xref: /freebsd/sys/kern/kern_time.c (revision 1165fc9a526630487a1feb63daef65c5aee1a583)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_ktrace.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/limits.h>
42 #include <sys/clock.h>
43 #include <sys/lock.h>
44 #include <sys/mutex.h>
45 #include <sys/sysproto.h>
46 #include <sys/resourcevar.h>
47 #include <sys/signalvar.h>
48 #include <sys/kernel.h>
49 #include <sys/sleepqueue.h>
50 #include <sys/syscallsubr.h>
51 #include <sys/sysctl.h>
52 #include <sys/priv.h>
53 #include <sys/proc.h>
54 #include <sys/posix4.h>
55 #include <sys/time.h>
56 #include <sys/timers.h>
57 #include <sys/timetc.h>
58 #include <sys/vnode.h>
59 #ifdef KTRACE
60 #include <sys/ktrace.h>
61 #endif
62 
63 #include <vm/vm.h>
64 #include <vm/vm_extern.h>
65 
66 #define MAX_CLOCKS 	(CLOCK_MONOTONIC+1)
67 #define CPUCLOCK_BIT		0x80000000
68 #define CPUCLOCK_PROCESS_BIT	0x40000000
69 #define CPUCLOCK_ID_MASK	(~(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT))
70 #define MAKE_THREAD_CPUCLOCK(tid)	(CPUCLOCK_BIT|(tid))
71 #define MAKE_PROCESS_CPUCLOCK(pid)	\
72 	(CPUCLOCK_BIT|CPUCLOCK_PROCESS_BIT|(pid))
73 
74 #define NS_PER_SEC	1000000000
75 
76 static struct kclock	posix_clocks[MAX_CLOCKS];
77 static uma_zone_t	itimer_zone = NULL;
78 
79 /*
80  * Time of day and interval timer support.
81  *
82  * These routines provide the kernel entry points to get and set
83  * the time-of-day and per-process interval timers.  Subroutines
84  * here provide support for adding and subtracting timeval structures
85  * and decrementing interval timers, optionally reloading the interval
86  * timers when they expire.
87  */
88 
89 static int	settime(struct thread *, struct timeval *);
90 static void	timevalfix(struct timeval *);
91 static int	user_clock_nanosleep(struct thread *td, clockid_t clock_id,
92 		    int flags, const struct timespec *ua_rqtp,
93 		    struct timespec *ua_rmtp);
94 
95 static void	itimer_start(void);
96 static int	itimer_init(void *, int, int);
97 static void	itimer_fini(void *, int);
98 static void	itimer_enter(struct itimer *);
99 static void	itimer_leave(struct itimer *);
100 static struct itimer *itimer_find(struct proc *, int);
101 static void	itimers_alloc(struct proc *);
102 static int	realtimer_create(struct itimer *);
103 static int	realtimer_gettime(struct itimer *, struct itimerspec *);
104 static int	realtimer_settime(struct itimer *, int,
105 			struct itimerspec *, struct itimerspec *);
106 static int	realtimer_delete(struct itimer *);
107 static void	realtimer_clocktime(clockid_t, struct timespec *);
108 static void	realtimer_expire(void *);
109 static void	realtimer_expire_l(struct itimer *it, bool proc_locked);
110 
111 static void	realitexpire(void *arg);
112 
113 static int	register_posix_clock(int, const struct kclock *);
114 static void	itimer_fire(struct itimer *it);
115 static int	itimespecfix(struct timespec *ts);
116 
117 #define CLOCK_CALL(clock, call, arglist)		\
118 	((*posix_clocks[clock].call) arglist)
119 
120 SYSINIT(posix_timer, SI_SUB_P1003_1B, SI_ORDER_FIRST+4, itimer_start, NULL);
121 
122 static int
123 settime(struct thread *td, struct timeval *tv)
124 {
125 	struct timeval delta, tv1, tv2;
126 	static struct timeval maxtime, laststep;
127 	struct timespec ts;
128 
129 	microtime(&tv1);
130 	delta = *tv;
131 	timevalsub(&delta, &tv1);
132 
133 	/*
134 	 * If the system is secure, we do not allow the time to be
135 	 * set to a value earlier than 1 second less than the highest
136 	 * time we have yet seen. The worst a miscreant can do in
137 	 * this circumstance is "freeze" time. He couldn't go
138 	 * back to the past.
139 	 *
140 	 * We similarly do not allow the clock to be stepped more
141 	 * than one second, nor more than once per second. This allows
142 	 * a miscreant to make the clock march double-time, but no worse.
143 	 */
144 	if (securelevel_gt(td->td_ucred, 1) != 0) {
145 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
146 			/*
147 			 * Update maxtime to latest time we've seen.
148 			 */
149 			if (tv1.tv_sec > maxtime.tv_sec)
150 				maxtime = tv1;
151 			tv2 = *tv;
152 			timevalsub(&tv2, &maxtime);
153 			if (tv2.tv_sec < -1) {
154 				tv->tv_sec = maxtime.tv_sec - 1;
155 				printf("Time adjustment clamped to -1 second\n");
156 			}
157 		} else {
158 			if (tv1.tv_sec == laststep.tv_sec)
159 				return (EPERM);
160 			if (delta.tv_sec > 1) {
161 				tv->tv_sec = tv1.tv_sec + 1;
162 				printf("Time adjustment clamped to +1 second\n");
163 			}
164 			laststep = *tv;
165 		}
166 	}
167 
168 	ts.tv_sec = tv->tv_sec;
169 	ts.tv_nsec = tv->tv_usec * 1000;
170 	tc_setclock(&ts);
171 	resettodr();
172 	return (0);
173 }
174 
175 #ifndef _SYS_SYSPROTO_H_
176 struct clock_getcpuclockid2_args {
177 	id_t id;
178 	int which,
179 	clockid_t *clock_id;
180 };
181 #endif
182 /* ARGSUSED */
183 int
184 sys_clock_getcpuclockid2(struct thread *td, struct clock_getcpuclockid2_args *uap)
185 {
186 	clockid_t clk_id;
187 	int error;
188 
189 	error = kern_clock_getcpuclockid2(td, uap->id, uap->which, &clk_id);
190 	if (error == 0)
191 		error = copyout(&clk_id, uap->clock_id, sizeof(clockid_t));
192 	return (error);
193 }
194 
195 int
196 kern_clock_getcpuclockid2(struct thread *td, id_t id, int which,
197     clockid_t *clk_id)
198 {
199 	struct proc *p;
200 	pid_t pid;
201 	lwpid_t tid;
202 	int error;
203 
204 	switch (which) {
205 	case CPUCLOCK_WHICH_PID:
206 		if (id != 0) {
207 			error = pget(id, PGET_CANSEE | PGET_NOTID, &p);
208 			if (error != 0)
209 				return (error);
210 			PROC_UNLOCK(p);
211 			pid = id;
212 		} else {
213 			pid = td->td_proc->p_pid;
214 		}
215 		*clk_id = MAKE_PROCESS_CPUCLOCK(pid);
216 		return (0);
217 	case CPUCLOCK_WHICH_TID:
218 		tid = id == 0 ? td->td_tid : id;
219 		*clk_id = MAKE_THREAD_CPUCLOCK(tid);
220 		return (0);
221 	default:
222 		return (EINVAL);
223 	}
224 }
225 
226 #ifndef _SYS_SYSPROTO_H_
227 struct clock_gettime_args {
228 	clockid_t clock_id;
229 	struct	timespec *tp;
230 };
231 #endif
232 /* ARGSUSED */
233 int
234 sys_clock_gettime(struct thread *td, struct clock_gettime_args *uap)
235 {
236 	struct timespec ats;
237 	int error;
238 
239 	error = kern_clock_gettime(td, uap->clock_id, &ats);
240 	if (error == 0)
241 		error = copyout(&ats, uap->tp, sizeof(ats));
242 
243 	return (error);
244 }
245 
246 static inline void
247 cputick2timespec(uint64_t runtime, struct timespec *ats)
248 {
249 	uint64_t tr;
250 	tr = cpu_tickrate();
251 	ats->tv_sec = runtime / tr;
252 	ats->tv_nsec = ((runtime % tr) * 1000000000ULL) / tr;
253 }
254 
255 void
256 kern_thread_cputime(struct thread *targettd, struct timespec *ats)
257 {
258 	uint64_t runtime, curtime, switchtime;
259 
260 	if (targettd == NULL) { /* current thread */
261 		spinlock_enter();
262 		switchtime = PCPU_GET(switchtime);
263 		curtime = cpu_ticks();
264 		runtime = curthread->td_runtime;
265 		spinlock_exit();
266 		runtime += curtime - switchtime;
267 	} else {
268 		PROC_LOCK_ASSERT(targettd->td_proc, MA_OWNED);
269 		thread_lock(targettd);
270 		runtime = targettd->td_runtime;
271 		thread_unlock(targettd);
272 	}
273 	cputick2timespec(runtime, ats);
274 }
275 
276 void
277 kern_process_cputime(struct proc *targetp, struct timespec *ats)
278 {
279 	uint64_t runtime;
280 	struct rusage ru;
281 
282 	PROC_LOCK_ASSERT(targetp, MA_OWNED);
283 	PROC_STATLOCK(targetp);
284 	rufetch(targetp, &ru);
285 	runtime = targetp->p_rux.rux_runtime;
286 	if (curthread->td_proc == targetp)
287 		runtime += cpu_ticks() - PCPU_GET(switchtime);
288 	PROC_STATUNLOCK(targetp);
289 	cputick2timespec(runtime, ats);
290 }
291 
292 static int
293 get_cputime(struct thread *td, clockid_t clock_id, struct timespec *ats)
294 {
295 	struct proc *p, *p2;
296 	struct thread *td2;
297 	lwpid_t tid;
298 	pid_t pid;
299 	int error;
300 
301 	p = td->td_proc;
302 	if ((clock_id & CPUCLOCK_PROCESS_BIT) == 0) {
303 		tid = clock_id & CPUCLOCK_ID_MASK;
304 		td2 = tdfind(tid, p->p_pid);
305 		if (td2 == NULL)
306 			return (EINVAL);
307 		kern_thread_cputime(td2, ats);
308 		PROC_UNLOCK(td2->td_proc);
309 	} else {
310 		pid = clock_id & CPUCLOCK_ID_MASK;
311 		error = pget(pid, PGET_CANSEE, &p2);
312 		if (error != 0)
313 			return (EINVAL);
314 		kern_process_cputime(p2, ats);
315 		PROC_UNLOCK(p2);
316 	}
317 	return (0);
318 }
319 
320 int
321 kern_clock_gettime(struct thread *td, clockid_t clock_id, struct timespec *ats)
322 {
323 	struct timeval sys, user;
324 	struct proc *p;
325 
326 	p = td->td_proc;
327 	switch (clock_id) {
328 	case CLOCK_REALTIME:		/* Default to precise. */
329 	case CLOCK_REALTIME_PRECISE:
330 		nanotime(ats);
331 		break;
332 	case CLOCK_REALTIME_FAST:
333 		getnanotime(ats);
334 		break;
335 	case CLOCK_VIRTUAL:
336 		PROC_LOCK(p);
337 		PROC_STATLOCK(p);
338 		calcru(p, &user, &sys);
339 		PROC_STATUNLOCK(p);
340 		PROC_UNLOCK(p);
341 		TIMEVAL_TO_TIMESPEC(&user, ats);
342 		break;
343 	case CLOCK_PROF:
344 		PROC_LOCK(p);
345 		PROC_STATLOCK(p);
346 		calcru(p, &user, &sys);
347 		PROC_STATUNLOCK(p);
348 		PROC_UNLOCK(p);
349 		timevaladd(&user, &sys);
350 		TIMEVAL_TO_TIMESPEC(&user, ats);
351 		break;
352 	case CLOCK_MONOTONIC:		/* Default to precise. */
353 	case CLOCK_MONOTONIC_PRECISE:
354 	case CLOCK_UPTIME:
355 	case CLOCK_UPTIME_PRECISE:
356 		nanouptime(ats);
357 		break;
358 	case CLOCK_UPTIME_FAST:
359 	case CLOCK_MONOTONIC_FAST:
360 		getnanouptime(ats);
361 		break;
362 	case CLOCK_SECOND:
363 		ats->tv_sec = time_second;
364 		ats->tv_nsec = 0;
365 		break;
366 	case CLOCK_THREAD_CPUTIME_ID:
367 		kern_thread_cputime(NULL, ats);
368 		break;
369 	case CLOCK_PROCESS_CPUTIME_ID:
370 		PROC_LOCK(p);
371 		kern_process_cputime(p, ats);
372 		PROC_UNLOCK(p);
373 		break;
374 	default:
375 		if ((int)clock_id >= 0)
376 			return (EINVAL);
377 		return (get_cputime(td, clock_id, ats));
378 	}
379 	return (0);
380 }
381 
382 #ifndef _SYS_SYSPROTO_H_
383 struct clock_settime_args {
384 	clockid_t clock_id;
385 	const struct	timespec *tp;
386 };
387 #endif
388 /* ARGSUSED */
389 int
390 sys_clock_settime(struct thread *td, struct clock_settime_args *uap)
391 {
392 	struct timespec ats;
393 	int error;
394 
395 	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
396 		return (error);
397 	return (kern_clock_settime(td, uap->clock_id, &ats));
398 }
399 
400 static int allow_insane_settime = 0;
401 SYSCTL_INT(_debug, OID_AUTO, allow_insane_settime, CTLFLAG_RWTUN,
402     &allow_insane_settime, 0,
403     "do not perform possibly restrictive checks on settime(2) args");
404 
405 int
406 kern_clock_settime(struct thread *td, clockid_t clock_id, struct timespec *ats)
407 {
408 	struct timeval atv;
409 	int error;
410 
411 	if ((error = priv_check(td, PRIV_CLOCK_SETTIME)) != 0)
412 		return (error);
413 	if (clock_id != CLOCK_REALTIME)
414 		return (EINVAL);
415 	if (!timespecvalid_interval(ats))
416 		return (EINVAL);
417 	if (!allow_insane_settime &&
418 	    (ats->tv_sec > 8000ULL * 365 * 24 * 60 * 60 ||
419 	    ats->tv_sec < utc_offset()))
420 		return (EINVAL);
421 	/* XXX Don't convert nsec->usec and back */
422 	TIMESPEC_TO_TIMEVAL(&atv, ats);
423 	error = settime(td, &atv);
424 	return (error);
425 }
426 
427 #ifndef _SYS_SYSPROTO_H_
428 struct clock_getres_args {
429 	clockid_t clock_id;
430 	struct	timespec *tp;
431 };
432 #endif
433 int
434 sys_clock_getres(struct thread *td, struct clock_getres_args *uap)
435 {
436 	struct timespec ts;
437 	int error;
438 
439 	if (uap->tp == NULL)
440 		return (0);
441 
442 	error = kern_clock_getres(td, uap->clock_id, &ts);
443 	if (error == 0)
444 		error = copyout(&ts, uap->tp, sizeof(ts));
445 	return (error);
446 }
447 
448 int
449 kern_clock_getres(struct thread *td, clockid_t clock_id, struct timespec *ts)
450 {
451 
452 	ts->tv_sec = 0;
453 	switch (clock_id) {
454 	case CLOCK_REALTIME:
455 	case CLOCK_REALTIME_FAST:
456 	case CLOCK_REALTIME_PRECISE:
457 	case CLOCK_MONOTONIC:
458 	case CLOCK_MONOTONIC_FAST:
459 	case CLOCK_MONOTONIC_PRECISE:
460 	case CLOCK_UPTIME:
461 	case CLOCK_UPTIME_FAST:
462 	case CLOCK_UPTIME_PRECISE:
463 		/*
464 		 * Round up the result of the division cheaply by adding 1.
465 		 * Rounding up is especially important if rounding down
466 		 * would give 0.  Perfect rounding is unimportant.
467 		 */
468 		ts->tv_nsec = NS_PER_SEC / tc_getfrequency() + 1;
469 		break;
470 	case CLOCK_VIRTUAL:
471 	case CLOCK_PROF:
472 		/* Accurately round up here because we can do so cheaply. */
473 		ts->tv_nsec = howmany(NS_PER_SEC, hz);
474 		break;
475 	case CLOCK_SECOND:
476 		ts->tv_sec = 1;
477 		ts->tv_nsec = 0;
478 		break;
479 	case CLOCK_THREAD_CPUTIME_ID:
480 	case CLOCK_PROCESS_CPUTIME_ID:
481 	cputime:
482 		ts->tv_nsec = 1000000000 / cpu_tickrate() + 1;
483 		break;
484 	default:
485 		if ((int)clock_id < 0)
486 			goto cputime;
487 		return (EINVAL);
488 	}
489 	return (0);
490 }
491 
492 int
493 kern_nanosleep(struct thread *td, struct timespec *rqt, struct timespec *rmt)
494 {
495 
496 	return (kern_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME, rqt,
497 	    rmt));
498 }
499 
500 static uint8_t nanowait[MAXCPU];
501 
502 int
503 kern_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags,
504     const struct timespec *rqt, struct timespec *rmt)
505 {
506 	struct timespec ts, now;
507 	sbintime_t sbt, sbtt, prec, tmp;
508 	time_t over;
509 	int error;
510 	bool is_abs_real;
511 
512 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= NS_PER_SEC)
513 		return (EINVAL);
514 	if ((flags & ~TIMER_ABSTIME) != 0)
515 		return (EINVAL);
516 	switch (clock_id) {
517 	case CLOCK_REALTIME:
518 	case CLOCK_REALTIME_PRECISE:
519 	case CLOCK_REALTIME_FAST:
520 	case CLOCK_SECOND:
521 		is_abs_real = (flags & TIMER_ABSTIME) != 0;
522 		break;
523 	case CLOCK_MONOTONIC:
524 	case CLOCK_MONOTONIC_PRECISE:
525 	case CLOCK_MONOTONIC_FAST:
526 	case CLOCK_UPTIME:
527 	case CLOCK_UPTIME_PRECISE:
528 	case CLOCK_UPTIME_FAST:
529 		is_abs_real = false;
530 		break;
531 	case CLOCK_VIRTUAL:
532 	case CLOCK_PROF:
533 	case CLOCK_PROCESS_CPUTIME_ID:
534 		return (ENOTSUP);
535 	case CLOCK_THREAD_CPUTIME_ID:
536 	default:
537 		return (EINVAL);
538 	}
539 	do {
540 		ts = *rqt;
541 		if ((flags & TIMER_ABSTIME) != 0) {
542 			if (is_abs_real)
543 				td->td_rtcgen =
544 				    atomic_load_acq_int(&rtc_generation);
545 			error = kern_clock_gettime(td, clock_id, &now);
546 			KASSERT(error == 0, ("kern_clock_gettime: %d", error));
547 			timespecsub(&ts, &now, &ts);
548 		}
549 		if (ts.tv_sec < 0 || (ts.tv_sec == 0 && ts.tv_nsec == 0)) {
550 			error = EWOULDBLOCK;
551 			break;
552 		}
553 		if (ts.tv_sec > INT32_MAX / 2) {
554 			over = ts.tv_sec - INT32_MAX / 2;
555 			ts.tv_sec -= over;
556 		} else
557 			over = 0;
558 		tmp = tstosbt(ts);
559 		prec = tmp;
560 		prec >>= tc_precexp;
561 		if (TIMESEL(&sbt, tmp))
562 			sbt += tc_tick_sbt;
563 		sbt += tmp;
564 		error = tsleep_sbt(&nanowait[curcpu], PWAIT | PCATCH, "nanslp",
565 		    sbt, prec, C_ABSOLUTE);
566 	} while (error == 0 && is_abs_real && td->td_rtcgen == 0);
567 	td->td_rtcgen = 0;
568 	if (error != EWOULDBLOCK) {
569 		if (TIMESEL(&sbtt, tmp))
570 			sbtt += tc_tick_sbt;
571 		if (sbtt >= sbt)
572 			return (0);
573 		if (error == ERESTART)
574 			error = EINTR;
575 		if ((flags & TIMER_ABSTIME) == 0 && rmt != NULL) {
576 			ts = sbttots(sbt - sbtt);
577 			ts.tv_sec += over;
578 			if (ts.tv_sec < 0)
579 				timespecclear(&ts);
580 			*rmt = ts;
581 		}
582 		return (error);
583 	}
584 	return (0);
585 }
586 
587 #ifndef _SYS_SYSPROTO_H_
588 struct nanosleep_args {
589 	struct	timespec *rqtp;
590 	struct	timespec *rmtp;
591 };
592 #endif
593 /* ARGSUSED */
594 int
595 sys_nanosleep(struct thread *td, struct nanosleep_args *uap)
596 {
597 
598 	return (user_clock_nanosleep(td, CLOCK_REALTIME, TIMER_RELTIME,
599 	    uap->rqtp, uap->rmtp));
600 }
601 
602 #ifndef _SYS_SYSPROTO_H_
603 struct clock_nanosleep_args {
604 	clockid_t clock_id;
605 	int 	  flags;
606 	struct	timespec *rqtp;
607 	struct	timespec *rmtp;
608 };
609 #endif
610 /* ARGSUSED */
611 int
612 sys_clock_nanosleep(struct thread *td, struct clock_nanosleep_args *uap)
613 {
614 	int error;
615 
616 	error = user_clock_nanosleep(td, uap->clock_id, uap->flags, uap->rqtp,
617 	    uap->rmtp);
618 	return (kern_posix_error(td, error));
619 }
620 
621 static int
622 user_clock_nanosleep(struct thread *td, clockid_t clock_id, int flags,
623     const struct timespec *ua_rqtp, struct timespec *ua_rmtp)
624 {
625 	struct timespec rmt, rqt;
626 	int error, error2;
627 
628 	error = copyin(ua_rqtp, &rqt, sizeof(rqt));
629 	if (error)
630 		return (error);
631 	error = kern_clock_nanosleep(td, clock_id, flags, &rqt, &rmt);
632 	if (error == EINTR && ua_rmtp != NULL && (flags & TIMER_ABSTIME) == 0) {
633 		error2 = copyout(&rmt, ua_rmtp, sizeof(rmt));
634 		if (error2 != 0)
635 			error = error2;
636 	}
637 	return (error);
638 }
639 
640 #ifndef _SYS_SYSPROTO_H_
641 struct gettimeofday_args {
642 	struct	timeval *tp;
643 	struct	timezone *tzp;
644 };
645 #endif
646 /* ARGSUSED */
647 int
648 sys_gettimeofday(struct thread *td, struct gettimeofday_args *uap)
649 {
650 	struct timeval atv;
651 	struct timezone rtz;
652 	int error = 0;
653 
654 	if (uap->tp) {
655 		microtime(&atv);
656 		error = copyout(&atv, uap->tp, sizeof (atv));
657 	}
658 	if (error == 0 && uap->tzp != NULL) {
659 		rtz.tz_minuteswest = 0;
660 		rtz.tz_dsttime = 0;
661 		error = copyout(&rtz, uap->tzp, sizeof (rtz));
662 	}
663 	return (error);
664 }
665 
666 #ifndef _SYS_SYSPROTO_H_
667 struct settimeofday_args {
668 	struct	timeval *tv;
669 	struct	timezone *tzp;
670 };
671 #endif
672 /* ARGSUSED */
673 int
674 sys_settimeofday(struct thread *td, struct settimeofday_args *uap)
675 {
676 	struct timeval atv, *tvp;
677 	struct timezone atz, *tzp;
678 	int error;
679 
680 	if (uap->tv) {
681 		error = copyin(uap->tv, &atv, sizeof(atv));
682 		if (error)
683 			return (error);
684 		tvp = &atv;
685 	} else
686 		tvp = NULL;
687 	if (uap->tzp) {
688 		error = copyin(uap->tzp, &atz, sizeof(atz));
689 		if (error)
690 			return (error);
691 		tzp = &atz;
692 	} else
693 		tzp = NULL;
694 	return (kern_settimeofday(td, tvp, tzp));
695 }
696 
697 int
698 kern_settimeofday(struct thread *td, struct timeval *tv, struct timezone *tzp)
699 {
700 	int error;
701 
702 	error = priv_check(td, PRIV_SETTIMEOFDAY);
703 	if (error)
704 		return (error);
705 	/* Verify all parameters before changing time. */
706 	if (tv) {
707 		if (tv->tv_usec < 0 || tv->tv_usec >= 1000000 ||
708 		    tv->tv_sec < 0)
709 			return (EINVAL);
710 		error = settime(td, tv);
711 	}
712 	return (error);
713 }
714 
715 /*
716  * Get value of an interval timer.  The process virtual and profiling virtual
717  * time timers are kept in the p_stats area, since they can be swapped out.
718  * These are kept internally in the way they are specified externally: in
719  * time until they expire.
720  *
721  * The real time interval timer is kept in the process table slot for the
722  * process, and its value (it_value) is kept as an absolute time rather than
723  * as a delta, so that it is easy to keep periodic real-time signals from
724  * drifting.
725  *
726  * Virtual time timers are processed in the hardclock() routine of
727  * kern_clock.c.  The real time timer is processed by a timeout routine,
728  * called from the softclock() routine.  Since a callout may be delayed in
729  * real time due to interrupt processing in the system, it is possible for
730  * the real time timeout routine (realitexpire, given below), to be delayed
731  * in real time past when it is supposed to occur.  It does not suffice,
732  * therefore, to reload the real timer .it_value from the real time timers
733  * .it_interval.  Rather, we compute the next time in absolute time the timer
734  * should go off.
735  */
736 #ifndef _SYS_SYSPROTO_H_
737 struct getitimer_args {
738 	u_int	which;
739 	struct	itimerval *itv;
740 };
741 #endif
742 int
743 sys_getitimer(struct thread *td, struct getitimer_args *uap)
744 {
745 	struct itimerval aitv;
746 	int error;
747 
748 	error = kern_getitimer(td, uap->which, &aitv);
749 	if (error != 0)
750 		return (error);
751 	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
752 }
753 
754 int
755 kern_getitimer(struct thread *td, u_int which, struct itimerval *aitv)
756 {
757 	struct proc *p = td->td_proc;
758 	struct timeval ctv;
759 
760 	if (which > ITIMER_PROF)
761 		return (EINVAL);
762 
763 	if (which == ITIMER_REAL) {
764 		/*
765 		 * Convert from absolute to relative time in .it_value
766 		 * part of real time timer.  If time for real time timer
767 		 * has passed return 0, else return difference between
768 		 * current time and time for the timer to go off.
769 		 */
770 		PROC_LOCK(p);
771 		*aitv = p->p_realtimer;
772 		PROC_UNLOCK(p);
773 		if (timevalisset(&aitv->it_value)) {
774 			microuptime(&ctv);
775 			if (timevalcmp(&aitv->it_value, &ctv, <))
776 				timevalclear(&aitv->it_value);
777 			else
778 				timevalsub(&aitv->it_value, &ctv);
779 		}
780 	} else {
781 		PROC_ITIMLOCK(p);
782 		*aitv = p->p_stats->p_timer[which];
783 		PROC_ITIMUNLOCK(p);
784 	}
785 #ifdef KTRACE
786 	if (KTRPOINT(td, KTR_STRUCT))
787 		ktritimerval(aitv);
788 #endif
789 	return (0);
790 }
791 
792 #ifndef _SYS_SYSPROTO_H_
793 struct setitimer_args {
794 	u_int	which;
795 	struct	itimerval *itv, *oitv;
796 };
797 #endif
798 int
799 sys_setitimer(struct thread *td, struct setitimer_args *uap)
800 {
801 	struct itimerval aitv, oitv;
802 	int error;
803 
804 	if (uap->itv == NULL) {
805 		uap->itv = uap->oitv;
806 		return (sys_getitimer(td, (struct getitimer_args *)uap));
807 	}
808 
809 	if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
810 		return (error);
811 	error = kern_setitimer(td, uap->which, &aitv, &oitv);
812 	if (error != 0 || uap->oitv == NULL)
813 		return (error);
814 	return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
815 }
816 
817 int
818 kern_setitimer(struct thread *td, u_int which, struct itimerval *aitv,
819     struct itimerval *oitv)
820 {
821 	struct proc *p = td->td_proc;
822 	struct timeval ctv;
823 	sbintime_t sbt, pr;
824 
825 	if (aitv == NULL)
826 		return (kern_getitimer(td, which, oitv));
827 
828 	if (which > ITIMER_PROF)
829 		return (EINVAL);
830 #ifdef KTRACE
831 	if (KTRPOINT(td, KTR_STRUCT))
832 		ktritimerval(aitv);
833 #endif
834 	if (itimerfix(&aitv->it_value) ||
835 	    aitv->it_value.tv_sec > INT32_MAX / 2)
836 		return (EINVAL);
837 	if (!timevalisset(&aitv->it_value))
838 		timevalclear(&aitv->it_interval);
839 	else if (itimerfix(&aitv->it_interval) ||
840 	    aitv->it_interval.tv_sec > INT32_MAX / 2)
841 		return (EINVAL);
842 
843 	if (which == ITIMER_REAL) {
844 		PROC_LOCK(p);
845 		if (timevalisset(&p->p_realtimer.it_value))
846 			callout_stop(&p->p_itcallout);
847 		microuptime(&ctv);
848 		if (timevalisset(&aitv->it_value)) {
849 			pr = tvtosbt(aitv->it_value) >> tc_precexp;
850 			timevaladd(&aitv->it_value, &ctv);
851 			sbt = tvtosbt(aitv->it_value);
852 			callout_reset_sbt(&p->p_itcallout, sbt, pr,
853 			    realitexpire, p, C_ABSOLUTE);
854 		}
855 		*oitv = p->p_realtimer;
856 		p->p_realtimer = *aitv;
857 		PROC_UNLOCK(p);
858 		if (timevalisset(&oitv->it_value)) {
859 			if (timevalcmp(&oitv->it_value, &ctv, <))
860 				timevalclear(&oitv->it_value);
861 			else
862 				timevalsub(&oitv->it_value, &ctv);
863 		}
864 	} else {
865 		if (aitv->it_interval.tv_sec == 0 &&
866 		    aitv->it_interval.tv_usec != 0 &&
867 		    aitv->it_interval.tv_usec < tick)
868 			aitv->it_interval.tv_usec = tick;
869 		if (aitv->it_value.tv_sec == 0 &&
870 		    aitv->it_value.tv_usec != 0 &&
871 		    aitv->it_value.tv_usec < tick)
872 			aitv->it_value.tv_usec = tick;
873 		PROC_ITIMLOCK(p);
874 		*oitv = p->p_stats->p_timer[which];
875 		p->p_stats->p_timer[which] = *aitv;
876 		PROC_ITIMUNLOCK(p);
877 	}
878 #ifdef KTRACE
879 	if (KTRPOINT(td, KTR_STRUCT))
880 		ktritimerval(oitv);
881 #endif
882 	return (0);
883 }
884 
885 static void
886 realitexpire_reset_callout(struct proc *p, sbintime_t *isbtp)
887 {
888 	sbintime_t prec;
889 
890 	prec = isbtp == NULL ? tvtosbt(p->p_realtimer.it_interval) : *isbtp;
891 	callout_reset_sbt(&p->p_itcallout, tvtosbt(p->p_realtimer.it_value),
892 	    prec >> tc_precexp, realitexpire, p, C_ABSOLUTE);
893 }
894 
895 void
896 itimer_proc_continue(struct proc *p)
897 {
898 	struct timeval ctv;
899 	struct itimer *it;
900 	int id;
901 
902 	PROC_LOCK_ASSERT(p, MA_OWNED);
903 
904 	if ((p->p_flag2 & P2_ITSTOPPED) != 0) {
905 		p->p_flag2 &= ~P2_ITSTOPPED;
906 		microuptime(&ctv);
907 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >=))
908 			realitexpire(p);
909 		else
910 			realitexpire_reset_callout(p, NULL);
911 	}
912 
913 	if (p->p_itimers != NULL) {
914 		for (id = 3; id < TIMER_MAX; id++) {
915 			it = p->p_itimers->its_timers[id];
916 			if (it == NULL)
917 				continue;
918 			if ((it->it_flags & ITF_PSTOPPED) != 0) {
919 				ITIMER_LOCK(it);
920 				if ((it->it_flags & ITF_PSTOPPED) != 0) {
921 					it->it_flags &= ~ITF_PSTOPPED;
922 					if ((it->it_flags & ITF_DELETING) == 0)
923 						realtimer_expire_l(it, true);
924 				}
925 				ITIMER_UNLOCK(it);
926 			}
927 		}
928 	}
929 }
930 
931 /*
932  * Real interval timer expired:
933  * send process whose timer expired an alarm signal.
934  * If time is not set up to reload, then just return.
935  * Else compute next time timer should go off which is > current time.
936  * This is where delay in processing this timeout causes multiple
937  * SIGALRM calls to be compressed into one.
938  * tvtohz() always adds 1 to allow for the time until the next clock
939  * interrupt being strictly less than 1 clock tick, but we don't want
940  * that here since we want to appear to be in sync with the clock
941  * interrupt even when we're delayed.
942  */
943 static void
944 realitexpire(void *arg)
945 {
946 	struct proc *p;
947 	struct timeval ctv;
948 	sbintime_t isbt;
949 
950 	p = (struct proc *)arg;
951 	kern_psignal(p, SIGALRM);
952 	if (!timevalisset(&p->p_realtimer.it_interval)) {
953 		timevalclear(&p->p_realtimer.it_value);
954 		return;
955 	}
956 
957 	isbt = tvtosbt(p->p_realtimer.it_interval);
958 	if (isbt >= sbt_timethreshold)
959 		getmicrouptime(&ctv);
960 	else
961 		microuptime(&ctv);
962 	do {
963 		timevaladd(&p->p_realtimer.it_value,
964 		    &p->p_realtimer.it_interval);
965 	} while (timevalcmp(&p->p_realtimer.it_value, &ctv, <=));
966 
967 	if (P_SHOULDSTOP(p) || P_KILLED(p)) {
968 		p->p_flag2 |= P2_ITSTOPPED;
969 		return;
970 	}
971 
972 	p->p_flag2 &= ~P2_ITSTOPPED;
973 	realitexpire_reset_callout(p, &isbt);
974 }
975 
976 /*
977  * Check that a proposed value to load into the .it_value or
978  * .it_interval part of an interval timer is acceptable, and
979  * fix it to have at least minimal value (i.e. if it is less
980  * than the resolution of the clock, round it up.)
981  */
982 int
983 itimerfix(struct timeval *tv)
984 {
985 
986 	if (tv->tv_sec < 0 || tv->tv_usec < 0 || tv->tv_usec >= 1000000)
987 		return (EINVAL);
988 	if (tv->tv_sec == 0 && tv->tv_usec != 0 &&
989 	    tv->tv_usec < (u_int)tick / 16)
990 		tv->tv_usec = (u_int)tick / 16;
991 	return (0);
992 }
993 
994 /*
995  * Decrement an interval timer by a specified number
996  * of microseconds, which must be less than a second,
997  * i.e. < 1000000.  If the timer expires, then reload
998  * it.  In this case, carry over (usec - old value) to
999  * reduce the value reloaded into the timer so that
1000  * the timer does not drift.  This routine assumes
1001  * that it is called in a context where the timers
1002  * on which it is operating cannot change in value.
1003  */
1004 int
1005 itimerdecr(struct itimerval *itp, int usec)
1006 {
1007 
1008 	if (itp->it_value.tv_usec < usec) {
1009 		if (itp->it_value.tv_sec == 0) {
1010 			/* expired, and already in next interval */
1011 			usec -= itp->it_value.tv_usec;
1012 			goto expire;
1013 		}
1014 		itp->it_value.tv_usec += 1000000;
1015 		itp->it_value.tv_sec--;
1016 	}
1017 	itp->it_value.tv_usec -= usec;
1018 	usec = 0;
1019 	if (timevalisset(&itp->it_value))
1020 		return (1);
1021 	/* expired, exactly at end of interval */
1022 expire:
1023 	if (timevalisset(&itp->it_interval)) {
1024 		itp->it_value = itp->it_interval;
1025 		itp->it_value.tv_usec -= usec;
1026 		if (itp->it_value.tv_usec < 0) {
1027 			itp->it_value.tv_usec += 1000000;
1028 			itp->it_value.tv_sec--;
1029 		}
1030 	} else
1031 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
1032 	return (0);
1033 }
1034 
1035 /*
1036  * Add and subtract routines for timevals.
1037  * N.B.: subtract routine doesn't deal with
1038  * results which are before the beginning,
1039  * it just gets very confused in this case.
1040  * Caveat emptor.
1041  */
1042 void
1043 timevaladd(struct timeval *t1, const struct timeval *t2)
1044 {
1045 
1046 	t1->tv_sec += t2->tv_sec;
1047 	t1->tv_usec += t2->tv_usec;
1048 	timevalfix(t1);
1049 }
1050 
1051 void
1052 timevalsub(struct timeval *t1, const struct timeval *t2)
1053 {
1054 
1055 	t1->tv_sec -= t2->tv_sec;
1056 	t1->tv_usec -= t2->tv_usec;
1057 	timevalfix(t1);
1058 }
1059 
1060 static void
1061 timevalfix(struct timeval *t1)
1062 {
1063 
1064 	if (t1->tv_usec < 0) {
1065 		t1->tv_sec--;
1066 		t1->tv_usec += 1000000;
1067 	}
1068 	if (t1->tv_usec >= 1000000) {
1069 		t1->tv_sec++;
1070 		t1->tv_usec -= 1000000;
1071 	}
1072 }
1073 
1074 /*
1075  * ratecheck(): simple time-based rate-limit checking.
1076  */
1077 int
1078 ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
1079 {
1080 	struct timeval tv, delta;
1081 	int rv = 0;
1082 
1083 	getmicrouptime(&tv);		/* NB: 10ms precision */
1084 	delta = tv;
1085 	timevalsub(&delta, lasttime);
1086 
1087 	/*
1088 	 * check for 0,0 is so that the message will be seen at least once,
1089 	 * even if interval is huge.
1090 	 */
1091 	if (timevalcmp(&delta, mininterval, >=) ||
1092 	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
1093 		*lasttime = tv;
1094 		rv = 1;
1095 	}
1096 
1097 	return (rv);
1098 }
1099 
1100 /*
1101  * ppsratecheck(): packets (or events) per second limitation.
1102  *
1103  * Return 0 if the limit is to be enforced (e.g. the caller
1104  * should drop a packet because of the rate limitation).
1105  *
1106  * maxpps of 0 always causes zero to be returned.  maxpps of -1
1107  * always causes 1 to be returned; this effectively defeats rate
1108  * limiting.
1109  *
1110  * Note that we maintain the struct timeval for compatibility
1111  * with other bsd systems.  We reuse the storage and just monitor
1112  * clock ticks for minimal overhead.
1113  */
1114 int
1115 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
1116 {
1117 	int now;
1118 
1119 	/*
1120 	 * Reset the last time and counter if this is the first call
1121 	 * or more than a second has passed since the last update of
1122 	 * lasttime.
1123 	 */
1124 	now = ticks;
1125 	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
1126 		lasttime->tv_sec = now;
1127 		*curpps = 1;
1128 		return (maxpps != 0);
1129 	} else {
1130 		(*curpps)++;		/* NB: ignore potential overflow */
1131 		return (maxpps < 0 || *curpps <= maxpps);
1132 	}
1133 }
1134 
1135 static void
1136 itimer_start(void)
1137 {
1138 	static const struct kclock rt_clock = {
1139 		.timer_create  = realtimer_create,
1140 		.timer_delete  = realtimer_delete,
1141 		.timer_settime = realtimer_settime,
1142 		.timer_gettime = realtimer_gettime,
1143 	};
1144 
1145 	itimer_zone = uma_zcreate("itimer", sizeof(struct itimer),
1146 		NULL, NULL, itimer_init, itimer_fini, UMA_ALIGN_PTR, 0);
1147 	register_posix_clock(CLOCK_REALTIME,  &rt_clock);
1148 	register_posix_clock(CLOCK_MONOTONIC, &rt_clock);
1149 	p31b_setcfg(CTL_P1003_1B_TIMERS, 200112L);
1150 	p31b_setcfg(CTL_P1003_1B_DELAYTIMER_MAX, INT_MAX);
1151 	p31b_setcfg(CTL_P1003_1B_TIMER_MAX, TIMER_MAX);
1152 }
1153 
1154 static int
1155 register_posix_clock(int clockid, const struct kclock *clk)
1156 {
1157 	if ((unsigned)clockid >= MAX_CLOCKS) {
1158 		printf("%s: invalid clockid\n", __func__);
1159 		return (0);
1160 	}
1161 	posix_clocks[clockid] = *clk;
1162 	return (1);
1163 }
1164 
1165 static int
1166 itimer_init(void *mem, int size, int flags)
1167 {
1168 	struct itimer *it;
1169 
1170 	it = (struct itimer *)mem;
1171 	mtx_init(&it->it_mtx, "itimer lock", NULL, MTX_DEF);
1172 	return (0);
1173 }
1174 
1175 static void
1176 itimer_fini(void *mem, int size)
1177 {
1178 	struct itimer *it;
1179 
1180 	it = (struct itimer *)mem;
1181 	mtx_destroy(&it->it_mtx);
1182 }
1183 
1184 static void
1185 itimer_enter(struct itimer *it)
1186 {
1187 
1188 	mtx_assert(&it->it_mtx, MA_OWNED);
1189 	it->it_usecount++;
1190 }
1191 
1192 static void
1193 itimer_leave(struct itimer *it)
1194 {
1195 
1196 	mtx_assert(&it->it_mtx, MA_OWNED);
1197 	KASSERT(it->it_usecount > 0, ("invalid it_usecount"));
1198 
1199 	if (--it->it_usecount == 0 && (it->it_flags & ITF_WANTED) != 0)
1200 		wakeup(it);
1201 }
1202 
1203 #ifndef _SYS_SYSPROTO_H_
1204 struct ktimer_create_args {
1205 	clockid_t clock_id;
1206 	struct sigevent * evp;
1207 	int * timerid;
1208 };
1209 #endif
1210 int
1211 sys_ktimer_create(struct thread *td, struct ktimer_create_args *uap)
1212 {
1213 	struct sigevent *evp, ev;
1214 	int id;
1215 	int error;
1216 
1217 	if (uap->evp == NULL) {
1218 		evp = NULL;
1219 	} else {
1220 		error = copyin(uap->evp, &ev, sizeof(ev));
1221 		if (error != 0)
1222 			return (error);
1223 		evp = &ev;
1224 	}
1225 	error = kern_ktimer_create(td, uap->clock_id, evp, &id, -1);
1226 	if (error == 0) {
1227 		error = copyout(&id, uap->timerid, sizeof(int));
1228 		if (error != 0)
1229 			kern_ktimer_delete(td, id);
1230 	}
1231 	return (error);
1232 }
1233 
1234 int
1235 kern_ktimer_create(struct thread *td, clockid_t clock_id, struct sigevent *evp,
1236     int *timerid, int preset_id)
1237 {
1238 	struct proc *p = td->td_proc;
1239 	struct itimer *it;
1240 	int id;
1241 	int error;
1242 
1243 	if (clock_id < 0 || clock_id >= MAX_CLOCKS)
1244 		return (EINVAL);
1245 
1246 	if (posix_clocks[clock_id].timer_create == NULL)
1247 		return (EINVAL);
1248 
1249 	if (evp != NULL) {
1250 		if (evp->sigev_notify != SIGEV_NONE &&
1251 		    evp->sigev_notify != SIGEV_SIGNAL &&
1252 		    evp->sigev_notify != SIGEV_THREAD_ID)
1253 			return (EINVAL);
1254 		if ((evp->sigev_notify == SIGEV_SIGNAL ||
1255 		     evp->sigev_notify == SIGEV_THREAD_ID) &&
1256 			!_SIG_VALID(evp->sigev_signo))
1257 			return (EINVAL);
1258 	}
1259 
1260 	if (p->p_itimers == NULL)
1261 		itimers_alloc(p);
1262 
1263 	it = uma_zalloc(itimer_zone, M_WAITOK);
1264 	it->it_flags = 0;
1265 	it->it_usecount = 0;
1266 	timespecclear(&it->it_time.it_value);
1267 	timespecclear(&it->it_time.it_interval);
1268 	it->it_overrun = 0;
1269 	it->it_overrun_last = 0;
1270 	it->it_clockid = clock_id;
1271 	it->it_proc = p;
1272 	ksiginfo_init(&it->it_ksi);
1273 	it->it_ksi.ksi_flags |= KSI_INS | KSI_EXT;
1274 	error = CLOCK_CALL(clock_id, timer_create, (it));
1275 	if (error != 0)
1276 		goto out;
1277 
1278 	PROC_LOCK(p);
1279 	if (preset_id != -1) {
1280 		KASSERT(preset_id >= 0 && preset_id < 3, ("invalid preset_id"));
1281 		id = preset_id;
1282 		if (p->p_itimers->its_timers[id] != NULL) {
1283 			PROC_UNLOCK(p);
1284 			error = 0;
1285 			goto out;
1286 		}
1287 	} else {
1288 		/*
1289 		 * Find a free timer slot, skipping those reserved
1290 		 * for setitimer().
1291 		 */
1292 		for (id = 3; id < TIMER_MAX; id++)
1293 			if (p->p_itimers->its_timers[id] == NULL)
1294 				break;
1295 		if (id == TIMER_MAX) {
1296 			PROC_UNLOCK(p);
1297 			error = EAGAIN;
1298 			goto out;
1299 		}
1300 	}
1301 	p->p_itimers->its_timers[id] = it;
1302 	if (evp != NULL)
1303 		it->it_sigev = *evp;
1304 	else {
1305 		it->it_sigev.sigev_notify = SIGEV_SIGNAL;
1306 		switch (clock_id) {
1307 		default:
1308 		case CLOCK_REALTIME:
1309 			it->it_sigev.sigev_signo = SIGALRM;
1310 			break;
1311 		case CLOCK_VIRTUAL:
1312  			it->it_sigev.sigev_signo = SIGVTALRM;
1313 			break;
1314 		case CLOCK_PROF:
1315 			it->it_sigev.sigev_signo = SIGPROF;
1316 			break;
1317 		}
1318 		it->it_sigev.sigev_value.sival_int = id;
1319 	}
1320 
1321 	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1322 	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1323 		it->it_ksi.ksi_signo = it->it_sigev.sigev_signo;
1324 		it->it_ksi.ksi_code = SI_TIMER;
1325 		it->it_ksi.ksi_value = it->it_sigev.sigev_value;
1326 		it->it_ksi.ksi_timerid = id;
1327 	}
1328 	PROC_UNLOCK(p);
1329 	*timerid = id;
1330 	return (0);
1331 
1332 out:
1333 	ITIMER_LOCK(it);
1334 	CLOCK_CALL(it->it_clockid, timer_delete, (it));
1335 	ITIMER_UNLOCK(it);
1336 	uma_zfree(itimer_zone, it);
1337 	return (error);
1338 }
1339 
1340 #ifndef _SYS_SYSPROTO_H_
1341 struct ktimer_delete_args {
1342 	int timerid;
1343 };
1344 #endif
1345 int
1346 sys_ktimer_delete(struct thread *td, struct ktimer_delete_args *uap)
1347 {
1348 
1349 	return (kern_ktimer_delete(td, uap->timerid));
1350 }
1351 
1352 static struct itimer *
1353 itimer_find(struct proc *p, int timerid)
1354 {
1355 	struct itimer *it;
1356 
1357 	PROC_LOCK_ASSERT(p, MA_OWNED);
1358 	if ((p->p_itimers == NULL) ||
1359 	    (timerid < 0) || (timerid >= TIMER_MAX) ||
1360 	    (it = p->p_itimers->its_timers[timerid]) == NULL) {
1361 		return (NULL);
1362 	}
1363 	ITIMER_LOCK(it);
1364 	if ((it->it_flags & ITF_DELETING) != 0) {
1365 		ITIMER_UNLOCK(it);
1366 		it = NULL;
1367 	}
1368 	return (it);
1369 }
1370 
1371 int
1372 kern_ktimer_delete(struct thread *td, int timerid)
1373 {
1374 	struct proc *p = td->td_proc;
1375 	struct itimer *it;
1376 
1377 	PROC_LOCK(p);
1378 	it = itimer_find(p, timerid);
1379 	if (it == NULL) {
1380 		PROC_UNLOCK(p);
1381 		return (EINVAL);
1382 	}
1383 	PROC_UNLOCK(p);
1384 
1385 	it->it_flags |= ITF_DELETING;
1386 	while (it->it_usecount > 0) {
1387 		it->it_flags |= ITF_WANTED;
1388 		msleep(it, &it->it_mtx, PPAUSE, "itimer", 0);
1389 	}
1390 	it->it_flags &= ~ITF_WANTED;
1391 	CLOCK_CALL(it->it_clockid, timer_delete, (it));
1392 	ITIMER_UNLOCK(it);
1393 
1394 	PROC_LOCK(p);
1395 	if (KSI_ONQ(&it->it_ksi))
1396 		sigqueue_take(&it->it_ksi);
1397 	p->p_itimers->its_timers[timerid] = NULL;
1398 	PROC_UNLOCK(p);
1399 	uma_zfree(itimer_zone, it);
1400 	return (0);
1401 }
1402 
1403 #ifndef _SYS_SYSPROTO_H_
1404 struct ktimer_settime_args {
1405 	int timerid;
1406 	int flags;
1407 	const struct itimerspec * value;
1408 	struct itimerspec * ovalue;
1409 };
1410 #endif
1411 int
1412 sys_ktimer_settime(struct thread *td, struct ktimer_settime_args *uap)
1413 {
1414 	struct itimerspec val, oval, *ovalp;
1415 	int error;
1416 
1417 	error = copyin(uap->value, &val, sizeof(val));
1418 	if (error != 0)
1419 		return (error);
1420 	ovalp = uap->ovalue != NULL ? &oval : NULL;
1421 	error = kern_ktimer_settime(td, uap->timerid, uap->flags, &val, ovalp);
1422 	if (error == 0 && uap->ovalue != NULL)
1423 		error = copyout(ovalp, uap->ovalue, sizeof(*ovalp));
1424 	return (error);
1425 }
1426 
1427 int
1428 kern_ktimer_settime(struct thread *td, int timer_id, int flags,
1429     struct itimerspec *val, struct itimerspec *oval)
1430 {
1431 	struct proc *p;
1432 	struct itimer *it;
1433 	int error;
1434 
1435 	p = td->td_proc;
1436 	PROC_LOCK(p);
1437 	if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
1438 		PROC_UNLOCK(p);
1439 		error = EINVAL;
1440 	} else {
1441 		PROC_UNLOCK(p);
1442 		itimer_enter(it);
1443 		error = CLOCK_CALL(it->it_clockid, timer_settime, (it,
1444 		    flags, val, oval));
1445 		itimer_leave(it);
1446 		ITIMER_UNLOCK(it);
1447 	}
1448 	return (error);
1449 }
1450 
1451 #ifndef _SYS_SYSPROTO_H_
1452 struct ktimer_gettime_args {
1453 	int timerid;
1454 	struct itimerspec * value;
1455 };
1456 #endif
1457 int
1458 sys_ktimer_gettime(struct thread *td, struct ktimer_gettime_args *uap)
1459 {
1460 	struct itimerspec val;
1461 	int error;
1462 
1463 	error = kern_ktimer_gettime(td, uap->timerid, &val);
1464 	if (error == 0)
1465 		error = copyout(&val, uap->value, sizeof(val));
1466 	return (error);
1467 }
1468 
1469 int
1470 kern_ktimer_gettime(struct thread *td, int timer_id, struct itimerspec *val)
1471 {
1472 	struct proc *p;
1473 	struct itimer *it;
1474 	int error;
1475 
1476 	p = td->td_proc;
1477 	PROC_LOCK(p);
1478 	if (timer_id < 3 || (it = itimer_find(p, timer_id)) == NULL) {
1479 		PROC_UNLOCK(p);
1480 		error = EINVAL;
1481 	} else {
1482 		PROC_UNLOCK(p);
1483 		itimer_enter(it);
1484 		error = CLOCK_CALL(it->it_clockid, timer_gettime, (it, val));
1485 		itimer_leave(it);
1486 		ITIMER_UNLOCK(it);
1487 	}
1488 	return (error);
1489 }
1490 
1491 #ifndef _SYS_SYSPROTO_H_
1492 struct timer_getoverrun_args {
1493 	int timerid;
1494 };
1495 #endif
1496 int
1497 sys_ktimer_getoverrun(struct thread *td, struct ktimer_getoverrun_args *uap)
1498 {
1499 
1500 	return (kern_ktimer_getoverrun(td, uap->timerid));
1501 }
1502 
1503 int
1504 kern_ktimer_getoverrun(struct thread *td, int timer_id)
1505 {
1506 	struct proc *p = td->td_proc;
1507 	struct itimer *it;
1508 	int error ;
1509 
1510 	PROC_LOCK(p);
1511 	if (timer_id < 3 ||
1512 	    (it = itimer_find(p, timer_id)) == NULL) {
1513 		PROC_UNLOCK(p);
1514 		error = EINVAL;
1515 	} else {
1516 		td->td_retval[0] = it->it_overrun_last;
1517 		ITIMER_UNLOCK(it);
1518 		PROC_UNLOCK(p);
1519 		error = 0;
1520 	}
1521 	return (error);
1522 }
1523 
1524 static int
1525 realtimer_create(struct itimer *it)
1526 {
1527 	callout_init_mtx(&it->it_callout, &it->it_mtx, 0);
1528 	return (0);
1529 }
1530 
1531 static int
1532 realtimer_delete(struct itimer *it)
1533 {
1534 	mtx_assert(&it->it_mtx, MA_OWNED);
1535 
1536 	/*
1537 	 * clear timer's value and interval to tell realtimer_expire
1538 	 * to not rearm the timer.
1539 	 */
1540 	timespecclear(&it->it_time.it_value);
1541 	timespecclear(&it->it_time.it_interval);
1542 	ITIMER_UNLOCK(it);
1543 	callout_drain(&it->it_callout);
1544 	ITIMER_LOCK(it);
1545 	return (0);
1546 }
1547 
1548 static int
1549 realtimer_gettime(struct itimer *it, struct itimerspec *ovalue)
1550 {
1551 	struct timespec cts;
1552 
1553 	mtx_assert(&it->it_mtx, MA_OWNED);
1554 
1555 	realtimer_clocktime(it->it_clockid, &cts);
1556 	*ovalue = it->it_time;
1557 	if (ovalue->it_value.tv_sec != 0 || ovalue->it_value.tv_nsec != 0) {
1558 		timespecsub(&ovalue->it_value, &cts, &ovalue->it_value);
1559 		if (ovalue->it_value.tv_sec < 0 ||
1560 		    (ovalue->it_value.tv_sec == 0 &&
1561 		     ovalue->it_value.tv_nsec == 0)) {
1562 			ovalue->it_value.tv_sec  = 0;
1563 			ovalue->it_value.tv_nsec = 1;
1564 		}
1565 	}
1566 	return (0);
1567 }
1568 
1569 static int
1570 realtimer_settime(struct itimer *it, int flags, struct itimerspec *value,
1571     struct itimerspec *ovalue)
1572 {
1573 	struct timespec cts, ts;
1574 	struct timeval tv;
1575 	struct itimerspec val;
1576 
1577 	mtx_assert(&it->it_mtx, MA_OWNED);
1578 
1579 	val = *value;
1580 	if (itimespecfix(&val.it_value))
1581 		return (EINVAL);
1582 
1583 	if (timespecisset(&val.it_value)) {
1584 		if (itimespecfix(&val.it_interval))
1585 			return (EINVAL);
1586 	} else {
1587 		timespecclear(&val.it_interval);
1588 	}
1589 
1590 	if (ovalue != NULL)
1591 		realtimer_gettime(it, ovalue);
1592 
1593 	it->it_time = val;
1594 	if (timespecisset(&val.it_value)) {
1595 		realtimer_clocktime(it->it_clockid, &cts);
1596 		ts = val.it_value;
1597 		if ((flags & TIMER_ABSTIME) == 0) {
1598 			/* Convert to absolute time. */
1599 			timespecadd(&it->it_time.it_value, &cts,
1600 			    &it->it_time.it_value);
1601 		} else {
1602 			timespecsub(&ts, &cts, &ts);
1603 			/*
1604 			 * We don't care if ts is negative, tztohz will
1605 			 * fix it.
1606 			 */
1607 		}
1608 		TIMESPEC_TO_TIMEVAL(&tv, &ts);
1609 		callout_reset(&it->it_callout, tvtohz(&tv), realtimer_expire,
1610 		    it);
1611 	} else {
1612 		callout_stop(&it->it_callout);
1613 	}
1614 
1615 	return (0);
1616 }
1617 
1618 static void
1619 realtimer_clocktime(clockid_t id, struct timespec *ts)
1620 {
1621 	if (id == CLOCK_REALTIME)
1622 		getnanotime(ts);
1623 	else	/* CLOCK_MONOTONIC */
1624 		getnanouptime(ts);
1625 }
1626 
1627 int
1628 itimer_accept(struct proc *p, int timerid, ksiginfo_t *ksi)
1629 {
1630 	struct itimer *it;
1631 
1632 	PROC_LOCK_ASSERT(p, MA_OWNED);
1633 	it = itimer_find(p, timerid);
1634 	if (it != NULL) {
1635 		ksi->ksi_overrun = it->it_overrun;
1636 		it->it_overrun_last = it->it_overrun;
1637 		it->it_overrun = 0;
1638 		ITIMER_UNLOCK(it);
1639 		return (0);
1640 	}
1641 	return (EINVAL);
1642 }
1643 
1644 static int
1645 itimespecfix(struct timespec *ts)
1646 {
1647 
1648 	if (!timespecvalid_interval(ts))
1649 		return (EINVAL);
1650 	if ((UINT64_MAX - ts->tv_nsec) / NS_PER_SEC < ts->tv_sec)
1651 		return (EINVAL);
1652 	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
1653 		ts->tv_nsec = tick * 1000;
1654 	return (0);
1655 }
1656 
1657 #define	timespectons(tsp)			\
1658 	((uint64_t)(tsp)->tv_sec * NS_PER_SEC + (tsp)->tv_nsec)
1659 #define	timespecfromns(ns) (struct timespec){	\
1660 	.tv_sec = (ns) / NS_PER_SEC,		\
1661 	.tv_nsec = (ns) % NS_PER_SEC		\
1662 }
1663 
1664 static void
1665 realtimer_expire_l(struct itimer *it, bool proc_locked)
1666 {
1667 	struct timespec cts, ts;
1668 	struct timeval tv;
1669 	struct proc *p;
1670 	uint64_t interval, now, overruns, value;
1671 
1672 	realtimer_clocktime(it->it_clockid, &cts);
1673 	/* Only fire if time is reached. */
1674 	if (timespeccmp(&cts, &it->it_time.it_value, >=)) {
1675 		if (timespecisset(&it->it_time.it_interval)) {
1676 			timespecadd(&it->it_time.it_value,
1677 			    &it->it_time.it_interval,
1678 			    &it->it_time.it_value);
1679 
1680 			interval = timespectons(&it->it_time.it_interval);
1681 			value = timespectons(&it->it_time.it_value);
1682 			now = timespectons(&cts);
1683 
1684 			if (now >= value) {
1685 				/*
1686 				 * We missed at least one period.
1687 				 */
1688 				overruns = howmany(now - value + 1, interval);
1689 				if (it->it_overrun + overruns >=
1690 				    it->it_overrun &&
1691 				    it->it_overrun + overruns <= INT_MAX) {
1692 					it->it_overrun += (int)overruns;
1693 				} else {
1694 					it->it_overrun = INT_MAX;
1695 					it->it_ksi.ksi_errno = ERANGE;
1696 				}
1697 				value =
1698 				    now + interval - (now - value) % interval;
1699 				it->it_time.it_value = timespecfromns(value);
1700 			}
1701 		} else {
1702 			/* single shot timer ? */
1703 			timespecclear(&it->it_time.it_value);
1704 		}
1705 
1706 		p = it->it_proc;
1707 		if (timespecisset(&it->it_time.it_value)) {
1708 			if (P_SHOULDSTOP(p) || P_KILLED(p)) {
1709 				it->it_flags |= ITF_PSTOPPED;
1710 			} else {
1711 				timespecsub(&it->it_time.it_value, &cts, &ts);
1712 				TIMESPEC_TO_TIMEVAL(&tv, &ts);
1713 				callout_reset(&it->it_callout, tvtohz(&tv),
1714 				    realtimer_expire, it);
1715 			}
1716 		}
1717 
1718 		itimer_enter(it);
1719 		ITIMER_UNLOCK(it);
1720 		if (proc_locked)
1721 			PROC_UNLOCK(p);
1722 		itimer_fire(it);
1723 		if (proc_locked)
1724 			PROC_LOCK(p);
1725 		ITIMER_LOCK(it);
1726 		itimer_leave(it);
1727 	} else if (timespecisset(&it->it_time.it_value)) {
1728 		p = it->it_proc;
1729 		if (P_SHOULDSTOP(p) || P_KILLED(p)) {
1730 			it->it_flags |= ITF_PSTOPPED;
1731 		} else {
1732 			ts = it->it_time.it_value;
1733 			timespecsub(&ts, &cts, &ts);
1734 			TIMESPEC_TO_TIMEVAL(&tv, &ts);
1735 			callout_reset(&it->it_callout, tvtohz(&tv),
1736 			    realtimer_expire, it);
1737 		}
1738 	}
1739 }
1740 
1741 /* Timeout callback for realtime timer */
1742 static void
1743 realtimer_expire(void *arg)
1744 {
1745 	realtimer_expire_l(arg, false);
1746 }
1747 
1748 static void
1749 itimer_fire(struct itimer *it)
1750 {
1751 	struct proc *p = it->it_proc;
1752 	struct thread *td;
1753 
1754 	if (it->it_sigev.sigev_notify == SIGEV_SIGNAL ||
1755 	    it->it_sigev.sigev_notify == SIGEV_THREAD_ID) {
1756 		if (sigev_findtd(p, &it->it_sigev, &td) != 0) {
1757 			ITIMER_LOCK(it);
1758 			timespecclear(&it->it_time.it_value);
1759 			timespecclear(&it->it_time.it_interval);
1760 			callout_stop(&it->it_callout);
1761 			ITIMER_UNLOCK(it);
1762 			return;
1763 		}
1764 		if (!KSI_ONQ(&it->it_ksi)) {
1765 			it->it_ksi.ksi_errno = 0;
1766 			ksiginfo_set_sigev(&it->it_ksi, &it->it_sigev);
1767 			tdsendsignal(p, td, it->it_ksi.ksi_signo, &it->it_ksi);
1768 		} else {
1769 			if (it->it_overrun < INT_MAX)
1770 				it->it_overrun++;
1771 			else
1772 				it->it_ksi.ksi_errno = ERANGE;
1773 		}
1774 		PROC_UNLOCK(p);
1775 	}
1776 }
1777 
1778 static void
1779 itimers_alloc(struct proc *p)
1780 {
1781 	struct itimers *its;
1782 
1783 	its = malloc(sizeof (struct itimers), M_SUBPROC, M_WAITOK | M_ZERO);
1784 	PROC_LOCK(p);
1785 	if (p->p_itimers == NULL) {
1786 		p->p_itimers = its;
1787 		PROC_UNLOCK(p);
1788 	}
1789 	else {
1790 		PROC_UNLOCK(p);
1791 		free(its, M_SUBPROC);
1792 	}
1793 }
1794 
1795 /* Clean up timers when some process events are being triggered. */
1796 static void
1797 itimers_event_exit_exec(int start_idx, struct proc *p)
1798 {
1799 	struct itimers *its;
1800 	struct itimer *it;
1801 	int i;
1802 
1803 	its = p->p_itimers;
1804 	if (its == NULL)
1805 		return;
1806 
1807 	for (i = start_idx; i < TIMER_MAX; ++i) {
1808 		if ((it = its->its_timers[i]) != NULL)
1809 			kern_ktimer_delete(curthread, i);
1810 	}
1811 	if (its->its_timers[0] == NULL && its->its_timers[1] == NULL &&
1812 	    its->its_timers[2] == NULL) {
1813 		/* Synchronize with itimer_proc_continue(). */
1814 		PROC_LOCK(p);
1815 		p->p_itimers = NULL;
1816 		PROC_UNLOCK(p);
1817 		free(its, M_SUBPROC);
1818 	}
1819 }
1820 
1821 void
1822 itimers_exec(struct proc *p)
1823 {
1824 	/*
1825 	 * According to susv3, XSI interval timers should be inherited
1826 	 * by new image.
1827 	 */
1828 	itimers_event_exit_exec(3, p);
1829 }
1830 
1831 void
1832 itimers_exit(struct proc *p)
1833 {
1834 	itimers_event_exit_exec(0, p);
1835 }
1836