xref: /freebsd/sys/kern/kern_time.c (revision 0640d357f29fb1c0daaaffadd0416c5981413afd)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
34  * $Id: kern_time.c,v 1.58 1998/06/09 13:10:53 phk Exp $
35  */
36 
37 #include <sys/param.h>
38 #include <sys/sysproto.h>
39 #include <sys/resourcevar.h>
40 #include <sys/signalvar.h>
41 #include <sys/kernel.h>
42 #include <sys/systm.h>
43 #include <sys/sysent.h>
44 #include <sys/proc.h>
45 #include <sys/time.h>
46 #include <sys/vnode.h>
47 #include <vm/vm.h>
48 #include <vm/vm_extern.h>
49 
50 struct timezone tz;
51 
52 /*
53  * Time of day and interval timer support.
54  *
55  * These routines provide the kernel entry points to get and set
56  * the time-of-day and per-process interval timers.  Subroutines
57  * here provide support for adding and subtracting timeval structures
58  * and decrementing interval timers, optionally reloading the interval
59  * timers when they expire.
60  */
61 
62 static int	nanosleep1 __P((struct proc *p, struct timespec *rqt,
63 		    struct timespec *rmt));
64 static int	settime __P((struct timeval *));
65 static void	timevalfix __P((struct timeval *));
66 static void	no_lease_updatetime __P((int));
67 
68 static void
69 no_lease_updatetime(deltat)
70 	int deltat;
71 {
72 }
73 
74 void (*lease_updatetime) __P((int))  = no_lease_updatetime;
75 
76 static int
77 settime(tv)
78 	struct timeval *tv;
79 {
80 	struct timeval delta, tv1;
81 	struct timespec ts;
82 	int s;
83 
84 	s = splclock();
85 	microtime(&tv1);
86 	delta = *tv;
87 	timevalsub(&delta, &tv1);
88 
89 	/*
90 	 * If the system is secure, we do not allow the time to be
91 	 * set to an earlier value (it may be slowed using adjtime,
92 	 * but not set back). This feature prevent interlopers from
93 	 * setting arbitrary time stamps on files.
94 	 */
95 	if (delta.tv_sec < 0 && securelevel > 1) {
96 		splx(s);
97 		return (EPERM);
98 	}
99 
100 	ts.tv_sec = tv->tv_sec;
101 	ts.tv_nsec = tv->tv_usec * 1000;
102 	set_timecounter(&ts);
103 	(void) splsoftclock();
104 	lease_updatetime(delta.tv_sec);
105 	splx(s);
106 	resettodr();
107 	return (0);
108 }
109 
110 #ifndef _SYS_SYSPROTO_H_
111 struct clock_gettime_args {
112 	clockid_t clock_id;
113 	struct	timespec *tp;
114 };
115 #endif
116 
117 /* ARGSUSED */
118 int
119 clock_gettime(p, uap)
120 	struct proc *p;
121 	struct clock_gettime_args *uap;
122 {
123 	struct timespec ats;
124 
125 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
126 		return (EINVAL);
127 	nanotime(&ats);
128 	return (copyout(&ats, SCARG(uap, tp), sizeof(ats)));
129 }
130 
131 #ifndef _SYS_SYSPROTO_H_
132 struct clock_settime_args {
133 	clockid_t clock_id;
134 	const struct	timespec *tp;
135 };
136 #endif
137 
138 /* ARGSUSED */
139 int
140 clock_settime(p, uap)
141 	struct proc *p;
142 	struct clock_settime_args *uap;
143 {
144 	struct timeval atv;
145 	struct timespec ats;
146 	int error;
147 
148 	if ((error = suser(p->p_ucred, &p->p_acflag)) != 0)
149 		return (error);
150 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
151 		return (EINVAL);
152 	if ((error = copyin(SCARG(uap, tp), &ats, sizeof(ats))) != 0)
153 		return (error);
154 	if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
155 		return (EINVAL);
156 	/* XXX Don't convert nsec->usec and back */
157 	TIMESPEC_TO_TIMEVAL(&atv, &ats);
158 	if ((error = settime(&atv)))
159 		return (error);
160 	return (0);
161 }
162 
163 #ifndef _SYS_SYSPROTO_H_
164 struct clock_getres_args {
165 	clockid_t clock_id;
166 	struct	timespec *tp;
167 };
168 #endif
169 
170 int
171 clock_getres(p, uap)
172 	struct proc *p;
173 	struct clock_getres_args *uap;
174 {
175 	struct timespec ts;
176 	int error;
177 
178 	if (SCARG(uap, clock_id) != CLOCK_REALTIME)
179 		return (EINVAL);
180 	error = 0;
181 	if (SCARG(uap, tp)) {
182 		ts.tv_sec = 0;
183 		ts.tv_nsec = 1000000000 / timecounter->tc_frequency;
184 		error = copyout(&ts, SCARG(uap, tp), sizeof(ts));
185 	}
186 	return (error);
187 }
188 
189 static int nanowait;
190 
191 static int
192 nanosleep1(p, rqt, rmt)
193 	struct proc *p;
194 	struct timespec *rqt, *rmt;
195 {
196 	struct timespec ts, ts2, ts3;
197 	struct timeval tv;
198 	int error;
199 
200 	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
201 		return (EINVAL);
202 	if (rqt->tv_sec < 0 || rqt->tv_sec == 0 && rqt->tv_nsec == 0)
203 		return (0);
204 	getnanouptime(&ts);
205 	timespecadd(&ts, rqt);
206 	TIMESPEC_TO_TIMEVAL(&tv, rqt);
207 	for (;;) {
208 		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
209 		    tvtohz(&tv));
210 		getnanouptime(&ts2);
211 		if (error != EWOULDBLOCK) {
212 			if (error == ERESTART)
213 				error = EINTR;
214 			if (rmt != NULL) {
215 				timespecsub(&ts, &ts2);
216 				if (ts.tv_sec < 0)
217 					timespecclear(&ts);
218 				*rmt = ts;
219 			}
220 			return (error);
221 		}
222 		if (timespeccmp(&ts2, &ts, >=))
223 			return (0);
224 		ts3 = ts;
225 		timespecsub(&ts3, &ts2);
226 		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
227 	}
228 }
229 
230 #ifndef _SYS_SYSPROTO_H_
231 struct nanosleep_args {
232 	struct	timespec *rqtp;
233 	struct	timespec *rmtp;
234 };
235 #endif
236 
237 /* ARGSUSED */
238 int
239 nanosleep(p, uap)
240 	struct proc *p;
241 	struct nanosleep_args *uap;
242 {
243 	struct timespec rmt, rqt;
244 	int error, error2;
245 
246 	error = copyin(SCARG(uap, rqtp), &rqt, sizeof(rqt));
247 	if (error)
248 		return (error);
249 	if (SCARG(uap, rmtp))
250 		if (!useracc((caddr_t)SCARG(uap, rmtp), sizeof(rmt), B_WRITE))
251 			return (EFAULT);
252 	error = nanosleep1(p, &rqt, &rmt);
253 	if (error && SCARG(uap, rmtp)) {
254 		error2 = copyout(&rmt, SCARG(uap, rmtp), sizeof(rmt));
255 		if (error2)	/* XXX shouldn't happen, did useracc() above */
256 			return (error2);
257 	}
258 	return (error);
259 }
260 
261 #ifndef _SYS_SYSPROTO_H_
262 struct gettimeofday_args {
263 	struct	timeval *tp;
264 	struct	timezone *tzp;
265 };
266 #endif
267 /* ARGSUSED */
268 int
269 gettimeofday(p, uap)
270 	struct proc *p;
271 	register struct gettimeofday_args *uap;
272 {
273 	struct timeval atv;
274 	int error = 0;
275 
276 	if (uap->tp) {
277 		microtime(&atv);
278 		if ((error = copyout((caddr_t)&atv, (caddr_t)uap->tp,
279 		    sizeof (atv))))
280 			return (error);
281 	}
282 	if (uap->tzp)
283 		error = copyout((caddr_t)&tz, (caddr_t)uap->tzp,
284 		    sizeof (tz));
285 	return (error);
286 }
287 
288 #ifndef _SYS_SYSPROTO_H_
289 struct settimeofday_args {
290 	struct	timeval *tv;
291 	struct	timezone *tzp;
292 };
293 #endif
294 /* ARGSUSED */
295 int
296 settimeofday(p, uap)
297 	struct proc *p;
298 	struct settimeofday_args *uap;
299 {
300 	struct timeval atv;
301 	struct timezone atz;
302 	int error;
303 
304 	if ((error = suser(p->p_ucred, &p->p_acflag)))
305 		return (error);
306 	/* Verify all parameters before changing time. */
307 	if (uap->tv) {
308 		if ((error = copyin((caddr_t)uap->tv, (caddr_t)&atv,
309 		    sizeof(atv))))
310 			return (error);
311 		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
312 			return (EINVAL);
313 	}
314 	if (uap->tzp &&
315 	    (error = copyin((caddr_t)uap->tzp, (caddr_t)&atz, sizeof(atz))))
316 		return (error);
317 	if (uap->tv && (error = settime(&atv)))
318 		return (error);
319 	if (uap->tzp)
320 		tz = atz;
321 	return (0);
322 }
323 
324 int	tickdelta;			/* current clock skew, us. per tick */
325 long	timedelta;			/* unapplied time correction, us. */
326 static long	bigadj = 1000000;	/* use 10x skew above bigadj us. */
327 
328 #ifndef _SYS_SYSPROTO_H_
329 struct adjtime_args {
330 	struct timeval *delta;
331 	struct timeval *olddelta;
332 };
333 #endif
334 /* ARGSUSED */
335 int
336 adjtime(p, uap)
337 	struct proc *p;
338 	register struct adjtime_args *uap;
339 {
340 	struct timeval atv;
341 	register long ndelta, ntickdelta, odelta;
342 	int s, error;
343 
344 	if ((error = suser(p->p_ucred, &p->p_acflag)))
345 		return (error);
346 	if ((error =
347 	    copyin((caddr_t)uap->delta, (caddr_t)&atv, sizeof(struct timeval))))
348 		return (error);
349 
350 	/*
351 	 * Compute the total correction and the rate at which to apply it.
352 	 * Round the adjustment down to a whole multiple of the per-tick
353 	 * delta, so that after some number of incremental changes in
354 	 * hardclock(), tickdelta will become zero, lest the correction
355 	 * overshoot and start taking us away from the desired final time.
356 	 */
357 	ndelta = atv.tv_sec * 1000000 + atv.tv_usec;
358 	if (ndelta > bigadj || ndelta < -bigadj)
359 		ntickdelta = 10 * tickadj;
360 	else
361 		ntickdelta = tickadj;
362 	if (ndelta % ntickdelta)
363 		ndelta = ndelta / ntickdelta * ntickdelta;
364 
365 	/*
366 	 * To make hardclock()'s job easier, make the per-tick delta negative
367 	 * if we want time to run slower; then hardclock can simply compute
368 	 * tick + tickdelta, and subtract tickdelta from timedelta.
369 	 */
370 	if (ndelta < 0)
371 		ntickdelta = -ntickdelta;
372 	s = splclock();
373 	odelta = timedelta;
374 	timedelta = ndelta;
375 	tickdelta = ntickdelta;
376 	splx(s);
377 
378 	if (uap->olddelta) {
379 		atv.tv_sec = odelta / 1000000;
380 		atv.tv_usec = odelta % 1000000;
381 		(void) copyout((caddr_t)&atv, (caddr_t)uap->olddelta,
382 		    sizeof(struct timeval));
383 	}
384 	return (0);
385 }
386 
387 /*
388  * Get value of an interval timer.  The process virtual and
389  * profiling virtual time timers are kept in the p_stats area, since
390  * they can be swapped out.  These are kept internally in the
391  * way they are specified externally: in time until they expire.
392  *
393  * The real time interval timer is kept in the process table slot
394  * for the process, and its value (it_value) is kept as an
395  * absolute time rather than as a delta, so that it is easy to keep
396  * periodic real-time signals from drifting.
397  *
398  * Virtual time timers are processed in the hardclock() routine of
399  * kern_clock.c.  The real time timer is processed by a timeout
400  * routine, called from the softclock() routine.  Since a callout
401  * may be delayed in real time due to interrupt processing in the system,
402  * it is possible for the real time timeout routine (realitexpire, given below),
403  * to be delayed in real time past when it is supposed to occur.  It
404  * does not suffice, therefore, to reload the real timer .it_value from the
405  * real time timers .it_interval.  Rather, we compute the next time in
406  * absolute time the timer should go off.
407  */
408 #ifndef _SYS_SYSPROTO_H_
409 struct getitimer_args {
410 	u_int	which;
411 	struct	itimerval *itv;
412 };
413 #endif
414 /* ARGSUSED */
415 int
416 getitimer(p, uap)
417 	struct proc *p;
418 	register struct getitimer_args *uap;
419 {
420 	struct timeval ctv;
421 	struct itimerval aitv;
422 	int s;
423 
424 	if (uap->which > ITIMER_PROF)
425 		return (EINVAL);
426 	s = splclock(); /* XXX still needed ? */
427 	if (uap->which == ITIMER_REAL) {
428 		/*
429 		 * Convert from absolute to relative time in .it_value
430 		 * part of real time timer.  If time for real time timer
431 		 * has passed return 0, else return difference between
432 		 * current time and time for the timer to go off.
433 		 */
434 		aitv = p->p_realtimer;
435 		if (timevalisset(&aitv.it_value)) {
436 			getmicrouptime(&ctv);
437 			if (timevalcmp(&aitv.it_value, &ctv, <))
438 				timevalclear(&aitv.it_value);
439 			else
440 				timevalsub(&aitv.it_value, &ctv);
441 		}
442 	} else
443 		aitv = p->p_stats->p_timer[uap->which];
444 	splx(s);
445 	return (copyout((caddr_t)&aitv, (caddr_t)uap->itv,
446 	    sizeof (struct itimerval)));
447 }
448 
449 #ifndef _SYS_SYSPROTO_H_
450 struct setitimer_args {
451 	u_int	which;
452 	struct	itimerval *itv, *oitv;
453 };
454 #endif
455 /* ARGSUSED */
456 int
457 setitimer(p, uap)
458 	struct proc *p;
459 	register struct setitimer_args *uap;
460 {
461 	struct itimerval aitv;
462 	struct timeval ctv;
463 	register struct itimerval *itvp;
464 	int s, error;
465 
466 	if (uap->which > ITIMER_PROF)
467 		return (EINVAL);
468 	itvp = uap->itv;
469 	if (itvp && (error = copyin((caddr_t)itvp, (caddr_t)&aitv,
470 	    sizeof(struct itimerval))))
471 		return (error);
472 	if ((uap->itv = uap->oitv) &&
473 	    (error = getitimer(p, (struct getitimer_args *)uap)))
474 		return (error);
475 	if (itvp == 0)
476 		return (0);
477 	if (itimerfix(&aitv.it_value))
478 		return (EINVAL);
479 	if (!timevalisset(&aitv.it_value))
480 		timevalclear(&aitv.it_interval);
481 	else if (itimerfix(&aitv.it_interval))
482 		return (EINVAL);
483 	s = splclock(); /* XXX: still needed ? */
484 	if (uap->which == ITIMER_REAL) {
485 		if (timevalisset(&p->p_realtimer.it_value))
486 			untimeout(realitexpire, (caddr_t)p, p->p_ithandle);
487 		if (timevalisset(&aitv.it_value))
488 			p->p_ithandle = timeout(realitexpire, (caddr_t)p,
489 						tvtohz(&aitv.it_value));
490 		getmicrouptime(&ctv);
491 		timevaladd(&aitv.it_value, &ctv);
492 		p->p_realtimer = aitv;
493 	} else
494 		p->p_stats->p_timer[uap->which] = aitv;
495 	splx(s);
496 	return (0);
497 }
498 
499 /*
500  * Real interval timer expired:
501  * send process whose timer expired an alarm signal.
502  * If time is not set up to reload, then just return.
503  * Else compute next time timer should go off which is > current time.
504  * This is where delay in processing this timeout causes multiple
505  * SIGALRM calls to be compressed into one.
506  * tvtohz() always adds 1 to allow for the time until the next clock
507  * interrupt being strictly less than 1 clock tick, but we don't want
508  * that here since we want to appear to be in sync with the clock
509  * interrupt even when we're delayed.
510  */
511 void
512 realitexpire(arg)
513 	void *arg;
514 {
515 	register struct proc *p;
516 	struct timeval ctv, ntv;
517 	int s;
518 
519 	p = (struct proc *)arg;
520 	psignal(p, SIGALRM);
521 	if (!timevalisset(&p->p_realtimer.it_interval)) {
522 		timevalclear(&p->p_realtimer.it_value);
523 		return;
524 	}
525 	for (;;) {
526 		s = splclock(); /* XXX: still neeeded ? */
527 		timevaladd(&p->p_realtimer.it_value,
528 		    &p->p_realtimer.it_interval);
529 		getmicrouptime(&ctv);
530 		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
531 			ntv = p->p_realtimer.it_value;
532 			timevalsub(&ntv, &ctv);
533 			p->p_ithandle = timeout(realitexpire, (caddr_t)p,
534 			    tvtohz(&ntv) - 1);
535 			splx(s);
536 			return;
537 		}
538 		splx(s);
539 	}
540 }
541 
542 /*
543  * Check that a proposed value to load into the .it_value or
544  * .it_interval part of an interval timer is acceptable, and
545  * fix it to have at least minimal value (i.e. if it is less
546  * than the resolution of the clock, round it up.)
547  */
548 int
549 itimerfix(tv)
550 	struct timeval *tv;
551 {
552 
553 	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
554 	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
555 		return (EINVAL);
556 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
557 		tv->tv_usec = tick;
558 	return (0);
559 }
560 
561 /*
562  * Decrement an interval timer by a specified number
563  * of microseconds, which must be less than a second,
564  * i.e. < 1000000.  If the timer expires, then reload
565  * it.  In this case, carry over (usec - old value) to
566  * reduce the value reloaded into the timer so that
567  * the timer does not drift.  This routine assumes
568  * that it is called in a context where the timers
569  * on which it is operating cannot change in value.
570  */
571 int
572 itimerdecr(itp, usec)
573 	register struct itimerval *itp;
574 	int usec;
575 {
576 
577 	if (itp->it_value.tv_usec < usec) {
578 		if (itp->it_value.tv_sec == 0) {
579 			/* expired, and already in next interval */
580 			usec -= itp->it_value.tv_usec;
581 			goto expire;
582 		}
583 		itp->it_value.tv_usec += 1000000;
584 		itp->it_value.tv_sec--;
585 	}
586 	itp->it_value.tv_usec -= usec;
587 	usec = 0;
588 	if (timevalisset(&itp->it_value))
589 		return (1);
590 	/* expired, exactly at end of interval */
591 expire:
592 	if (timevalisset(&itp->it_interval)) {
593 		itp->it_value = itp->it_interval;
594 		itp->it_value.tv_usec -= usec;
595 		if (itp->it_value.tv_usec < 0) {
596 			itp->it_value.tv_usec += 1000000;
597 			itp->it_value.tv_sec--;
598 		}
599 	} else
600 		itp->it_value.tv_usec = 0;		/* sec is already 0 */
601 	return (0);
602 }
603 
604 /*
605  * Add and subtract routines for timevals.
606  * N.B.: subtract routine doesn't deal with
607  * results which are before the beginning,
608  * it just gets very confused in this case.
609  * Caveat emptor.
610  */
611 void
612 timevaladd(t1, t2)
613 	struct timeval *t1, *t2;
614 {
615 
616 	t1->tv_sec += t2->tv_sec;
617 	t1->tv_usec += t2->tv_usec;
618 	timevalfix(t1);
619 }
620 
621 void
622 timevalsub(t1, t2)
623 	struct timeval *t1, *t2;
624 {
625 
626 	t1->tv_sec -= t2->tv_sec;
627 	t1->tv_usec -= t2->tv_usec;
628 	timevalfix(t1);
629 }
630 
631 static void
632 timevalfix(t1)
633 	struct timeval *t1;
634 {
635 
636 	if (t1->tv_usec < 0) {
637 		t1->tv_sec--;
638 		t1->tv_usec += 1000000;
639 	}
640 	if (t1->tv_usec >= 1000000) {
641 		t1->tv_sec++;
642 		t1->tv_usec -= 1000000;
643 	}
644 }
645