xref: /freebsd/sys/kern/kern_time.c (revision 1323ec571215a77ddd21294f0871979d5ad6b992)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_ktrace.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/limits.h>
42 #include <sys/clock.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 #include <sys/sysproto.h>
46 #include <sys/resourcevar.h>
47 #include <sys/signalvar.h>
48 #include <sys/kernel.h>
49 #include <sys/sleepqueue.h>
50 #include <sys/syscallsubr.h>
51 #include <sys/sysctl.h>
52 #include <sys/sysent.h>
53 #include <sys/priv.h>
54 #include <sys/proc.h>
55 #include <sys/posix4.h>
56 #include <sys/time.h>
57 #include <sys/timers.h>
58 #include <sys/timetc.h>
59 #include <sys/vnode.h>
60 #ifdef KTRACE
61 #include <sys/ktrace.h>
62 #endif
63 
64 #include <vm/vm.h>
65 #include <vm/vm_extern.h>
66 
67 #define MAX_CLOCKS 	(CLOCK_MONOTONIC+1)
68 #define CPUCLOCK_BIT		0x80000000
69 #define CPUCLOCK_PROCESS_BIT	0x40000000
70 #define CPUCLOCK_ID_MASK	(~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT))
71 #define MAKE_THREAD_CPUCLOCK(tid)	(CPUCLOCK_BIT|(tid))
72 #define MAKE_PROCESS_CPUCLOCK(pid)	\
73 	(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid))
74 
75 #define NS_PER_SEC	1000000000
76 
77 static struct kclock	posix_clocks[MAX_CLOCKS];
78 static uma_zone_t	itimer_zone = NULL;
79 
80 /*
81  * Time of day and interval timer support.
82  *
83  * These routines provide the kernel entry points to get and set
84  * the time-of-day and per-process interval timers.  Subroutines
85  * here provide support for adding and subtracting timeval structures
86  * and decrementing interval timers, optionally reloading the interval
87  * timers when they expire.
88  */
89 
90 static int	settime(struct thread *, struct timeval *);
91 static void	timevalfix(struct timeval *);
92 static int	user_clock_nanosleep(struct thread *td, clockid_t clock_id,
93 		    int flags, const struct timespec *ua_rqtp,
94 		    struct timespec *ua_rmtp);
95 
96 static void	itimer_start(void);
97 static int	itimer_init(void *, int, int);
98 static void	itimer_fini(void *, int);
99 static void	itimer_enter(struct itimer *);
100 static void	itimer_leave(struct itimer *);
101 static struct itimer *itimer_find(struct proc *, int);
102 static void	itimers_alloc(struct proc *);
103 static int	realtimer_create(struct itimer *);
104 static int	realtimer_gettime(struct itimer *, struct itimerspec *);
105 static int	realtimer_settime(struct itimer *, int,
106 			struct itimerspec *, struct itimerspec *);
107 static int	realtimer_delete(struct itimer *);
108 static void	realtimer_clocktime(clockid_t, struct timespec *);
109 static void	realtimer_expire(void *);
110 static void	realtimer_expire_l(struct itimer *it, bool proc_locked);
111 
112 static int	register_posix_clock(int, const struct kclock *);
113 static void	itimer_fire(struct itimer *it);
114 static int	itimespecfix(struct timespec *ts);
115 
116 #define CLOCK_CALL(clock, call, arglist)		\
117 	((*posix_clocks[clock].call) arglist)
118 
119 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
120 
121 static int
122 settime(struct thread *td, struct timeval *tv)
123 {
124 	struct timeval delta, tv1, tv2;
125 	static struct timeval maxtime, laststep;
126 	struct timespec ts;
127 
128 	microtime(&tv1);
129 	delta = *tv;
130 	timevalsub(&delta, &tv1);
131 
132 	/*
133 	 * If the system is secure, we do not allow the time to be
134 	 * set to a value earlier than 1 second less than the highest
135 	 * time we have yet seen. The worst a miscreant can do in
136 	 * this circumstance is "freeze" time. He couldn't go
137 	 * back to the past.
138 	 *
139 	 * We similarly do not allow the clock to be stepped more
140 	 * than one second, nor more than once per second. This allows
141 	 * a miscreant to make the clock march double-time, but no worse.
142 	 */
143 	if (securelevel_gt(td->td_ucred, 1) != 0) {
144 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
145 			/*
146 			 * Update maxtime to latest time we've seen.
147 			 */
148 			if (tv1.tv_sec > maxtime.tv_sec)
149 				maxtime = tv1;
150 			tv2 = *tv;
151 			timevalsub(&tv2, &maxtime);
152 			if (tv2.tv_sec < -1) {
153 				tv->tv_sec = maxtime.tv_sec - 1;
154 				printf("Time adjustment clamped to -1 second\n");
155 			}
156 		} else {
157 			if (tv1.tv_sec == laststep.tv_sec)
158 				return (EPERM);
159 			if (delta.tv_sec > 1) {
160 				tv->tv_sec = tv1.tv_sec + 1;
161 				printf("Time adjustment clamped to +1 second\n");
162 			}
163 			laststep = *tv;
164 		}
165 	}
166 
167 	ts.tv_sec = tv->tv_sec;
168 	ts.tv_nsec = tv->tv_usec * 1000;
169 	tc_setclock(&ts);
170 	resettodr();
171 	return (0);
172 }
173 
174 #ifndef _SYS_SYSPROTO_H_
175 struct clock_getcpuclockid2_args {
176 	id_t id;
177 	int which,
178 	clockid_t *clock_id;
179 };
180 #endif
181 /* ARGSUSED */
182 int
183 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap)
184 {
185 	clockid_t clk_id;
186 	int error;
187 
188 	error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id);
189 	if (error == 0)
190 		error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
191 	return (error);
192 }
193 
194 int
195 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which,
196     clockid_t *clk_id)
197 {
198 	struct proc *p;
199 	pid_t pid;
200 	lwpid_t tid;
201 	int error;
202 
203 	switch (which) {
204 	case CPUCLOCK_WHICH_PID:
205 		if (id != 0) {
206 			error = pget(id, PGET_CANSEE | PGET_NOTID, &p);
207 			if (error != 0)
208 				return (error);
209 			PROC_UNLOCK(p);
210 			pid = id;
211 		} else {
212 			pid = td->td_proc->p_pid;
213 		}
214 		*clk_id = MAKE_PROCESS_CPUCLOCK(pid);
215 		return (0);
216 	case CPUCLOCK_WHICH_TID:
217 		tid = id == 0 ? td->td_tid : id;
218 		*clk_id = MAKE_THREAD_CPUCLOCK(tid);
219 		return (0);
220 	default:
221 		return (EINVAL);
222 	}
223 }
224 
225 #ifndef _SYS_SYSPROTO_H_
226 struct clock_gettime_args {
227 	clockid_t clock_id;
228 	struct	timespec *tp;
229 };
230 #endif
231 /* ARGSUSED */
232 int
233 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
234 {
235 	struct timespec ats;
236 	int error;
237 
238 	error = kern_clock_gettime(td, uap->clock_id, &ats);
239 	if (error == 0)
240 		error = copyout(&ats, uap->tp, sizeof(ats));
241 
242 	return (error);
243 }
244 
245 static inline void
246 cputick2timespec(uint64_t runtime, struct timespec *ats)
247 {
248 	uint64_t tr;
249 	tr = cpu_tickrate();
250 	ats->tv_sec = runtime / tr;
251 	ats->tv_nsec = ((runtime % tr) * 1000000000ULL) / tr;
252 }
253 
254 void
255 kern_thread_cputime(struct thread *targettd, struct timespec *ats)
256 {
257 	uint64_t runtime, curtime, switchtime;
258 
259 	if (targettd == NULL) { /* current thread */
260 		spinlock_enter();
261 		switchtime = PCPU_GET(switchtime);
262 		curtime = cpu_ticks();
263 		runtime = curthread->td_runtime;
264 		spinlock_exit();
265 		runtime += curtime - switchtime;
266 	} else {
267 		PROC_LOCK_ASSERT(targettd->td_proc, MA_OWNED);
268 		thread_lock(targettd);
269 		runtime = targettd->td_runtime;
270 		thread_unlock(targettd);
271 	}
272 	cputick2timespec(runtime, ats);
273 }
274 
275 void
276 kern_process_cputime(struct proc *targetp, struct timespec *ats)
277 {
278 	uint64_t runtime;
279 	struct rusage ru;
280 
281 	PROC_LOCK_ASSERT(targetp, MA_OWNED);
282 	PROC_STATLOCK(targetp);
283 	rufetch(targetp, &ru);
284 	runtime = targetp->p_rux.rux_runtime;
285 	if (curthread->td_proc == targetp)
286 		runtime += cpu_ticks() - PCPU_GET(switchtime);
287 	PROC_STATUNLOCK(targetp);
288 	cputick2timespec(runtime, ats);
289 }
290 
291 static int
292 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats)
293 {
294 	struct proc *p, *p2;
295 	struct thread *td2;
296 	lwpid_t tid;
297 	pid_t pid;
298 	int error;
299 
300 	p = td->td_proc;
301 	if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) {
302 		tid = clock_id & CPUCLOCK_ID_MASK;
303 		td2 = tdfind(tid, p->p_pid);
304 		if (td2 == NULL)
305 			return (EINVAL);
306 		kern_thread_cputime(td2, ats);
307 		PROC_UNLOCK(td2->td_proc);
308 	} else {
309 		pid = clock_id & CPUCLOCK_ID_MASK;
310 		error = pget(pid, PGET_CANSEE, &p2);
311 		if (error != 0)
312 			return (EINVAL);
313 		kern_process_cputime(p2, ats);
314 		PROC_UNLOCK(p2);
315 	}
316 	return (0);
317 }
318 
319 int
320 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
321 {
322 	struct timeval sys, user;
323 	struct proc *p;
324 
325 	p = td->td_proc;
326 	switch (clock_id) {
327 	case CLOCK_REALTIME:		/* Default to precise. */
328 	case CLOCK_REALTIME_PRECISE:
329 		nanotime(ats);
330 		break;
331 	case CLOCK_REALTIME_FAST:
332 		getnanotime(ats);
333 		break;
334 	case CLOCK_VIRTUAL:
335 		PROC_LOCK(p);
336 		PROC_STATLOCK(p);
337 		calcru(p, &user, &sys);
338 		PROC_STATUNLOCK(p);
339 		PROC_UNLOCK(p);
340 		TIMEVAL_TO_TIMESPEC(&user, ats);
341 		break;
342 	case CLOCK_PROF:
343 		PROC_LOCK(p);
344 		PROC_STATLOCK(p);
345 		calcru(p, &user, &sys);
346 		PROC_STATUNLOCK(p);
347 		PROC_UNLOCK(p);
348 		timevaladd(&user, &sys);
349 		TIMEVAL_TO_TIMESPEC(&user, ats);
350 		break;
351 	case CLOCK_MONOTONIC:		/* Default to precise. */
352 	case CLOCK_MONOTONIC_PRECISE:
353 	case CLOCK_UPTIME:
354 	case CLOCK_UPTIME_PRECISE:
355 		nanouptime(ats);
356 		break;
357 	case CLOCK_UPTIME_FAST:
358 	case CLOCK_MONOTONIC_FAST:
359 		getnanouptime(ats);
360 		break;
361 	case CLOCK_SECOND:
362 		ats->tv_sec = time_second;
363 		ats->tv_nsec = 0;
364 		break;
365 	case CLOCK_THREAD_CPUTIME_ID:
366 		kern_thread_cputime(NULL, ats);
367 		break;
368 	case CLOCK_PROCESS_CPUTIME_ID:
369 		PROC_LOCK(p);
370 		kern_process_cputime(p, ats);
371 		PROC_UNLOCK(p);
372 		break;
373 	default:
374 		if ((int)clock_id >= 0)
375 			return (EINVAL);
376 		return (get_cputime(td, clock_id, ats));
377 	}
378 	return (0);
379 }
380 
381 #ifndef _SYS_SYSPROTO_H_
382 struct clock_settime_args {
383 	clockid_t clock_id;
384 	const struct	timespec *tp;
385 };
386 #endif
387 /* ARGSUSED */
388 int
389 sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
390 {
391 	struct timespec ats;
392 	int error;
393 
394 	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
395 		return (error);
396 	return (kern_clock_settime(td, uap->clock_id, &ats));
397 }
398 
399 static int allow_insane_settime = 0;
400 SYSCTL_INT(_debug, OID_AUTO, allow_insane_settime, CTLFLAG_RWTUN,
401     &allow_insane_settime, 0,
402     "do not perform possibly restrictive checks on settime(2) args");
403 
404 int
405 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
406 {
407 	struct timeval atv;
408 	int error;
409 
410 	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
411 		return (error);
412 	if (clock_id != CLOCK_REALTIME)
413 		return (EINVAL);
414 	if (ats->tv_nsec < 0 || ats->tv_nsec >= NS_PER_SEC || ats->tv_sec < 0)
415 		return (EINVAL);
416 	if (!allow_insane_settime &&
417 	    (ats->tv_sec > 8000ULL * 365 * 24 * 60 * 60 ||
418 	    ats->tv_sec < utc_offset()))
419 		return (EINVAL);
420 	/* XXX Don't convert nsec->usec and back */
421 	TIMESPEC_TO_TIMEVAL(&atv, ats);
422 	error = settime(td, &atv);
423 	return (error);
424 }
425 
426 #ifndef _SYS_SYSPROTO_H_
427 struct clock_getres_args {
428 	clockid_t clock_id;
429 	struct	timespec *tp;
430 };
431 #endif
432 int
433 sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
434 {
435 	struct timespec ts;
436 	int error;
437 
438 	if (uap->tp == NULL)
439 		return (0);
440 
441 	error = kern_clock_getres(td, uap->clock_id, &ts);
442 	if (error == 0)
443 		error = copyout(&ts, uap->tp, sizeof(ts));
444 	return (error);
445 }
446 
447 int
448 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
449 {
450 
451 	ts->tv_sec = 0;
452 	switch (clock_id) {
453 	case CLOCK_REALTIME:
454 	case CLOCK_REALTIME_FAST:
455 	case CLOCK_REALTIME_PRECISE:
456 	case CLOCK_MONOTONIC:
457 	case CLOCK_MONOTONIC_FAST:
458 	case CLOCK_MONOTONIC_PRECISE:
459 	case CLOCK_UPTIME:
460 	case CLOCK_UPTIME_FAST:
461 	case CLOCK_UPTIME_PRECISE:
462 		/*
463 		 * Round up the result of the division cheaply by adding 1.
464 		 * Rounding up is especially important if rounding down
465 		 * would give 0.  Perfect rounding is unimportant.
466 		 */
467 		ts->tv_nsec = NS_PER_SEC / tc_getfrequency() + 1;
468 		break;
469 	case CLOCK_VIRTUAL:
470 	case CLOCK_PROF:
471 		/* Accurately round up here because we can do so cheaply. */
472 		ts->tv_nsec = howmany(NS_PER_SEC, hz);
473 		break;
474 	case CLOCK_SECOND:
475 		ts->tv_sec = 1;
476 		ts->tv_nsec = 0;
477 		break;
478 	case CLOCK_THREAD_CPUTIME_ID:
479 	case CLOCK_PROCESS_CPUTIME_ID:
480 	cputime:
481 		ts->tv_nsec = 1000000000 / cpu_tickrate() + 1;
482 		break;
483 	default:
484 		if ((int)clock_id < 0)
485 			goto cputime;
486 		return (EINVAL);
487 	}
488 	return (0);
489 }
490 
491 int
492 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
493 {
494 
495 	return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt,
496 	    rmt));
497 }
498 
499 static uint8_t nanowait[MAXCPU];
500 
501 int
502 kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags,
503     const struct timespec *rqt, struct timespec *rmt)
504 {
505 	struct timespec ts, now;
506 	sbintime_t sbt, sbtt, prec, tmp;
507 	time_t over;
508 	int error;
509 	bool is_abs_real;
510 
511 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= NS_PER_SEC)
512 		return (EINVAL);
513 	if ((flags & ~TIMER_ABSTIME) != 0)
514 		return (EINVAL);
515 	switch (clock_id) {
516 	case CLOCK_REALTIME:
517 	case CLOCK_REALTIME_PRECISE:
518 	case CLOCK_REALTIME_FAST:
519 	case CLOCK_SECOND:
520 		is_abs_real = (flags & TIMER_ABSTIME) != 0;
521 		break;
522 	case CLOCK_MONOTONIC:
523 	case CLOCK_MONOTONIC_PRECISE:
524 	case CLOCK_MONOTONIC_FAST:
525 	case CLOCK_UPTIME:
526 	case CLOCK_UPTIME_PRECISE:
527 	case CLOCK_UPTIME_FAST:
528 		is_abs_real = false;
529 		break;
530 	case CLOCK_VIRTUAL:
531 	case CLOCK_PROF:
532 	case CLOCK_PROCESS_CPUTIME_ID:
533 		return (ENOTSUP);
534 	case CLOCK_THREAD_CPUTIME_ID:
535 	default:
536 		return (EINVAL);
537 	}
538 	do {
539 		ts = *rqt;
540 		if ((flags & TIMER_ABSTIME) != 0) {
541 			if (is_abs_real)
542 				td->td_rtcgen =
543 				    atomic_load_acq_int(&rtc_generation);
544 			error = kern_clock_gettime(td, clock_id, &now);
545 			KASSERT(error == 0, ("kern_clock_gettime: %d", error));
546 			timespecsub(&ts, &now, &ts);
547 		}
548 		if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) {
549 			error = EWOULDBLOCK;
550 			break;
551 		}
552 		if (ts.tv_sec > INT32_MAX / 2) {
553 			over = ts.tv_sec - INT32_MAX / 2;
554 			ts.tv_sec -= over;
555 		} else
556 			over = 0;
557 		tmp = tstosbt(ts);
558 		prec = tmp;
559 		prec >>= tc_precexp;
560 		if (TIMESEL(&sbt, tmp))
561 			sbt += tc_tick_sbt;
562 		sbt += tmp;
563 		error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp",
564 		    sbt, prec, C_ABSOLUTE);
565 	} while (error == 0 && is_abs_real && td->td_rtcgen == 0);
566 	td->td_rtcgen = 0;
567 	if (error != EWOULDBLOCK) {
568 		if (TIMESEL(&sbtt, tmp))
569 			sbtt += tc_tick_sbt;
570 		if (sbtt >= sbt)
571 			return (0);
572 		if (error == ERESTART)
573 			error = EINTR;
574 		if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) {
575 			ts = sbttots(sbt - sbtt);
576 			ts.tv_sec += over;
577 			if (ts.tv_sec < 0)
578 				timespecclear(&ts);
579 			*rmt = ts;
580 		}
581 		return (error);
582 	}
583 	return (0);
584 }
585 
586 #ifndef _SYS_SYSPROTO_H_
587 struct nanosleep_args {
588 	struct	timespec *rqtp;
589 	struct	timespec *rmtp;
590 };
591 #endif
592 /* ARGSUSED */
593 int
594 sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
595 {
596 
597 	return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME,
598 	    uap->rqtp, uap->rmtp));
599 }
600 
601 #ifndef _SYS_SYSPROTO_H_
602 struct clock_nanosleep_args {
603 	clockid_t clock_id;
604 	int 	  flags;
605 	struct	timespec *rqtp;
606 	struct	timespec *rmtp;
607 };
608 #endif
609 /* ARGSUSED */
610 int
611 sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap)
612 {
613 	int error;
614 
615 	error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp,
616 	    uap->rmtp);
617 	return (kern_posix_error(td, error));
618 }
619 
620 static int
621 user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags,
622     const struct timespec *ua_rqtp, struct timespec *ua_rmtp)
623 {
624 	struct timespec rmt, rqt;
625 	int error, error2;
626 
627 	error = copyin(ua_rqtp, &rqt, sizeof(rqt));
628 	if (error)
629 		return (error);
630 	error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
631 	if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
632 		error2 = copyout(&rmt, ua_rmtp, sizeof(rmt));
633 		if (error2 != 0)
634 			error = error2;
635 	}
636 	return (error);
637 }
638 
639 #ifndef _SYS_SYSPROTO_H_
640 struct gettimeofday_args {
641 	struct	timeval *tp;
642 	struct	timezone *tzp;
643 };
644 #endif
645 /* ARGSUSED */
646 int
647 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
648 {
649 	struct timeval atv;
650 	struct timezone rtz;
651 	int error = 0;
652 
653 	if (uap->tp) {
654 		microtime(&atv);
655 		error = copyout(&atv, uap->tp, sizeof (atv));
656 	}
657 	if (error == 0 && uap->tzp != NULL) {
658 		rtz.tz_minuteswest = 0;
659 		rtz.tz_dsttime = 0;
660 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
661 	}
662 	return (error);
663 }
664 
665 #ifndef _SYS_SYSPROTO_H_
666 struct settimeofday_args {
667 	struct	timeval *tv;
668 	struct	timezone *tzp;
669 };
670 #endif
671 /* ARGSUSED */
672 int
673 sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
674 {
675 	struct timeval atv, *tvp;
676 	struct timezone atz, *tzp;
677 	int error;
678 
679 	if (uap->tv) {
680 		error = copyin(uap->tv, &atv, sizeof(atv));
681 		if (error)
682 			return (error);
683 		tvp = &atv;
684 	} else
685 		tvp = NULL;
686 	if (uap->tzp) {
687 		error = copyin(uap->tzp, &atz, sizeof(atz));
688 		if (error)
689 			return (error);
690 		tzp = &atz;
691 	} else
692 		tzp = NULL;
693 	return (kern_settimeofday(td, tvp, tzp));
694 }
695 
696 int
697 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
698 {
699 	int error;
700 
701 	error = priv_check(td, PRIV_SETTIMEOFDAY);
702 	if (error)
703 		return (error);
704 	/* Verify all parameters before changing time. */
705 	if (tv) {
706 		if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 ||
707 		    tv->tv_sec < 0)
708 			return (EINVAL);
709 		error = settime(td, tv);
710 	}
711 	return (error);
712 }
713 
714 /*
715  * Get value of an interval timer.  The process virtual and profiling virtual
716  * time timers are kept in the p_stats area, since they can be swapped out.
717  * These are kept internally in the way they are specified externally: in
718  * time until they expire.
719  *
720  * The real time interval timer is kept in the process table slot for the
721  * process, and its value (it_value) is kept as an absolute time rather than
722  * as a delta, so that it is easy to keep periodic real-time signals from
723  * drifting.
724  *
725  * Virtual time timers are processed in the hardclock() routine of
726  * kern_clock.c.  The real time timer is processed by a timeout routine,
727  * called from the softclock() routine.  Since a callout may be delayed in
728  * real time due to interrupt processing in the system, it is possible for
729  * the real time timeout routine (realitexpire, given below), to be delayed
730  * in real time past when it is supposed to occur.  It does not suffice,
731  * therefore, to reload the real timer .it_value from the real time timers
732  * .it_interval.  Rather, we compute the next time in absolute time the timer
733  * should go off.
734  */
735 #ifndef _SYS_SYSPROTO_H_
736 struct getitimer_args {
737 	u_int	which;
738 	struct	itimerval *itv;
739 };
740 #endif
741 int
742 sys_getitimer(struct thread *td, struct getitimer_args *uap)
743 {
744 	struct itimerval aitv;
745 	int error;
746 
747 	error = kern_getitimer(td, uap->which, &aitv);
748 	if (error != 0)
749 		return (error);
750 	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
751 }
752 
753 int
754 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
755 {
756 	struct proc *p = td->td_proc;
757 	struct timeval ctv;
758 
759 	if (which > ITIMER_PROF)
760 		return (EINVAL);
761 
762 	if (which == ITIMER_REAL) {
763 		/*
764 		 * Convert from absolute to relative time in .it_value
765 		 * part of real time timer.  If time for real time timer
766 		 * has passed return 0, else return difference between
767 		 * current time and time for the timer to go off.
768 		 */
769 		PROC_LOCK(p);
770 		*aitv = p->p_realtimer;
771 		PROC_UNLOCK(p);
772 		if (timevalisset(&aitv->it_value)) {
773 			microuptime(&ctv);
774 			if (timevalcmp(&aitv->it_value, &ctv, <))
775 				timevalclear(&aitv->it_value);
776 			else
777 				timevalsub(&aitv->it_value, &ctv);
778 		}
779 	} else {
780 		PROC_ITIMLOCK(p);
781 		*aitv = p->p_stats->p_timer[which];
782 		PROC_ITIMUNLOCK(p);
783 	}
784 #ifdef KTRACE
785 	if (KTRPOINT(td, KTR_STRUCT))
786 		ktritimerval(aitv);
787 #endif
788 	return (0);
789 }
790 
791 #ifndef _SYS_SYSPROTO_H_
792 struct setitimer_args {
793 	u_int	which;
794 	struct	itimerval *itv, *oitv;
795 };
796 #endif
797 int
798 sys_setitimer(struct thread *td, struct setitimer_args *uap)
799 {
800 	struct itimerval aitv, oitv;
801 	int error;
802 
803 	if (uap->itv == NULL) {
804 		uap->itv = uap->oitv;
805 		return (sys_getitimer(td, (struct getitimer_args *)uap));
806 	}
807 
808 	if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
809 		return (error);
810 	error = kern_setitimer(td, uap->which, &aitv, &oitv);
811 	if (error != 0 || uap->oitv == NULL)
812 		return (error);
813 	return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
814 }
815 
816 int
817 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
818     struct itimerval *oitv)
819 {
820 	struct proc *p = td->td_proc;
821 	struct timeval ctv;
822 	sbintime_t sbt, pr;
823 
824 	if (aitv == NULL)
825 		return (kern_getitimer(td, which, oitv));
826 
827 	if (which > ITIMER_PROF)
828 		return (EINVAL);
829 #ifdef KTRACE
830 	if (KTRPOINT(td, KTR_STRUCT))
831 		ktritimerval(aitv);
832 #endif
833 	if (itimerfix(&aitv->it_value) ||
834 	    aitv->it_value.tv_sec > INT32_MAX / 2)
835 		return (EINVAL);
836 	if (!timevalisset(&aitv->it_value))
837 		timevalclear(&aitv->it_interval);
838 	else if (itimerfix(&aitv->it_interval) ||
839 	    aitv->it_interval.tv_sec > INT32_MAX / 2)
840 		return (EINVAL);
841 
842 	if (which == ITIMER_REAL) {
843 		PROC_LOCK(p);
844 		if (timevalisset(&p->p_realtimer.it_value))
845 			callout_stop(&p->p_itcallout);
846 		microuptime(&ctv);
847 		if (timevalisset(&aitv->it_value)) {
848 			pr = tvtosbt(aitv->it_value) >> tc_precexp;
849 			timevaladd(&aitv->it_value, &ctv);
850 			sbt = tvtosbt(aitv->it_value);
851 			callout_reset_sbt(&p->p_itcallout, sbt, pr,
852 			    realitexpire, p, C_ABSOLUTE);
853 		}
854 		*oitv = p->p_realtimer;
855 		p->p_realtimer = *aitv;
856 		PROC_UNLOCK(p);
857 		if (timevalisset(&oitv->it_value)) {
858 			if (timevalcmp(&oitv->it_value, &ctv, <))
859 				timevalclear(&oitv->it_value);
860 			else
861 				timevalsub(&oitv->it_value, &ctv);
862 		}
863 	} else {
864 		if (aitv->it_interval.tv_sec == 0 &&
865 		    aitv->it_interval.tv_usec != 0 &&
866 		    aitv->it_interval.tv_usec < tick)
867 			aitv->it_interval.tv_usec = tick;
868 		if (aitv->it_value.tv_sec == 0 &&
869 		    aitv->it_value.tv_usec != 0 &&
870 		    aitv->it_value.tv_usec < tick)
871 			aitv->it_value.tv_usec = tick;
872 		PROC_ITIMLOCK(p);
873 		*oitv = p->p_stats->p_timer[which];
874 		p->p_stats->p_timer[which] = *aitv;
875 		PROC_ITIMUNLOCK(p);
876 	}
877 #ifdef KTRACE
878 	if (KTRPOINT(td, KTR_STRUCT))
879 		ktritimerval(oitv);
880 #endif
881 	return (0);
882 }
883 
884 static void
885 realitexpire_reset_callout(struct proc *p, sbintime_t *isbtp)
886 {
887 	sbintime_t prec;
888 
889 	prec = isbtp == NULL ? tvtosbt(p->p_realtimer.it_interval) : *isbtp;
890 	callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value),
891 	    prec >> tc_precexp, realitexpire, p, C_ABSOLUTE);
892 }
893 
894 void
895 itimer_proc_continue(struct proc *p)
896 {
897 	struct timeval ctv;
898 	struct itimer *it;
899 	int id;
900 
901 	PROC_LOCK_ASSERT(p, MA_OWNED);
902 
903 	if ((p->p_flag2 & P2_ITSTOPPED) != 0) {
904 		p->p_flag2 &= ~P2_ITSTOPPED;
905 		microuptime(&ctv);
906 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >=))
907 			realitexpire(p);
908 		else
909 			realitexpire_reset_callout(p, NULL);
910 	}
911 
912 	if (p->p_itimers != NULL) {
913 		for (id = 3; id < TIMER_MAX; id++) {
914 			it = p->p_itimers->its_timers[id];
915 			if (it == NULL)
916 				continue;
917 			if ((it->it_flags & ITF_PSTOPPED) != 0) {
918 				ITIMER_LOCK(it);
919 				if ((it->it_flags & ITF_PSTOPPED) != 0) {
920 					it->it_flags &= ~ITF_PSTOPPED;
921 					if ((it->it_flags & ITF_DELETING) == 0)
922 						realtimer_expire_l(it, true);
923 				}
924 				ITIMER_UNLOCK(it);
925 			}
926 		}
927 	}
928 }
929 
930 /*
931  * Real interval timer expired:
932  * send process whose timer expired an alarm signal.
933  * If time is not set up to reload, then just return.
934  * Else compute next time timer should go off which is > current time.
935  * This is where delay in processing this timeout causes multiple
936  * SIGALRM calls to be compressed into one.
937  * tvtohz() always adds 1 to allow for the time until the next clock
938  * interrupt being strictly less than 1 clock tick, but we don't want
939  * that here since we want to appear to be in sync with the clock
940  * interrupt even when we're delayed.
941  */
942 void
943 realitexpire(void *arg)
944 {
945 	struct proc *p;
946 	struct timeval ctv;
947 	sbintime_t isbt;
948 
949 	p = (struct proc *)arg;
950 	kern_psignal(p, SIGALRM);
951 	if (!timevalisset(&p->p_realtimer.it_interval)) {
952 		timevalclear(&p->p_realtimer.it_value);
953 		return;
954 	}
955 
956 	isbt = tvtosbt(p->p_realtimer.it_interval);
957 	if (isbt >= sbt_timethreshold)
958 		getmicrouptime(&ctv);
959 	else
960 		microuptime(&ctv);
961 	do {
962 		timevaladd(&p->p_realtimer.it_value,
963 		    &p->p_realtimer.it_interval);
964 	} while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=));
965 
966 	if (P_SHOULDSTOP(p) || P_KILLED(p)) {
967 		p->p_flag2 |= P2_ITSTOPPED;
968 		return;
969 	}
970 
971 	p->p_flag2 &= ~P2_ITSTOPPED;
972 	realitexpire_reset_callout(p, &isbt);
973 }
974 
975 /*
976  * Check that a proposed value to load into the .it_value or
977  * .it_interval part of an interval timer is acceptable, and
978  * fix it to have at least minimal value (i.e. if it is less
979  * than the resolution of the clock, round it up.)
980  */
981 int
982 itimerfix(struct timeval *tv)
983 {
984 
985 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
986 		return (EINVAL);
987 	if (tv->tv_sec == 0 && tv->tv_usec != 0 &&
988 	    tv->tv_usec < (u_int)tick / 16)
989 		tv->tv_usec = (u_int)tick / 16;
990 	return (0);
991 }
992 
993 /*
994  * Decrement an interval timer by a specified number
995  * of microseconds, which must be less than a second,
996  * i.e. < 1000000.  If the timer expires, then reload
997  * it.  In this case, carry over (usec - old value) to
998  * reduce the value reloaded into the timer so that
999  * the timer does not drift.  This routine assumes
1000  * that it is called in a context where the timers
1001  * on which it is operating cannot change in value.
1002  */
1003 int
1004 itimerdecr(struct itimerval *itp, int usec)
1005 {
1006 
1007 	if (itp->it_value.tv_usec < usec) {
1008 		if (itp->it_value.tv_sec == 0) {
1009 			/* expired, and already in next interval */
1010 			usec -= itp->it_value.tv_usec;
1011 			goto expire;
1012 		}
1013 		itp->it_value.tv_usec += 1000000;
1014 		itp->it_value.tv_sec--;
1015 	}
1016 	itp->it_value.tv_usec -= usec;
1017 	usec = 0;
1018 	if (timevalisset(&itp->it_value))
1019 		return (1);
1020 	/* expired, exactly at end of interval */
1021 expire:
1022 	if (timevalisset(&itp->it_interval)) {
1023 		itp->it_value = itp->it_interval;
1024 		itp->it_value.tv_usec -= usec;
1025 		if (itp->it_value.tv_usec < 0) {
1026 			itp->it_value.tv_usec += 1000000;
1027 			itp->it_value.tv_sec--;
1028 		}
1029 	} else
1030 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
1031 	return (0);
1032 }
1033 
1034 /*
1035  * Add and subtract routines for timevals.
1036  * N.B.: subtract routine doesn't deal with
1037  * results which are before the beginning,
1038  * it just gets very confused in this case.
1039  * Caveat emptor.
1040  */
1041 void
1042 timevaladd(struct timeval *t1, const struct timeval *t2)
1043 {
1044 
1045 	t1->tv_sec += t2->tv_sec;
1046 	t1->tv_usec += t2->tv_usec;
1047 	timevalfix(t1);
1048 }
1049 
1050 void
1051 timevalsub(struct timeval *t1, const struct timeval *t2)
1052 {
1053 
1054 	t1->tv_sec -= t2->tv_sec;
1055 	t1->tv_usec -= t2->tv_usec;
1056 	timevalfix(t1);
1057 }
1058 
1059 static void
1060 timevalfix(struct timeval *t1)
1061 {
1062 
1063 	if (t1->tv_usec < 0) {
1064 		t1->tv_sec--;
1065 		t1->tv_usec += 1000000;
1066 	}
1067 	if (t1->tv_usec >= 1000000) {
1068 		t1->tv_sec++;
1069 		t1->tv_usec -= 1000000;
1070 	}
1071 }
1072 
1073 /*
1074  * ratecheck(): simple time-based rate-limit checking.
1075  */
1076 int
1077 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1078 {
1079 	struct timeval tv, delta;
1080 	int rv = 0;
1081 
1082 	getmicrouptime(&tv);		/* NB: 10ms precision */
1083 	delta = tv;
1084 	timevalsub(&delta, lasttime);
1085 
1086 	/*
1087 	 * check for 0,0 is so that the message will be seen at least once,
1088 	 * even if interval is huge.
1089 	 */
1090 	if (timevalcmp(&delta, mininterval, >=) ||
1091 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1092 		*lasttime = tv;
1093 		rv = 1;
1094 	}
1095 
1096 	return (rv);
1097 }
1098 
1099 /*
1100  * ppsratecheck(): packets (or events) per second limitation.
1101  *
1102  * Return 0 if the limit is to be enforced (e.g. the caller
1103  * should drop a packet because of the rate limitation).
1104  *
1105  * maxpps of 0 always causes zero to be returned.  maxpps of -1
1106  * always causes 1 to be returned; this effectively defeats rate
1107  * limiting.
1108  *
1109  * Note that we maintain the struct timeval for compatibility
1110  * with other bsd systems.  We reuse the storage and just monitor
1111  * clock ticks for minimal overhead.
1112  */
1113 int
1114 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1115 {
1116 	int now;
1117 
1118 	/*
1119 	 * Reset the last time and counter if this is the first call
1120 	 * or more than a second has passed since the last update of
1121 	 * lasttime.
1122 	 */
1123 	now = ticks;
1124 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
1125 		lasttime->tv_sec = now;
1126 		*curpps = 1;
1127 		return (maxpps != 0);
1128 	} else {
1129 		(*curpps)++;		/* NB: ignore potential overflow */
1130 		return (maxpps < 0 || *curpps <= maxpps);
1131 	}
1132 }
1133 
1134 static void
1135 itimer_start(void)
1136 {
1137 	static const struct kclock rt_clock = {
1138 		.timer_create  = realtimer_create,
1139 		.timer_delete  = realtimer_delete,
1140 		.timer_settime = realtimer_settime,
1141 		.timer_gettime = realtimer_gettime,
1142 	};
1143 
1144 	itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
1145 		NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
1146 	register_posix_clock(CLOCK_REALTIME,  &rt_clock);
1147 	register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
1148 	p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
1149 	p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
1150 	p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
1151 }
1152 
1153 static int
1154 register_posix_clock(int clockid, const struct kclock *clk)
1155 {
1156 	if ((unsigned)clockid >= MAX_CLOCKS) {
1157 		printf("%s: invalid clockid\n", __func__);
1158 		return (0);
1159 	}
1160 	posix_clocks[clockid] = *clk;
1161 	return (1);
1162 }
1163 
1164 static int
1165 itimer_init(void *mem, int size, int flags)
1166 {
1167 	struct itimer *it;
1168 
1169 	it = (struct itimer *)mem;
1170 	mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
1171 	return (0);
1172 }
1173 
1174 static void
1175 itimer_fini(void *mem, int size)
1176 {
1177 	struct itimer *it;
1178 
1179 	it = (struct itimer *)mem;
1180 	mtx_destroy(&it->it_mtx);
1181 }
1182 
1183 static void
1184 itimer_enter(struct itimer *it)
1185 {
1186 
1187 	mtx_assert(&it->it_mtx, MA_OWNED);
1188 	it->it_usecount++;
1189 }
1190 
1191 static void
1192 itimer_leave(struct itimer *it)
1193 {
1194 
1195 	mtx_assert(&it->it_mtx, MA_OWNED);
1196 	KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
1197 
1198 	if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
1199 		wakeup(it);
1200 }
1201 
1202 #ifndef _SYS_SYSPROTO_H_
1203 struct ktimer_create_args {
1204 	clockid_t clock_id;
1205 	struct sigevent * evp;
1206 	int * timerid;
1207 };
1208 #endif
1209 int
1210 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
1211 {
1212 	struct sigevent *evp, ev;
1213 	int id;
1214 	int error;
1215 
1216 	if (uap->evp == NULL) {
1217 		evp = NULL;
1218 	} else {
1219 		error = copyin(uap->evp, &ev, sizeof(ev));
1220 		if (error != 0)
1221 			return (error);
1222 		evp = &ev;
1223 	}
1224 	error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
1225 	if (error == 0) {
1226 		error = copyout(&id, uap->timerid, sizeof(int));
1227 		if (error != 0)
1228 			kern_ktimer_delete(td, id);
1229 	}
1230 	return (error);
1231 }
1232 
1233 int
1234 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp,
1235     int *timerid, int preset_id)
1236 {
1237 	struct proc *p = td->td_proc;
1238 	struct itimer *it;
1239 	int id;
1240 	int error;
1241 
1242 	if (clock_id < 0 || clock_id >= MAX_CLOCKS)
1243 		return (EINVAL);
1244 
1245 	if (posix_clocks[clock_id].timer_create == NULL)
1246 		return (EINVAL);
1247 
1248 	if (evp != NULL) {
1249 		if (evp->sigev_notify != SIGEV_NONE &&
1250 		    evp->sigev_notify != SIGEV_SIGNAL &&
1251 		    evp->sigev_notify != SIGEV_THREAD_ID)
1252 			return (EINVAL);
1253 		if ((evp->sigev_notify == SIGEV_SIGNAL ||
1254 		     evp->sigev_notify == SIGEV_THREAD_ID) &&
1255 			!_SIG_VALID(evp->sigev_signo))
1256 			return (EINVAL);
1257 	}
1258 
1259 	if (p->p_itimers == NULL)
1260 		itimers_alloc(p);
1261 
1262 	it = uma_zalloc(itimer_zone, M_WAITOK);
1263 	it->it_flags = 0;
1264 	it->it_usecount = 0;
1265 	timespecclear(&it->it_time.it_value);
1266 	timespecclear(&it->it_time.it_interval);
1267 	it->it_overrun = 0;
1268 	it->it_overrun_last = 0;
1269 	it->it_clockid = clock_id;
1270 	it->it_proc = p;
1271 	ksiginfo_init(&it->it_ksi);
1272 	it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
1273 	error = CLOCK_CALL(clock_id, timer_create, (it));
1274 	if (error != 0)
1275 		goto out;
1276 
1277 	PROC_LOCK(p);
1278 	if (preset_id != -1) {
1279 		KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
1280 		id = preset_id;
1281 		if (p->p_itimers->its_timers[id] != NULL) {
1282 			PROC_UNLOCK(p);
1283 			error = 0;
1284 			goto out;
1285 		}
1286 	} else {
1287 		/*
1288 		 * Find a free timer slot, skipping those reserved
1289 		 * for setitimer().
1290 		 */
1291 		for (id = 3; id < TIMER_MAX; id++)
1292 			if (p->p_itimers->its_timers[id] == NULL)
1293 				break;
1294 		if (id == TIMER_MAX) {
1295 			PROC_UNLOCK(p);
1296 			error = EAGAIN;
1297 			goto out;
1298 		}
1299 	}
1300 	p->p_itimers->its_timers[id] = it;
1301 	if (evp != NULL)
1302 		it->it_sigev = *evp;
1303 	else {
1304 		it->it_sigev.sigev_notify = SIGEV_SIGNAL;
1305 		switch (clock_id) {
1306 		default:
1307 		case CLOCK_REALTIME:
1308 			it->it_sigev.sigev_signo = SIGALRM;
1309 			break;
1310 		case CLOCK_VIRTUAL:
1311  			it->it_sigev.sigev_signo = SIGVTALRM;
1312 			break;
1313 		case CLOCK_PROF:
1314 			it->it_sigev.sigev_signo = SIGPROF;
1315 			break;
1316 		}
1317 		it->it_sigev.sigev_value.sival_int = id;
1318 	}
1319 
1320 	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1321 	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1322 		it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
1323 		it->it_ksi.ksi_code = SI_TIMER;
1324 		it->it_ksi.ksi_value = it->it_sigev.sigev_value;
1325 		it->it_ksi.ksi_timerid = id;
1326 	}
1327 	PROC_UNLOCK(p);
1328 	*timerid = id;
1329 	return (0);
1330 
1331 out:
1332 	ITIMER_LOCK(it);
1333 	CLOCK_CALL(it->it_clockid, timer_delete, (it));
1334 	ITIMER_UNLOCK(it);
1335 	uma_zfree(itimer_zone, it);
1336 	return (error);
1337 }
1338 
1339 #ifndef _SYS_SYSPROTO_H_
1340 struct ktimer_delete_args {
1341 	int timerid;
1342 };
1343 #endif
1344 int
1345 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
1346 {
1347 
1348 	return (kern_ktimer_delete(td, uap->timerid));
1349 }
1350 
1351 static struct itimer *
1352 itimer_find(struct proc *p, int timerid)
1353 {
1354 	struct itimer *it;
1355 
1356 	PROC_LOCK_ASSERT(p, MA_OWNED);
1357 	if ((p->p_itimers == NULL) ||
1358 	    (timerid < 0) || (timerid >= TIMER_MAX) ||
1359 	    (it = p->p_itimers->its_timers[timerid]) == NULL) {
1360 		return (NULL);
1361 	}
1362 	ITIMER_LOCK(it);
1363 	if ((it->it_flags & ITF_DELETING) != 0) {
1364 		ITIMER_UNLOCK(it);
1365 		it = NULL;
1366 	}
1367 	return (it);
1368 }
1369 
1370 int
1371 kern_ktimer_delete(struct thread *td, int timerid)
1372 {
1373 	struct proc *p = td->td_proc;
1374 	struct itimer *it;
1375 
1376 	PROC_LOCK(p);
1377 	it = itimer_find(p, timerid);
1378 	if (it == NULL) {
1379 		PROC_UNLOCK(p);
1380 		return (EINVAL);
1381 	}
1382 	PROC_UNLOCK(p);
1383 
1384 	it->it_flags |= ITF_DELETING;
1385 	while (it->it_usecount > 0) {
1386 		it->it_flags |= ITF_WANTED;
1387 		msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
1388 	}
1389 	it->it_flags &= ~ITF_WANTED;
1390 	CLOCK_CALL(it->it_clockid, timer_delete, (it));
1391 	ITIMER_UNLOCK(it);
1392 
1393 	PROC_LOCK(p);
1394 	if (KSI_ONQ(&it->it_ksi))
1395 		sigqueue_take(&it->it_ksi);
1396 	p->p_itimers->its_timers[timerid] = NULL;
1397 	PROC_UNLOCK(p);
1398 	uma_zfree(itimer_zone, it);
1399 	return (0);
1400 }
1401 
1402 #ifndef _SYS_SYSPROTO_H_
1403 struct ktimer_settime_args {
1404 	int timerid;
1405 	int flags;
1406 	const struct itimerspec * value;
1407 	struct itimerspec * ovalue;
1408 };
1409 #endif
1410 int
1411 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
1412 {
1413 	struct itimerspec val, oval, *ovalp;
1414 	int error;
1415 
1416 	error = copyin(uap->value, &val, sizeof(val));
1417 	if (error != 0)
1418 		return (error);
1419 	ovalp = uap->ovalue != NULL ? &oval : NULL;
1420 	error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
1421 	if (error == 0 && uap->ovalue != NULL)
1422 		error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
1423 	return (error);
1424 }
1425 
1426 int
1427 kern_ktimer_settime(struct thread *td, int timer_id, int flags,
1428     struct itimerspec *val, struct itimerspec *oval)
1429 {
1430 	struct proc *p;
1431 	struct itimer *it;
1432 	int error;
1433 
1434 	p = td->td_proc;
1435 	PROC_LOCK(p);
1436 	if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
1437 		PROC_UNLOCK(p);
1438 		error = EINVAL;
1439 	} else {
1440 		PROC_UNLOCK(p);
1441 		itimer_enter(it);
1442 		error = CLOCK_CALL(it->it_clockid, timer_settime, (it,
1443 		    flags, val, oval));
1444 		itimer_leave(it);
1445 		ITIMER_UNLOCK(it);
1446 	}
1447 	return (error);
1448 }
1449 
1450 #ifndef _SYS_SYSPROTO_H_
1451 struct ktimer_gettime_args {
1452 	int timerid;
1453 	struct itimerspec * value;
1454 };
1455 #endif
1456 int
1457 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
1458 {
1459 	struct itimerspec val;
1460 	int error;
1461 
1462 	error = kern_ktimer_gettime(td, uap->timerid, &val);
1463 	if (error == 0)
1464 		error = copyout(&val, uap->value, sizeof(val));
1465 	return (error);
1466 }
1467 
1468 int
1469 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val)
1470 {
1471 	struct proc *p;
1472 	struct itimer *it;
1473 	int error;
1474 
1475 	p = td->td_proc;
1476 	PROC_LOCK(p);
1477 	if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
1478 		PROC_UNLOCK(p);
1479 		error = EINVAL;
1480 	} else {
1481 		PROC_UNLOCK(p);
1482 		itimer_enter(it);
1483 		error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val));
1484 		itimer_leave(it);
1485 		ITIMER_UNLOCK(it);
1486 	}
1487 	return (error);
1488 }
1489 
1490 #ifndef _SYS_SYSPROTO_H_
1491 struct timer_getoverrun_args {
1492 	int timerid;
1493 };
1494 #endif
1495 int
1496 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
1497 {
1498 
1499 	return (kern_ktimer_getoverrun(td, uap->timerid));
1500 }
1501 
1502 int
1503 kern_ktimer_getoverrun(struct thread *td, int timer_id)
1504 {
1505 	struct proc *p = td->td_proc;
1506 	struct itimer *it;
1507 	int error ;
1508 
1509 	PROC_LOCK(p);
1510 	if (timer_id < 3 ||
1511 	    (it = itimer_find(p, timer_id)) == NULL) {
1512 		PROC_UNLOCK(p);
1513 		error = EINVAL;
1514 	} else {
1515 		td->td_retval[0] = it->it_overrun_last;
1516 		ITIMER_UNLOCK(it);
1517 		PROC_UNLOCK(p);
1518 		error = 0;
1519 	}
1520 	return (error);
1521 }
1522 
1523 static int
1524 realtimer_create(struct itimer *it)
1525 {
1526 	callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
1527 	return (0);
1528 }
1529 
1530 static int
1531 realtimer_delete(struct itimer *it)
1532 {
1533 	mtx_assert(&it->it_mtx, MA_OWNED);
1534 
1535 	/*
1536 	 * clear timer's value and interval to tell realtimer_expire
1537 	 * to not rearm the timer.
1538 	 */
1539 	timespecclear(&it->it_time.it_value);
1540 	timespecclear(&it->it_time.it_interval);
1541 	ITIMER_UNLOCK(it);
1542 	callout_drain(&it->it_callout);
1543 	ITIMER_LOCK(it);
1544 	return (0);
1545 }
1546 
1547 static int
1548 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
1549 {
1550 	struct timespec cts;
1551 
1552 	mtx_assert(&it->it_mtx, MA_OWNED);
1553 
1554 	realtimer_clocktime(it->it_clockid, &cts);
1555 	*ovalue = it->it_time;
1556 	if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
1557 		timespecsub(&ovalue->it_value, &cts, &ovalue->it_value);
1558 		if (ovalue->it_value.tv_sec < 0 ||
1559 		    (ovalue->it_value.tv_sec == 0 &&
1560 		     ovalue->it_value.tv_nsec == 0)) {
1561 			ovalue->it_value.tv_sec  = 0;
1562 			ovalue->it_value.tv_nsec = 1;
1563 		}
1564 	}
1565 	return (0);
1566 }
1567 
1568 static int
1569 realtimer_settime(struct itimer *it, int flags, struct itimerspec *value,
1570     struct itimerspec *ovalue)
1571 {
1572 	struct timespec cts, ts;
1573 	struct timeval tv;
1574 	struct itimerspec val;
1575 
1576 	mtx_assert(&it->it_mtx, MA_OWNED);
1577 
1578 	val = *value;
1579 	if (itimespecfix(&val.it_value))
1580 		return (EINVAL);
1581 
1582 	if (timespecisset(&val.it_value)) {
1583 		if (itimespecfix(&val.it_interval))
1584 			return (EINVAL);
1585 	} else {
1586 		timespecclear(&val.it_interval);
1587 	}
1588 
1589 	if (ovalue != NULL)
1590 		realtimer_gettime(it, ovalue);
1591 
1592 	it->it_time = val;
1593 	if (timespecisset(&val.it_value)) {
1594 		realtimer_clocktime(it->it_clockid, &cts);
1595 		ts = val.it_value;
1596 		if ((flags & TIMER_ABSTIME) == 0) {
1597 			/* Convert to absolute time. */
1598 			timespecadd(&it->it_time.it_value, &cts,
1599 			    &it->it_time.it_value);
1600 		} else {
1601 			timespecsub(&ts, &cts, &ts);
1602 			/*
1603 			 * We don't care if ts is negative, tztohz will
1604 			 * fix it.
1605 			 */
1606 		}
1607 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1608 		callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
1609 		    it);
1610 	} else {
1611 		callout_stop(&it->it_callout);
1612 	}
1613 
1614 	return (0);
1615 }
1616 
1617 static void
1618 realtimer_clocktime(clockid_t id, struct timespec *ts)
1619 {
1620 	if (id == CLOCK_REALTIME)
1621 		getnanotime(ts);
1622 	else	/* CLOCK_MONOTONIC */
1623 		getnanouptime(ts);
1624 }
1625 
1626 int
1627 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
1628 {
1629 	struct itimer *it;
1630 
1631 	PROC_LOCK_ASSERT(p, MA_OWNED);
1632 	it = itimer_find(p, timerid);
1633 	if (it != NULL) {
1634 		ksi->ksi_overrun = it->it_overrun;
1635 		it->it_overrun_last = it->it_overrun;
1636 		it->it_overrun = 0;
1637 		ITIMER_UNLOCK(it);
1638 		return (0);
1639 	}
1640 	return (EINVAL);
1641 }
1642 
1643 static int
1644 itimespecfix(struct timespec *ts)
1645 {
1646 
1647 	if (ts->tv_sec < 0 || ts->tv_nsec < 0 || ts->tv_nsec >= NS_PER_SEC)
1648 		return (EINVAL);
1649 	if ((UINT64_MAX - ts->tv_nsec) / NS_PER_SEC < ts->tv_sec)
1650 		return (EINVAL);
1651 	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1652 		ts->tv_nsec = tick * 1000;
1653 	return (0);
1654 }
1655 
1656 #define	timespectons(tsp)			\
1657 	((uint64_t)(tsp)->tv_sec * NS_PER_SEC + (tsp)->tv_nsec)
1658 #define	timespecfromns(ns) (struct timespec){	\
1659 	.tv_sec = (ns) / NS_PER_SEC,		\
1660 	.tv_nsec = (ns) % NS_PER_SEC		\
1661 }
1662 
1663 static void
1664 realtimer_expire_l(struct itimer *it, bool proc_locked)
1665 {
1666 	struct timespec cts, ts;
1667 	struct timeval tv;
1668 	struct proc *p;
1669 	uint64_t interval, now, overruns, value;
1670 
1671 	realtimer_clocktime(it->it_clockid, &cts);
1672 	/* Only fire if time is reached. */
1673 	if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1674 		if (timespecisset(&it->it_time.it_interval)) {
1675 			timespecadd(&it->it_time.it_value,
1676 			    &it->it_time.it_interval,
1677 			    &it->it_time.it_value);
1678 
1679 			interval = timespectons(&it->it_time.it_interval);
1680 			value = timespectons(&it->it_time.it_value);
1681 			now = timespectons(&cts);
1682 
1683 			if (now >= value) {
1684 				/*
1685 				 * We missed at least one period.
1686 				 */
1687 				overruns = howmany(now - value + 1, interval);
1688 				if (it->it_overrun + overruns >=
1689 				    it->it_overrun &&
1690 				    it->it_overrun + overruns <= INT_MAX) {
1691 					it->it_overrun += (int)overruns;
1692 				} else {
1693 					it->it_overrun = INT_MAX;
1694 					it->it_ksi.ksi_errno = ERANGE;
1695 				}
1696 				value =
1697 				    now + interval - (now - value) % interval;
1698 				it->it_time.it_value = timespecfromns(value);
1699 			}
1700 		} else {
1701 			/* single shot timer ? */
1702 			timespecclear(&it->it_time.it_value);
1703 		}
1704 
1705 		p = it->it_proc;
1706 		if (timespecisset(&it->it_time.it_value)) {
1707 			if (P_SHOULDSTOP(p) || P_KILLED(p)) {
1708 				it->it_flags |= ITF_PSTOPPED;
1709 			} else {
1710 				timespecsub(&it->it_time.it_value, &cts, &ts);
1711 				TIMESPEC_TO_TIMEVAL(&tv, &ts);
1712 				callout_reset(&it->it_callout, tvtohz(&tv),
1713 				    realtimer_expire, it);
1714 			}
1715 		}
1716 
1717 		itimer_enter(it);
1718 		ITIMER_UNLOCK(it);
1719 		if (proc_locked)
1720 			PROC_UNLOCK(p);
1721 		itimer_fire(it);
1722 		if (proc_locked)
1723 			PROC_LOCK(p);
1724 		ITIMER_LOCK(it);
1725 		itimer_leave(it);
1726 	} else if (timespecisset(&it->it_time.it_value)) {
1727 		p = it->it_proc;
1728 		if (P_SHOULDSTOP(p) || P_KILLED(p)) {
1729 			it->it_flags |= ITF_PSTOPPED;
1730 		} else {
1731 			ts = it->it_time.it_value;
1732 			timespecsub(&ts, &cts, &ts);
1733 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1734 			callout_reset(&it->it_callout, tvtohz(&tv),
1735 			    realtimer_expire, it);
1736 		}
1737 	}
1738 }
1739 
1740 /* Timeout callback for realtime timer */
1741 static void
1742 realtimer_expire(void *arg)
1743 {
1744 	realtimer_expire_l(arg, false);
1745 }
1746 
1747 static void
1748 itimer_fire(struct itimer *it)
1749 {
1750 	struct proc *p = it->it_proc;
1751 	struct thread *td;
1752 
1753 	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1754 	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1755 		if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
1756 			ITIMER_LOCK(it);
1757 			timespecclear(&it->it_time.it_value);
1758 			timespecclear(&it->it_time.it_interval);
1759 			callout_stop(&it->it_callout);
1760 			ITIMER_UNLOCK(it);
1761 			return;
1762 		}
1763 		if (!KSI_ONQ(&it->it_ksi)) {
1764 			it->it_ksi.ksi_errno = 0;
1765 			ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
1766 			tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
1767 		} else {
1768 			if (it->it_overrun < INT_MAX)
1769 				it->it_overrun++;
1770 			else
1771 				it->it_ksi.ksi_errno = ERANGE;
1772 		}
1773 		PROC_UNLOCK(p);
1774 	}
1775 }
1776 
1777 static void
1778 itimers_alloc(struct proc *p)
1779 {
1780 	struct itimers *its;
1781 
1782 	its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
1783 	PROC_LOCK(p);
1784 	if (p->p_itimers == NULL) {
1785 		p->p_itimers = its;
1786 		PROC_UNLOCK(p);
1787 	}
1788 	else {
1789 		PROC_UNLOCK(p);
1790 		free(its, M_SUBPROC);
1791 	}
1792 }
1793 
1794 /* Clean up timers when some process events are being triggered. */
1795 static void
1796 itimers_event_exit_exec(int start_idx, struct proc *p)
1797 {
1798 	struct itimers *its;
1799 	struct itimer *it;
1800 	int i;
1801 
1802 	its = p->p_itimers;
1803 	if (its == NULL)
1804 		return;
1805 
1806 	for (i = start_idx; i < TIMER_MAX; ++i) {
1807 		if ((it = its->its_timers[i]) != NULL)
1808 			kern_ktimer_delete(curthread, i);
1809 	}
1810 	if (its->its_timers[0] == NULL && its->its_timers[1] == NULL &&
1811 	    its->its_timers[2] == NULL) {
1812 		/* Synchronize with itimer_proc_continue(). */
1813 		PROC_LOCK(p);
1814 		p->p_itimers = NULL;
1815 		PROC_UNLOCK(p);
1816 		free(its, M_SUBPROC);
1817 	}
1818 }
1819 
1820 void
1821 itimers_exec(struct proc *p)
1822 {
1823 	/*
1824 	 * According to susv3, XSI interval timers should be inherited
1825 	 * by new image.
1826 	 */
1827 	itimers_event_exit_exec(3, p);
1828 }
1829 
1830 void
1831 itimers_exit(struct proc *p)
1832 {
1833 	itimers_event_exit_exec(0, p);
1834 }
1835