xref: /freebsd/sys/kern/kern_time.c (revision 0fddbf874719b9bd50cf66ac26d1140bb3f2be69)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $FreeBSD$
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/lock.h>
40 #include <sys/mutex.h>
41 #include <sys/sysproto.h>
42 #include <sys/resourcevar.h>
43 #include <sys/signalvar.h>
44 #include <sys/kernel.h>
45 #include <sys/systm.h>
46 #include <sys/sysent.h>
47 #include <sys/proc.h>
48 #include <sys/time.h>
49 #include <sys/timetc.h>
50 #include <sys/vnode.h>
51 
52 #include <vm/vm.h>
53 #include <vm/vm_extern.h>
54 
55 struct timezone tz;
56 
57 /*
58  * Time of day and interval timer support.
59  *
60  * These routines provide the kernel entry points to get and set
61  * the time-of-day and per-process interval timers.  Subroutines
62  * here provide support for adding and subtracting timeval structures
63  * and decrementing interval timers, optionally reloading the interval
64  * timers when they expire.
65  */
66 
67 static int	nanosleep1 __P((struct proc *p, struct timespec *rqt,
68 		    struct timespec *rmt));
69 static int	settime __P((struct timeval *));
70 static void	timevalfix __P((struct timeval *));
71 static void	no_lease_updatetime __P((int));
72 
73 static void
74 no_lease_updatetime(deltat)
75 	int deltat;
76 {
77 }
78 
79 void (*lease_updatetime) __P((int))  = no_lease_updatetime;
80 
81 static int
82 settime(tv)
83 	struct timeval *tv;
84 {
85 	struct timeval delta, tv1, tv2;
86 	static struct timeval maxtime, laststep;
87 	struct timespec ts;
88 	int s;
89 
90 	s = splclock();
91 	microtime(&tv1);
92 	delta = *tv;
93 	timevalsub(&delta, &tv1);
94 
95 	/*
96 	 * If the system is secure, we do not allow the time to be
97 	 * set to a value earlier than 1 second less than the highest
98 	 * time we have yet seen. The worst a miscreant can do in
99 	 * this circumstance is "freeze" time. He couldn't go
100 	 * back to the past.
101 	 *
102 	 * We similarly do not allow the clock to be stepped more
103 	 * than one second, nor more than once per second. This allows
104 	 * a miscreant to make the clock march double-time, but no worse.
105 	 */
106 	if (securelevel > 1) {
107 		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
108 			/*
109 			 * Update maxtime to latest time we've seen.
110 			 */
111 			if (tv1.tv_sec > maxtime.tv_sec)
112 				maxtime = tv1;
113 			tv2 = *tv;
114 			timevalsub(&tv2, &maxtime);
115 			if (tv2.tv_sec < -1) {
116 				tv->tv_sec = maxtime.tv_sec - 1;
117 				printf("Time adjustment clamped to -1 second\n");
118 			}
119 		} else {
120 			if (tv1.tv_sec == laststep.tv_sec) {
121 				splx(s);
122 				return (EPERM);
123 			}
124 			if (delta.tv_sec > 1) {
125 				tv->tv_sec = tv1.tv_sec + 1;
126 				printf("Time adjustment clamped to +1 second\n");
127 			}
128 			laststep = *tv;
129 		}
130 	}
131 
132 	ts.tv_sec = tv->tv_sec;
133 	ts.tv_nsec = tv->tv_usec * 1000;
134 	tc_setclock(&ts);
135 	(void) splsoftclock();
136 	lease_updatetime(delta.tv_sec);
137 	splx(s);
138 	resettodr();
139 	return (0);
140 }
141 
142 #ifndef _SYS_SYSPROTO_H_
143 struct clock_gettime_args {
144 	clockid_t clock_id;
145 	struct	timespec *tp;
146 };
147 #endif
148 
149 /*
150  * MPSAFE
151  */
152 /* ARGSUSED */
153 int
154 clock_gettime(p, uap)
155 	struct proc *p;
156 	struct clock_gettime_args *uap;
157 {
158 	struct timespec ats;
159 
160 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
161 		return (EINVAL);
162 	mtx_lock(&Giant);
163 	nanotime(&ats);
164 	mtx_unlock(&Giant);
165 	return (copyout(&ats, SCARG(uap, tp), sizeof(ats)));
166 }
167 
168 #ifndef _SYS_SYSPROTO_H_
169 struct clock_settime_args {
170 	clockid_t clock_id;
171 	const struct	timespec *tp;
172 };
173 #endif
174 
175 /*
176  * MPSAFE
177  */
178 /* ARGSUSED */
179 int
180 clock_settime(p, uap)
181 	struct proc *p;
182 	struct clock_settime_args *uap;
183 {
184 	struct timeval atv;
185 	struct timespec ats;
186 	int error;
187 
188 	mtx_lock(&Giant);
189 	if ((error = suser(p)) != 0)
190 		goto done2;
191 	if (SCARG(uap, clock_id) != CLOCK_REALTIME) {
192 		error = EINVAL;
193 		goto done2;
194 	}
195 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
196 		goto done2;
197 	if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000) {
198 		error = EINVAL;
199 		goto done2;
200 	}
201 	/* XXX Don't convert nsec->usec and back */
202 	TIMESPEC_TO_TIMEVAL(&atv, &ats);
203 	error = settime(&atv);
204 done2:
205 	mtx_unlock(&Giant);
206 	return (error);
207 }
208 
209 #ifndef _SYS_SYSPROTO_H_
210 struct clock_getres_args {
211 	clockid_t clock_id;
212 	struct	timespec *tp;
213 };
214 #endif
215 
216 int
217 clock_getres(p, uap)
218 	struct proc *p;
219 	struct clock_getres_args *uap;
220 {
221 	struct timespec ts;
222 	int error;
223 
224 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
225 		return (EINVAL);
226 	error = 0;
227 	if (SCARG(uap, tp)) {
228 		ts.tv_sec = 0;
229 		ts.tv_nsec = 1000000000 / timecounter->tc_frequency;
230 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
231 	}
232 	return (error);
233 }
234 
235 static int nanowait;
236 
237 static int
238 nanosleep1(p, rqt, rmt)
239 	struct proc *p;
240 	struct timespec *rqt, *rmt;
241 {
242 	struct timespec ts, ts2, ts3;
243 	struct timeval tv;
244 	int error;
245 
246 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
247 		return (EINVAL);
248 	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
249 		return (0);
250 	getnanouptime(&ts);
251 	timespecadd(&ts, rqt);
252 	TIMESPEC_TO_TIMEVAL(&tv, rqt);
253 	for (;;) {
254 		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
255 		    tvtohz(&tv));
256 		getnanouptime(&ts2);
257 		if (error != EWOULDBLOCK) {
258 			if (error == ERESTART)
259 				error = EINTR;
260 			if (rmt != NULL) {
261 				timespecsub(&ts, &ts2);
262 				if (ts.tv_sec < 0)
263 					timespecclear(&ts);
264 				*rmt = ts;
265 			}
266 			return (error);
267 		}
268 		if (timespeccmp(&ts2, &ts, >=))
269 			return (0);
270 		ts3 = ts;
271 		timespecsub(&ts3, &ts2);
272 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
273 	}
274 }
275 
276 #ifndef _SYS_SYSPROTO_H_
277 struct nanosleep_args {
278 	struct	timespec *rqtp;
279 	struct	timespec *rmtp;
280 };
281 #endif
282 
283 /*
284  * MPSAFE
285  */
286 /* ARGSUSED */
287 int
288 nanosleep(p, uap)
289 	struct proc *p;
290 	struct nanosleep_args *uap;
291 {
292 	struct timespec rmt, rqt;
293 	int error;
294 
295 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(rqt));
296 	if (error)
297 		return (error);
298 
299 	mtx_lock(&Giant);
300 	if (SCARG(uap, rmtp)) {
301 		if (!useracc((caddr_t)SCARG(uap, rmtp), sizeof(rmt),
302 		    VM_PROT_WRITE)) {
303 			error = EFAULT;
304 			goto done2;
305 		}
306 	}
307 	error = nanosleep1(p, &rqt, &rmt);
308 	if (error && SCARG(uap, rmtp)) {
309 		int error2;
310 
311 		error2 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
312 		if (error2)	/* XXX shouldn't happen, did useracc() above */
313 			error = error2;
314 	}
315 done2:
316 	mtx_unlock(&Giant);
317 	return (error);
318 }
319 
320 #ifndef _SYS_SYSPROTO_H_
321 struct gettimeofday_args {
322 	struct	timeval *tp;
323 	struct	timezone *tzp;
324 };
325 #endif
326 /*
327  * MPSAFE
328  */
329 /* ARGSUSED */
330 int
331 gettimeofday(p, uap)
332 	struct proc *p;
333 	register struct gettimeofday_args *uap;
334 {
335 	struct timeval atv;
336 	int error = 0;
337 
338 	mtx_lock(&Giant);
339 	if (uap->tp) {
340 		microtime(&atv);
341 		if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
342 		    sizeof (atv)))) {
343 			goto done2;
344 		}
345 	}
346 	if (uap->tzp) {
347 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
348 		    sizeof (tz));
349 	}
350 done2:
351 	mtx_unlock(&Giant);
352 	return (error);
353 }
354 
355 #ifndef _SYS_SYSPROTO_H_
356 struct settimeofday_args {
357 	struct	timeval *tv;
358 	struct	timezone *tzp;
359 };
360 #endif
361 /*
362  * MPSAFE
363  */
364 /* ARGSUSED */
365 int
366 settimeofday(p, uap)
367 	struct proc *p;
368 	struct settimeofday_args *uap;
369 {
370 	struct timeval atv;
371 	struct timezone atz;
372 	int error = 0;
373 
374 	mtx_lock(&Giant);
375 
376 	if ((error = suser(p)))
377 		goto done2;
378 	/* Verify all parameters before changing time. */
379 	if (uap->tv) {
380 		if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
381 		    sizeof(atv)))) {
382 			goto done2;
383 		}
384 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000) {
385 			error = EINVAL;
386 			goto done2;
387 		}
388 	}
389 	if (uap->tzp &&
390 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz)))) {
391 		goto done2;
392 	}
393 	if (uap->tv && (error = settime(&atv)))
394 		goto done2;
395 	if (uap->tzp)
396 		tz = atz;
397 done2:
398 	mtx_unlock(&Giant);
399 	return (error);
400 }
401 
402 int	tickdelta;			/* current clock skew, us. per tick */
403 long	timedelta;			/* unapplied time correction, us. */
404 static long	bigadj = 1000000;	/* use 10x skew above bigadj us. */
405 
406 #ifndef _SYS_SYSPROTO_H_
407 struct adjtime_args {
408 	struct timeval *delta;
409 	struct timeval *olddelta;
410 };
411 #endif
412 /*
413  * MPSAFE
414  */
415 /* ARGSUSED */
416 int
417 adjtime(p, uap)
418 	struct proc *p;
419 	register struct adjtime_args *uap;
420 {
421 	struct timeval atv;
422 	register long ndelta, ntickdelta, odelta;
423 	int s, error;
424 
425 	mtx_lock(&Giant);
426 
427 	if ((error = suser(p)))
428 		goto done2;
429 	error = copyin((caddr_t)uap->delta, (caddr_t)&atv,
430 		    sizeof(struct timeval));
431 	if (error)
432 		goto done2;
433 
434 	/*
435 	 * Compute the total correction and the rate at which to apply it.
436 	 * Round the adjustment down to a whole multiple of the per-tick
437 	 * delta, so that after some number of incremental changes in
438 	 * hardclock(), tickdelta will become zero, lest the correction
439 	 * overshoot and start taking us away from the desired final time.
440 	 */
441 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
442 	if (ndelta > bigadj || ndelta < -bigadj)
443 		ntickdelta = 10 * tickadj;
444 	else
445 		ntickdelta = tickadj;
446 	if (ndelta % ntickdelta)
447 		ndelta = ndelta / ntickdelta * ntickdelta;
448 
449 	/*
450 	 * To make hardclock()'s job easier, make the per-tick delta negative
451 	 * if we want time to run slower; then hardclock can simply compute
452 	 * tick + tickdelta, and subtract tickdelta from timedelta.
453 	 */
454 	if (ndelta < 0)
455 		ntickdelta = -ntickdelta;
456 	s = splclock();
457 	odelta = timedelta;
458 	timedelta = ndelta;
459 	tickdelta = ntickdelta;
460 	splx(s);
461 
462 	if (uap->olddelta) {
463 		atv.tv_sec = odelta / 1000000;
464 		atv.tv_usec = odelta % 1000000;
465 		(void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
466 		    sizeof(struct timeval));
467 	}
468 done2:
469 	mtx_unlock(&Giant);
470 	return (error);
471 }
472 
473 /*
474  * Get value of an interval timer.  The process virtual and
475  * profiling virtual time timers are kept in the p_stats area, since
476  * they can be swapped out.  These are kept internally in the
477  * way they are specified externally: in time until they expire.
478  *
479  * The real time interval timer is kept in the process table slot
480  * for the process, and its value (it_value) is kept as an
481  * absolute time rather than as a delta, so that it is easy to keep
482  * periodic real-time signals from drifting.
483  *
484  * Virtual time timers are processed in the hardclock() routine of
485  * kern_clock.c.  The real time timer is processed by a timeout
486  * routine, called from the softclock() routine.  Since a callout
487  * may be delayed in real time due to interrupt processing in the system,
488  * it is possible for the real time timeout routine (realitexpire, given below),
489  * to be delayed in real time past when it is supposed to occur.  It
490  * does not suffice, therefore, to reload the real timer .it_value from the
491  * real time timers .it_interval.  Rather, we compute the next time in
492  * absolute time the timer should go off.
493  */
494 #ifndef _SYS_SYSPROTO_H_
495 struct getitimer_args {
496 	u_int	which;
497 	struct	itimerval *itv;
498 };
499 #endif
500 /*
501  * MPSAFE
502  */
503 /* ARGSUSED */
504 int
505 getitimer(p, uap)
506 	struct proc *p;
507 	register struct getitimer_args *uap;
508 {
509 	struct timeval ctv;
510 	struct itimerval aitv;
511 	int s;
512 	int error;
513 
514 	if (uap->which > ITIMER_PROF)
515 		return (EINVAL);
516 
517 	mtx_lock(&Giant);
518 
519 	s = splclock(); /* XXX still needed ? */
520 	if (uap->which == ITIMER_REAL) {
521 		/*
522 		 * Convert from absolute to relative time in .it_value
523 		 * part of real time timer.  If time for real time timer
524 		 * has passed return 0, else return difference between
525 		 * current time and time for the timer to go off.
526 		 */
527 		aitv = p->p_realtimer;
528 		if (timevalisset(&aitv.it_value)) {
529 			getmicrouptime(&ctv);
530 			if (timevalcmp(&aitv.it_value, &ctv, <))
531 				timevalclear(&aitv.it_value);
532 			else
533 				timevalsub(&aitv.it_value, &ctv);
534 		}
535 	} else {
536 		aitv = p->p_stats->p_timer[uap->which];
537 	}
538 	splx(s);
539 	error = copyout((caddr_t)&aitv, (caddr_t)uap->itv,
540 	    sizeof (struct itimerval));
541 	mtx_unlock(&Giant);
542 	return(error);
543 }
544 
545 #ifndef _SYS_SYSPROTO_H_
546 struct setitimer_args {
547 	u_int	which;
548 	struct	itimerval *itv, *oitv;
549 };
550 #endif
551 /*
552  * MPSAFE
553  */
554 /* ARGSUSED */
555 int
556 setitimer(p, uap)
557 	struct proc *p;
558 	register struct setitimer_args *uap;
559 {
560 	struct itimerval aitv;
561 	struct timeval ctv;
562 	register struct itimerval *itvp;
563 	int s, error = 0;
564 
565 	if (uap->which > ITIMER_PROF)
566 		return (EINVAL);
567 	itvp = uap->itv;
568 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
569 	    sizeof(struct itimerval))))
570 		return (error);
571 
572 	mtx_lock(&Giant);
573 
574 	if ((uap->itv = uap->oitv) &&
575 	    (error = getitimer(p, (struct getitimer_args *)uap))) {
576 		goto done2;
577 	}
578 	if (itvp == 0) {
579 		error = 0;
580 		goto done2;
581 	}
582 	if (itimerfix(&aitv.it_value)) {
583 		error = EINVAL;
584 		goto done2;
585 	}
586 	if (!timevalisset(&aitv.it_value)) {
587 		timevalclear(&aitv.it_interval);
588 	} else if (itimerfix(&aitv.it_interval)) {
589 		error = EINVAL;
590 		goto done2;
591 	}
592 	s = splclock(); /* XXX: still needed ? */
593 	if (uap->which == ITIMER_REAL) {
594 		if (timevalisset(&p->p_realtimer.it_value))
595 			callout_stop(&p->p_itcallout);
596 		if (timevalisset(&aitv.it_value))
597 			callout_reset(&p->p_itcallout, tvtohz(&aitv.it_value),
598 			    realitexpire, p);
599 		getmicrouptime(&ctv);
600 		timevaladd(&aitv.it_value, &ctv);
601 		p->p_realtimer = aitv;
602 	} else {
603 		p->p_stats->p_timer[uap->which] = aitv;
604 	}
605 	splx(s);
606 done2:
607 	mtx_unlock(&Giant);
608 	return (error);
609 }
610 
611 /*
612  * Real interval timer expired:
613  * send process whose timer expired an alarm signal.
614  * If time is not set up to reload, then just return.
615  * Else compute next time timer should go off which is > current time.
616  * This is where delay in processing this timeout causes multiple
617  * SIGALRM calls to be compressed into one.
618  * tvtohz() always adds 1 to allow for the time until the next clock
619  * interrupt being strictly less than 1 clock tick, but we don't want
620  * that here since we want to appear to be in sync with the clock
621  * interrupt even when we're delayed.
622  */
623 void
624 realitexpire(arg)
625 	void *arg;
626 {
627 	register struct proc *p;
628 	struct timeval ctv, ntv;
629 	int s;
630 
631 	p = (struct proc *)arg;
632 	PROC_LOCK(p);
633 	psignal(p, SIGALRM);
634 	if (!timevalisset(&p->p_realtimer.it_interval)) {
635 		timevalclear(&p->p_realtimer.it_value);
636 		PROC_UNLOCK(p);
637 		return;
638 	}
639 	for (;;) {
640 		s = splclock(); /* XXX: still neeeded ? */
641 		timevaladd(&p->p_realtimer.it_value,
642 		    &p->p_realtimer.it_interval);
643 		getmicrouptime(&ctv);
644 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
645 			ntv = p->p_realtimer.it_value;
646 			timevalsub(&ntv, &ctv);
647 			callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
648 			    realitexpire, p);
649 			splx(s);
650 			PROC_UNLOCK(p);
651 			return;
652 		}
653 		splx(s);
654 	}
655 	/*NOTREACHED*/
656 }
657 
658 /*
659  * Check that a proposed value to load into the .it_value or
660  * .it_interval part of an interval timer is acceptable, and
661  * fix it to have at least minimal value (i.e. if it is less
662  * than the resolution of the clock, round it up.)
663  */
664 int
665 itimerfix(tv)
666 	struct timeval *tv;
667 {
668 
669 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
670 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
671 		return (EINVAL);
672 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
673 		tv->tv_usec = tick;
674 	return (0);
675 }
676 
677 /*
678  * Decrement an interval timer by a specified number
679  * of microseconds, which must be less than a second,
680  * i.e. < 1000000.  If the timer expires, then reload
681  * it.  In this case, carry over (usec - old value) to
682  * reduce the value reloaded into the timer so that
683  * the timer does not drift.  This routine assumes
684  * that it is called in a context where the timers
685  * on which it is operating cannot change in value.
686  */
687 int
688 itimerdecr(itp, usec)
689 	register struct itimerval *itp;
690 	int usec;
691 {
692 
693 	if (itp->it_value.tv_usec < usec) {
694 		if (itp->it_value.tv_sec == 0) {
695 			/* expired, and already in next interval */
696 			usec -= itp->it_value.tv_usec;
697 			goto expire;
698 		}
699 		itp->it_value.tv_usec += 1000000;
700 		itp->it_value.tv_sec--;
701 	}
702 	itp->it_value.tv_usec -= usec;
703 	usec = 0;
704 	if (timevalisset(&itp->it_value))
705 		return (1);
706 	/* expired, exactly at end of interval */
707 expire:
708 	if (timevalisset(&itp->it_interval)) {
709 		itp->it_value = itp->it_interval;
710 		itp->it_value.tv_usec -= usec;
711 		if (itp->it_value.tv_usec < 0) {
712 			itp->it_value.tv_usec += 1000000;
713 			itp->it_value.tv_sec--;
714 		}
715 	} else
716 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
717 	return (0);
718 }
719 
720 /*
721  * Add and subtract routines for timevals.
722  * N.B.: subtract routine doesn't deal with
723  * results which are before the beginning,
724  * it just gets very confused in this case.
725  * Caveat emptor.
726  */
727 void
728 timevaladd(t1, t2)
729 	struct timeval *t1, *t2;
730 {
731 
732 	t1->tv_sec += t2->tv_sec;
733 	t1->tv_usec += t2->tv_usec;
734 	timevalfix(t1);
735 }
736 
737 void
738 timevalsub(t1, t2)
739 	struct timeval *t1, *t2;
740 {
741 
742 	t1->tv_sec -= t2->tv_sec;
743 	t1->tv_usec -= t2->tv_usec;
744 	timevalfix(t1);
745 }
746 
747 static void
748 timevalfix(t1)
749 	struct timeval *t1;
750 {
751 
752 	if (t1->tv_usec < 0) {
753 		t1->tv_sec--;
754 		t1->tv_usec += 1000000;
755 	}
756 	if (t1->tv_usec >= 1000000) {
757 		t1->tv_sec++;
758 		t1->tv_usec -= 1000000;
759 	}
760 }
761