(): simple time-based rate-limit checking.
653  */
654 int
655 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
656 {
657 	struct timeval tv, delta;
658 	int rv = 0;
659 
660 	getmicrouptime(&tv);		/* NB: 10ms precision */
661 	delta = tv;
662 	timevalsub(&delta, lasttime);
663 
664 	/*
665 	 * check for 0,0 is so that the message will be seen at least once,
666 	 * even if interval is huge.
667 	 */
668 	if (timevalcmp(&delta, mininterval, >=) ||
669 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
670 		*lasttime = tv;
671 		rv = 1;
672 	}
673 
674 	return (rv);
675 }
676 
677 /*
678  * ppsratecheck(): packets (or events) per second limitation.
679  *
680  * Return 0 if the limit is to be enforced (e.g. the caller
681  * should drop a packet because of the rate limitation).
682  *
683  * maxpps of 0 always causes zero to be returned.  maxpps of -1
684  * always causes 1 to be returned; this effectively defeats rate
685  * limiting.
686  *
687  * Note that we maintain the struct timeval for compatibility
688  * with other bsd systems.  We reuse the storage and just monitor
689  * clock ticks for minimal overhead.
690  */
691 int
692 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
693 {
694 	int now;
695 
696 	/*
697 	 * Reset the last time and counter if this is the first call
698 	 * or more than a second has passed since the last update of
699 	 * lasttime.
700 	 */
701 	now = ticks;
702 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
703 		lasttime->tv_sec = now;
704 		*curpps = 1;
705 		return (maxpps != 0);
706 	} else {
707 		(*curpps)++;		/* NB: ignore potential overflow */
708 		return (maxpps < 0 || *curpps < maxpps);
709 	}
710 }
711