xref: /freebsd/sys/kern/kern_thread.c (revision f2b7bf8afcfd630e0fbd8417f1ce974de79feaf0)
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28 
29 #include "opt_witness.h"
30 #include "opt_hwpmc_hooks.h"
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/rangelock.h>
42 #include <sys/resourcevar.h>
43 #include <sys/sdt.h>
44 #include <sys/smp.h>
45 #include <sys/sched.h>
46 #include <sys/sleepqueue.h>
47 #include <sys/selinfo.h>
48 #include <sys/syscallsubr.h>
49 #include <sys/sysent.h>
50 #include <sys/turnstile.h>
51 #include <sys/ktr.h>
52 #include <sys/rwlock.h>
53 #include <sys/umtx.h>
54 #include <sys/vmmeter.h>
55 #include <sys/cpuset.h>
56 #ifdef	HWPMC_HOOKS
57 #include <sys/pmckern.h>
58 #endif
59 
60 #include <security/audit/audit.h>
61 
62 #include <vm/vm.h>
63 #include <vm/vm_extern.h>
64 #include <vm/uma.h>
65 #include <vm/vm_domain.h>
66 #include <sys/eventhandler.h>
67 
68 /*
69  * Asserts below verify the stability of struct thread and struct proc
70  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
71  * to drift, change to the structures must be accompanied by the
72  * assert update.
73  *
74  * On the stable branches after KBI freeze, conditions must not be
75  * violated.  Typically new fields are moved to the end of the
76  * structures.
77  */
78 #ifdef __amd64__
79 _Static_assert(offsetof(struct thread, td_flags) == 0xf4,
80     "struct thread KBI td_flags");
81 _Static_assert(offsetof(struct thread, td_pflags) == 0xfc,
82     "struct thread KBI td_pflags");
83 _Static_assert(offsetof(struct thread, td_frame) == 0x410,
84     "struct thread KBI td_frame");
85 _Static_assert(offsetof(struct thread, td_emuldata) == 0x4b8,
86     "struct thread KBI td_emuldata");
87 _Static_assert(offsetof(struct proc, p_flag) == 0xb0,
88     "struct proc KBI p_flag");
89 _Static_assert(offsetof(struct proc, p_pid) == 0xbc,
90     "struct proc KBI p_pid");
91 _Static_assert(offsetof(struct proc, p_filemon) == 0x3d0,
92     "struct proc KBI p_filemon");
93 _Static_assert(offsetof(struct proc, p_comm) == 0x3e0,
94     "struct proc KBI p_comm");
95 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4b8,
96     "struct proc KBI p_emuldata");
97 #endif
98 #ifdef __i386__
99 _Static_assert(offsetof(struct thread, td_flags) == 0x9c,
100     "struct thread KBI td_flags");
101 _Static_assert(offsetof(struct thread, td_pflags) == 0xa4,
102     "struct thread KBI td_pflags");
103 _Static_assert(offsetof(struct thread, td_frame) == 0x2c8,
104     "struct thread KBI td_frame");
105 _Static_assert(offsetof(struct thread, td_emuldata) == 0x314,
106     "struct thread KBI td_emuldata");
107 _Static_assert(offsetof(struct proc, p_flag) == 0x68,
108     "struct proc KBI p_flag");
109 _Static_assert(offsetof(struct proc, p_pid) == 0x74,
110     "struct proc KBI p_pid");
111 _Static_assert(offsetof(struct proc, p_filemon) == 0x27c,
112     "struct proc KBI p_filemon");
113 _Static_assert(offsetof(struct proc, p_comm) == 0x288,
114     "struct proc KBI p_comm");
115 _Static_assert(offsetof(struct proc, p_emuldata) == 0x314,
116     "struct proc KBI p_emuldata");
117 #endif
118 
119 SDT_PROVIDER_DECLARE(proc);
120 SDT_PROBE_DEFINE(proc, , , lwp__exit);
121 
122 /*
123  * thread related storage.
124  */
125 static uma_zone_t thread_zone;
126 
127 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
128 static struct mtx zombie_lock;
129 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
130 
131 static void thread_zombie(struct thread *);
132 static int thread_unsuspend_one(struct thread *td, struct proc *p,
133     bool boundary);
134 
135 #define TID_BUFFER_SIZE	1024
136 
137 struct mtx tid_lock;
138 static struct unrhdr *tid_unrhdr;
139 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
140 static int tid_head, tid_tail;
141 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
142 
143 struct	tidhashhead *tidhashtbl;
144 u_long	tidhash;
145 struct	rwlock tidhash_lock;
146 
147 static lwpid_t
148 tid_alloc(void)
149 {
150 	lwpid_t	tid;
151 
152 	tid = alloc_unr(tid_unrhdr);
153 	if (tid != -1)
154 		return (tid);
155 	mtx_lock(&tid_lock);
156 	if (tid_head == tid_tail) {
157 		mtx_unlock(&tid_lock);
158 		return (-1);
159 	}
160 	tid = tid_buffer[tid_head];
161 	tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
162 	mtx_unlock(&tid_lock);
163 	return (tid);
164 }
165 
166 static void
167 tid_free(lwpid_t tid)
168 {
169 	lwpid_t tmp_tid = -1;
170 
171 	mtx_lock(&tid_lock);
172 	if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
173 		tmp_tid = tid_buffer[tid_head];
174 		tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
175 	}
176 	tid_buffer[tid_tail] = tid;
177 	tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
178 	mtx_unlock(&tid_lock);
179 	if (tmp_tid != -1)
180 		free_unr(tid_unrhdr, tmp_tid);
181 }
182 
183 /*
184  * Prepare a thread for use.
185  */
186 static int
187 thread_ctor(void *mem, int size, void *arg, int flags)
188 {
189 	struct thread	*td;
190 
191 	td = (struct thread *)mem;
192 	td->td_state = TDS_INACTIVE;
193 	td->td_oncpu = NOCPU;
194 
195 	td->td_tid = tid_alloc();
196 
197 	/*
198 	 * Note that td_critnest begins life as 1 because the thread is not
199 	 * running and is thereby implicitly waiting to be on the receiving
200 	 * end of a context switch.
201 	 */
202 	td->td_critnest = 1;
203 	td->td_lend_user_pri = PRI_MAX;
204 	EVENTHANDLER_INVOKE(thread_ctor, td);
205 #ifdef AUDIT
206 	audit_thread_alloc(td);
207 #endif
208 	umtx_thread_alloc(td);
209 	return (0);
210 }
211 
212 /*
213  * Reclaim a thread after use.
214  */
215 static void
216 thread_dtor(void *mem, int size, void *arg)
217 {
218 	struct thread *td;
219 
220 	td = (struct thread *)mem;
221 
222 #ifdef INVARIANTS
223 	/* Verify that this thread is in a safe state to free. */
224 	switch (td->td_state) {
225 	case TDS_INHIBITED:
226 	case TDS_RUNNING:
227 	case TDS_CAN_RUN:
228 	case TDS_RUNQ:
229 		/*
230 		 * We must never unlink a thread that is in one of
231 		 * these states, because it is currently active.
232 		 */
233 		panic("bad state for thread unlinking");
234 		/* NOTREACHED */
235 	case TDS_INACTIVE:
236 		break;
237 	default:
238 		panic("bad thread state");
239 		/* NOTREACHED */
240 	}
241 #endif
242 #ifdef AUDIT
243 	audit_thread_free(td);
244 #endif
245 	/* Free all OSD associated to this thread. */
246 	osd_thread_exit(td);
247 	td_softdep_cleanup(td);
248 	MPASS(td->td_su == NULL);
249 
250 	EVENTHANDLER_INVOKE(thread_dtor, td);
251 	tid_free(td->td_tid);
252 }
253 
254 /*
255  * Initialize type-stable parts of a thread (when newly created).
256  */
257 static int
258 thread_init(void *mem, int size, int flags)
259 {
260 	struct thread *td;
261 
262 	td = (struct thread *)mem;
263 
264 	td->td_sleepqueue = sleepq_alloc();
265 	td->td_turnstile = turnstile_alloc();
266 	td->td_rlqe = NULL;
267 	EVENTHANDLER_INVOKE(thread_init, td);
268 	umtx_thread_init(td);
269 	td->td_kstack = 0;
270 	td->td_sel = NULL;
271 	return (0);
272 }
273 
274 /*
275  * Tear down type-stable parts of a thread (just before being discarded).
276  */
277 static void
278 thread_fini(void *mem, int size)
279 {
280 	struct thread *td;
281 
282 	td = (struct thread *)mem;
283 	EVENTHANDLER_INVOKE(thread_fini, td);
284 	rlqentry_free(td->td_rlqe);
285 	turnstile_free(td->td_turnstile);
286 	sleepq_free(td->td_sleepqueue);
287 	umtx_thread_fini(td);
288 	seltdfini(td);
289 }
290 
291 /*
292  * For a newly created process,
293  * link up all the structures and its initial threads etc.
294  * called from:
295  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
296  * proc_dtor() (should go away)
297  * proc_init()
298  */
299 void
300 proc_linkup0(struct proc *p, struct thread *td)
301 {
302 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
303 	proc_linkup(p, td);
304 }
305 
306 void
307 proc_linkup(struct proc *p, struct thread *td)
308 {
309 
310 	sigqueue_init(&p->p_sigqueue, p);
311 	p->p_ksi = ksiginfo_alloc(1);
312 	if (p->p_ksi != NULL) {
313 		/* XXX p_ksi may be null if ksiginfo zone is not ready */
314 		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
315 	}
316 	LIST_INIT(&p->p_mqnotifier);
317 	p->p_numthreads = 0;
318 	thread_link(td, p);
319 }
320 
321 /*
322  * Initialize global thread allocation resources.
323  */
324 void
325 threadinit(void)
326 {
327 
328 	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
329 
330 	/*
331 	 * pid_max cannot be greater than PID_MAX.
332 	 * leave one number for thread0.
333 	 */
334 	tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
335 
336 	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
337 	    thread_ctor, thread_dtor, thread_init, thread_fini,
338 	    32 - 1, UMA_ZONE_NOFREE);
339 	tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
340 	rw_init(&tidhash_lock, "tidhash");
341 }
342 
343 /*
344  * Place an unused thread on the zombie list.
345  * Use the slpq as that must be unused by now.
346  */
347 void
348 thread_zombie(struct thread *td)
349 {
350 	mtx_lock_spin(&zombie_lock);
351 	TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
352 	mtx_unlock_spin(&zombie_lock);
353 }
354 
355 /*
356  * Release a thread that has exited after cpu_throw().
357  */
358 void
359 thread_stash(struct thread *td)
360 {
361 	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
362 	thread_zombie(td);
363 }
364 
365 /*
366  * Reap zombie resources.
367  */
368 void
369 thread_reap(void)
370 {
371 	struct thread *td_first, *td_next;
372 
373 	/*
374 	 * Don't even bother to lock if none at this instant,
375 	 * we really don't care about the next instant.
376 	 */
377 	if (!TAILQ_EMPTY(&zombie_threads)) {
378 		mtx_lock_spin(&zombie_lock);
379 		td_first = TAILQ_FIRST(&zombie_threads);
380 		if (td_first)
381 			TAILQ_INIT(&zombie_threads);
382 		mtx_unlock_spin(&zombie_lock);
383 		while (td_first) {
384 			td_next = TAILQ_NEXT(td_first, td_slpq);
385 			thread_cow_free(td_first);
386 			thread_free(td_first);
387 			td_first = td_next;
388 		}
389 	}
390 }
391 
392 /*
393  * Allocate a thread.
394  */
395 struct thread *
396 thread_alloc(int pages)
397 {
398 	struct thread *td;
399 
400 	thread_reap(); /* check if any zombies to get */
401 
402 	td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
403 	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
404 	if (!vm_thread_new(td, pages)) {
405 		uma_zfree(thread_zone, td);
406 		return (NULL);
407 	}
408 	cpu_thread_alloc(td);
409 	vm_domain_policy_init(&td->td_vm_dom_policy);
410 	return (td);
411 }
412 
413 int
414 thread_alloc_stack(struct thread *td, int pages)
415 {
416 
417 	KASSERT(td->td_kstack == 0,
418 	    ("thread_alloc_stack called on a thread with kstack"));
419 	if (!vm_thread_new(td, pages))
420 		return (0);
421 	cpu_thread_alloc(td);
422 	return (1);
423 }
424 
425 /*
426  * Deallocate a thread.
427  */
428 void
429 thread_free(struct thread *td)
430 {
431 
432 	lock_profile_thread_exit(td);
433 	if (td->td_cpuset)
434 		cpuset_rel(td->td_cpuset);
435 	td->td_cpuset = NULL;
436 	cpu_thread_free(td);
437 	if (td->td_kstack != 0)
438 		vm_thread_dispose(td);
439 	vm_domain_policy_cleanup(&td->td_vm_dom_policy);
440 	callout_drain(&td->td_slpcallout);
441 	uma_zfree(thread_zone, td);
442 }
443 
444 void
445 thread_cow_get_proc(struct thread *newtd, struct proc *p)
446 {
447 
448 	PROC_LOCK_ASSERT(p, MA_OWNED);
449 	newtd->td_ucred = crhold(p->p_ucred);
450 	newtd->td_limit = lim_hold(p->p_limit);
451 	newtd->td_cowgen = p->p_cowgen;
452 }
453 
454 void
455 thread_cow_get(struct thread *newtd, struct thread *td)
456 {
457 
458 	newtd->td_ucred = crhold(td->td_ucred);
459 	newtd->td_limit = lim_hold(td->td_limit);
460 	newtd->td_cowgen = td->td_cowgen;
461 }
462 
463 void
464 thread_cow_free(struct thread *td)
465 {
466 
467 	if (td->td_ucred != NULL)
468 		crfree(td->td_ucred);
469 	if (td->td_limit != NULL)
470 		lim_free(td->td_limit);
471 }
472 
473 void
474 thread_cow_update(struct thread *td)
475 {
476 	struct proc *p;
477 	struct ucred *oldcred;
478 	struct plimit *oldlimit;
479 
480 	p = td->td_proc;
481 	oldcred = NULL;
482 	oldlimit = NULL;
483 	PROC_LOCK(p);
484 	if (td->td_ucred != p->p_ucred) {
485 		oldcred = td->td_ucred;
486 		td->td_ucred = crhold(p->p_ucred);
487 	}
488 	if (td->td_limit != p->p_limit) {
489 		oldlimit = td->td_limit;
490 		td->td_limit = lim_hold(p->p_limit);
491 	}
492 	td->td_cowgen = p->p_cowgen;
493 	PROC_UNLOCK(p);
494 	if (oldcred != NULL)
495 		crfree(oldcred);
496 	if (oldlimit != NULL)
497 		lim_free(oldlimit);
498 }
499 
500 /*
501  * Discard the current thread and exit from its context.
502  * Always called with scheduler locked.
503  *
504  * Because we can't free a thread while we're operating under its context,
505  * push the current thread into our CPU's deadthread holder. This means
506  * we needn't worry about someone else grabbing our context before we
507  * do a cpu_throw().
508  */
509 void
510 thread_exit(void)
511 {
512 	uint64_t runtime, new_switchtime;
513 	struct thread *td;
514 	struct thread *td2;
515 	struct proc *p;
516 	int wakeup_swapper;
517 
518 	td = curthread;
519 	p = td->td_proc;
520 
521 	PROC_SLOCK_ASSERT(p, MA_OWNED);
522 	mtx_assert(&Giant, MA_NOTOWNED);
523 
524 	PROC_LOCK_ASSERT(p, MA_OWNED);
525 	KASSERT(p != NULL, ("thread exiting without a process"));
526 	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
527 	    (long)p->p_pid, td->td_name);
528 	SDT_PROBE0(proc, , , lwp__exit);
529 	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
530 
531 #ifdef AUDIT
532 	AUDIT_SYSCALL_EXIT(0, td);
533 #endif
534 	/*
535 	 * drop FPU & debug register state storage, or any other
536 	 * architecture specific resources that
537 	 * would not be on a new untouched process.
538 	 */
539 	cpu_thread_exit(td);
540 
541 	/*
542 	 * The last thread is left attached to the process
543 	 * So that the whole bundle gets recycled. Skip
544 	 * all this stuff if we never had threads.
545 	 * EXIT clears all sign of other threads when
546 	 * it goes to single threading, so the last thread always
547 	 * takes the short path.
548 	 */
549 	if (p->p_flag & P_HADTHREADS) {
550 		if (p->p_numthreads > 1) {
551 			atomic_add_int(&td->td_proc->p_exitthreads, 1);
552 			thread_unlink(td);
553 			td2 = FIRST_THREAD_IN_PROC(p);
554 			sched_exit_thread(td2, td);
555 
556 			/*
557 			 * The test below is NOT true if we are the
558 			 * sole exiting thread. P_STOPPED_SINGLE is unset
559 			 * in exit1() after it is the only survivor.
560 			 */
561 			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
562 				if (p->p_numthreads == p->p_suspcount) {
563 					thread_lock(p->p_singlethread);
564 					wakeup_swapper = thread_unsuspend_one(
565 						p->p_singlethread, p, false);
566 					thread_unlock(p->p_singlethread);
567 					if (wakeup_swapper)
568 						kick_proc0();
569 				}
570 			}
571 
572 			PCPU_SET(deadthread, td);
573 		} else {
574 			/*
575 			 * The last thread is exiting.. but not through exit()
576 			 */
577 			panic ("thread_exit: Last thread exiting on its own");
578 		}
579 	}
580 #ifdef	HWPMC_HOOKS
581 	/*
582 	 * If this thread is part of a process that is being tracked by hwpmc(4),
583 	 * inform the module of the thread's impending exit.
584 	 */
585 	if (PMC_PROC_IS_USING_PMCS(td->td_proc))
586 		PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
587 #endif
588 	PROC_UNLOCK(p);
589 	PROC_STATLOCK(p);
590 	thread_lock(td);
591 	PROC_SUNLOCK(p);
592 
593 	/* Do the same timestamp bookkeeping that mi_switch() would do. */
594 	new_switchtime = cpu_ticks();
595 	runtime = new_switchtime - PCPU_GET(switchtime);
596 	td->td_runtime += runtime;
597 	td->td_incruntime += runtime;
598 	PCPU_SET(switchtime, new_switchtime);
599 	PCPU_SET(switchticks, ticks);
600 	VM_CNT_INC(v_swtch);
601 
602 	/* Save our resource usage in our process. */
603 	td->td_ru.ru_nvcsw++;
604 	ruxagg(p, td);
605 	rucollect(&p->p_ru, &td->td_ru);
606 	PROC_STATUNLOCK(p);
607 
608 	td->td_state = TDS_INACTIVE;
609 #ifdef WITNESS
610 	witness_thread_exit(td);
611 #endif
612 	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
613 	sched_throw(td);
614 	panic("I'm a teapot!");
615 	/* NOTREACHED */
616 }
617 
618 /*
619  * Do any thread specific cleanups that may be needed in wait()
620  * called with Giant, proc and schedlock not held.
621  */
622 void
623 thread_wait(struct proc *p)
624 {
625 	struct thread *td;
626 
627 	mtx_assert(&Giant, MA_NOTOWNED);
628 	KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
629 	KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
630 	td = FIRST_THREAD_IN_PROC(p);
631 	/* Lock the last thread so we spin until it exits cpu_throw(). */
632 	thread_lock(td);
633 	thread_unlock(td);
634 	lock_profile_thread_exit(td);
635 	cpuset_rel(td->td_cpuset);
636 	td->td_cpuset = NULL;
637 	cpu_thread_clean(td);
638 	thread_cow_free(td);
639 	callout_drain(&td->td_slpcallout);
640 	thread_reap();	/* check for zombie threads etc. */
641 }
642 
643 /*
644  * Link a thread to a process.
645  * set up anything that needs to be initialized for it to
646  * be used by the process.
647  */
648 void
649 thread_link(struct thread *td, struct proc *p)
650 {
651 
652 	/*
653 	 * XXX This can't be enabled because it's called for proc0 before
654 	 * its lock has been created.
655 	 * PROC_LOCK_ASSERT(p, MA_OWNED);
656 	 */
657 	td->td_state    = TDS_INACTIVE;
658 	td->td_proc     = p;
659 	td->td_flags    = TDF_INMEM;
660 
661 	LIST_INIT(&td->td_contested);
662 	LIST_INIT(&td->td_lprof[0]);
663 	LIST_INIT(&td->td_lprof[1]);
664 	sigqueue_init(&td->td_sigqueue, p);
665 	callout_init(&td->td_slpcallout, 1);
666 	TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
667 	p->p_numthreads++;
668 }
669 
670 /*
671  * Called from:
672  *  thread_exit()
673  */
674 void
675 thread_unlink(struct thread *td)
676 {
677 	struct proc *p = td->td_proc;
678 
679 	PROC_LOCK_ASSERT(p, MA_OWNED);
680 	TAILQ_REMOVE(&p->p_threads, td, td_plist);
681 	p->p_numthreads--;
682 	/* could clear a few other things here */
683 	/* Must  NOT clear links to proc! */
684 }
685 
686 static int
687 calc_remaining(struct proc *p, int mode)
688 {
689 	int remaining;
690 
691 	PROC_LOCK_ASSERT(p, MA_OWNED);
692 	PROC_SLOCK_ASSERT(p, MA_OWNED);
693 	if (mode == SINGLE_EXIT)
694 		remaining = p->p_numthreads;
695 	else if (mode == SINGLE_BOUNDARY)
696 		remaining = p->p_numthreads - p->p_boundary_count;
697 	else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
698 		remaining = p->p_numthreads - p->p_suspcount;
699 	else
700 		panic("calc_remaining: wrong mode %d", mode);
701 	return (remaining);
702 }
703 
704 static int
705 remain_for_mode(int mode)
706 {
707 
708 	return (mode == SINGLE_ALLPROC ? 0 : 1);
709 }
710 
711 static int
712 weed_inhib(int mode, struct thread *td2, struct proc *p)
713 {
714 	int wakeup_swapper;
715 
716 	PROC_LOCK_ASSERT(p, MA_OWNED);
717 	PROC_SLOCK_ASSERT(p, MA_OWNED);
718 	THREAD_LOCK_ASSERT(td2, MA_OWNED);
719 
720 	wakeup_swapper = 0;
721 	switch (mode) {
722 	case SINGLE_EXIT:
723 		if (TD_IS_SUSPENDED(td2))
724 			wakeup_swapper |= thread_unsuspend_one(td2, p, true);
725 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
726 			wakeup_swapper |= sleepq_abort(td2, EINTR);
727 		break;
728 	case SINGLE_BOUNDARY:
729 	case SINGLE_NO_EXIT:
730 		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
731 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
732 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
733 			wakeup_swapper |= sleepq_abort(td2, ERESTART);
734 		break;
735 	case SINGLE_ALLPROC:
736 		/*
737 		 * ALLPROC suspend tries to avoid spurious EINTR for
738 		 * threads sleeping interruptable, by suspending the
739 		 * thread directly, similarly to sig_suspend_threads().
740 		 * Since such sleep is not performed at the user
741 		 * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
742 		 * is used to avoid immediate un-suspend.
743 		 */
744 		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
745 		    TDF_ALLPROCSUSP)) == 0)
746 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
747 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
748 			if ((td2->td_flags & TDF_SBDRY) == 0) {
749 				thread_suspend_one(td2);
750 				td2->td_flags |= TDF_ALLPROCSUSP;
751 			} else {
752 				wakeup_swapper |= sleepq_abort(td2, ERESTART);
753 			}
754 		}
755 		break;
756 	}
757 	return (wakeup_swapper);
758 }
759 
760 /*
761  * Enforce single-threading.
762  *
763  * Returns 1 if the caller must abort (another thread is waiting to
764  * exit the process or similar). Process is locked!
765  * Returns 0 when you are successfully the only thread running.
766  * A process has successfully single threaded in the suspend mode when
767  * There are no threads in user mode. Threads in the kernel must be
768  * allowed to continue until they get to the user boundary. They may even
769  * copy out their return values and data before suspending. They may however be
770  * accelerated in reaching the user boundary as we will wake up
771  * any sleeping threads that are interruptable. (PCATCH).
772  */
773 int
774 thread_single(struct proc *p, int mode)
775 {
776 	struct thread *td;
777 	struct thread *td2;
778 	int remaining, wakeup_swapper;
779 
780 	td = curthread;
781 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
782 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
783 	    ("invalid mode %d", mode));
784 	/*
785 	 * If allowing non-ALLPROC singlethreading for non-curproc
786 	 * callers, calc_remaining() and remain_for_mode() should be
787 	 * adjusted to also account for td->td_proc != p.  For now
788 	 * this is not implemented because it is not used.
789 	 */
790 	KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
791 	    (mode != SINGLE_ALLPROC && td->td_proc == p),
792 	    ("mode %d proc %p curproc %p", mode, p, td->td_proc));
793 	mtx_assert(&Giant, MA_NOTOWNED);
794 	PROC_LOCK_ASSERT(p, MA_OWNED);
795 
796 	if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
797 		return (0);
798 
799 	/* Is someone already single threading? */
800 	if (p->p_singlethread != NULL && p->p_singlethread != td)
801 		return (1);
802 
803 	if (mode == SINGLE_EXIT) {
804 		p->p_flag |= P_SINGLE_EXIT;
805 		p->p_flag &= ~P_SINGLE_BOUNDARY;
806 	} else {
807 		p->p_flag &= ~P_SINGLE_EXIT;
808 		if (mode == SINGLE_BOUNDARY)
809 			p->p_flag |= P_SINGLE_BOUNDARY;
810 		else
811 			p->p_flag &= ~P_SINGLE_BOUNDARY;
812 	}
813 	if (mode == SINGLE_ALLPROC)
814 		p->p_flag |= P_TOTAL_STOP;
815 	p->p_flag |= P_STOPPED_SINGLE;
816 	PROC_SLOCK(p);
817 	p->p_singlethread = td;
818 	remaining = calc_remaining(p, mode);
819 	while (remaining != remain_for_mode(mode)) {
820 		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
821 			goto stopme;
822 		wakeup_swapper = 0;
823 		FOREACH_THREAD_IN_PROC(p, td2) {
824 			if (td2 == td)
825 				continue;
826 			thread_lock(td2);
827 			td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
828 			if (TD_IS_INHIBITED(td2)) {
829 				wakeup_swapper |= weed_inhib(mode, td2, p);
830 #ifdef SMP
831 			} else if (TD_IS_RUNNING(td2) && td != td2) {
832 				forward_signal(td2);
833 #endif
834 			}
835 			thread_unlock(td2);
836 		}
837 		if (wakeup_swapper)
838 			kick_proc0();
839 		remaining = calc_remaining(p, mode);
840 
841 		/*
842 		 * Maybe we suspended some threads.. was it enough?
843 		 */
844 		if (remaining == remain_for_mode(mode))
845 			break;
846 
847 stopme:
848 		/*
849 		 * Wake us up when everyone else has suspended.
850 		 * In the mean time we suspend as well.
851 		 */
852 		thread_suspend_switch(td, p);
853 		remaining = calc_remaining(p, mode);
854 	}
855 	if (mode == SINGLE_EXIT) {
856 		/*
857 		 * Convert the process to an unthreaded process.  The
858 		 * SINGLE_EXIT is called by exit1() or execve(), in
859 		 * both cases other threads must be retired.
860 		 */
861 		KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
862 		p->p_singlethread = NULL;
863 		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
864 
865 		/*
866 		 * Wait for any remaining threads to exit cpu_throw().
867 		 */
868 		while (p->p_exitthreads != 0) {
869 			PROC_SUNLOCK(p);
870 			PROC_UNLOCK(p);
871 			sched_relinquish(td);
872 			PROC_LOCK(p);
873 			PROC_SLOCK(p);
874 		}
875 	} else if (mode == SINGLE_BOUNDARY) {
876 		/*
877 		 * Wait until all suspended threads are removed from
878 		 * the processors.  The thread_suspend_check()
879 		 * increments p_boundary_count while it is still
880 		 * running, which makes it possible for the execve()
881 		 * to destroy vmspace while our other threads are
882 		 * still using the address space.
883 		 *
884 		 * We lock the thread, which is only allowed to
885 		 * succeed after context switch code finished using
886 		 * the address space.
887 		 */
888 		FOREACH_THREAD_IN_PROC(p, td2) {
889 			if (td2 == td)
890 				continue;
891 			thread_lock(td2);
892 			KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
893 			    ("td %p not on boundary", td2));
894 			KASSERT(TD_IS_SUSPENDED(td2),
895 			    ("td %p is not suspended", td2));
896 			thread_unlock(td2);
897 		}
898 	}
899 	PROC_SUNLOCK(p);
900 	return (0);
901 }
902 
903 bool
904 thread_suspend_check_needed(void)
905 {
906 	struct proc *p;
907 	struct thread *td;
908 
909 	td = curthread;
910 	p = td->td_proc;
911 	PROC_LOCK_ASSERT(p, MA_OWNED);
912 	return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
913 	    (td->td_dbgflags & TDB_SUSPEND) != 0));
914 }
915 
916 /*
917  * Called in from locations that can safely check to see
918  * whether we have to suspend or at least throttle for a
919  * single-thread event (e.g. fork).
920  *
921  * Such locations include userret().
922  * If the "return_instead" argument is non zero, the thread must be able to
923  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
924  *
925  * The 'return_instead' argument tells the function if it may do a
926  * thread_exit() or suspend, or whether the caller must abort and back
927  * out instead.
928  *
929  * If the thread that set the single_threading request has set the
930  * P_SINGLE_EXIT bit in the process flags then this call will never return
931  * if 'return_instead' is false, but will exit.
932  *
933  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
934  *---------------+--------------------+---------------------
935  *       0       | returns 0          |   returns 0 or 1
936  *               | when ST ends       |   immediately
937  *---------------+--------------------+---------------------
938  *       1       | thread exits       |   returns 1
939  *               |                    |  immediately
940  * 0 = thread_exit() or suspension ok,
941  * other = return error instead of stopping the thread.
942  *
943  * While a full suspension is under effect, even a single threading
944  * thread would be suspended if it made this call (but it shouldn't).
945  * This call should only be made from places where
946  * thread_exit() would be safe as that may be the outcome unless
947  * return_instead is set.
948  */
949 int
950 thread_suspend_check(int return_instead)
951 {
952 	struct thread *td;
953 	struct proc *p;
954 	int wakeup_swapper;
955 
956 	td = curthread;
957 	p = td->td_proc;
958 	mtx_assert(&Giant, MA_NOTOWNED);
959 	PROC_LOCK_ASSERT(p, MA_OWNED);
960 	while (thread_suspend_check_needed()) {
961 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
962 			KASSERT(p->p_singlethread != NULL,
963 			    ("singlethread not set"));
964 			/*
965 			 * The only suspension in action is a
966 			 * single-threading. Single threader need not stop.
967 			 * It is safe to access p->p_singlethread unlocked
968 			 * because it can only be set to our address by us.
969 			 */
970 			if (p->p_singlethread == td)
971 				return (0);	/* Exempt from stopping. */
972 		}
973 		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
974 			return (EINTR);
975 
976 		/* Should we goto user boundary if we didn't come from there? */
977 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
978 		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
979 			return (ERESTART);
980 
981 		/*
982 		 * Ignore suspend requests if they are deferred.
983 		 */
984 		if ((td->td_flags & TDF_SBDRY) != 0) {
985 			KASSERT(return_instead,
986 			    ("TDF_SBDRY set for unsafe thread_suspend_check"));
987 			KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
988 			    (TDF_SEINTR | TDF_SERESTART),
989 			    ("both TDF_SEINTR and TDF_SERESTART"));
990 			return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
991 		}
992 
993 		/*
994 		 * If the process is waiting for us to exit,
995 		 * this thread should just suicide.
996 		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
997 		 */
998 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
999 			PROC_UNLOCK(p);
1000 
1001 			/*
1002 			 * Allow Linux emulation layer to do some work
1003 			 * before thread suicide.
1004 			 */
1005 			if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1006 				(p->p_sysent->sv_thread_detach)(td);
1007 			umtx_thread_exit(td);
1008 			kern_thr_exit(td);
1009 			panic("stopped thread did not exit");
1010 		}
1011 
1012 		PROC_SLOCK(p);
1013 		thread_stopped(p);
1014 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1015 			if (p->p_numthreads == p->p_suspcount + 1) {
1016 				thread_lock(p->p_singlethread);
1017 				wakeup_swapper = thread_unsuspend_one(
1018 				    p->p_singlethread, p, false);
1019 				thread_unlock(p->p_singlethread);
1020 				if (wakeup_swapper)
1021 					kick_proc0();
1022 			}
1023 		}
1024 		PROC_UNLOCK(p);
1025 		thread_lock(td);
1026 		/*
1027 		 * When a thread suspends, it just
1028 		 * gets taken off all queues.
1029 		 */
1030 		thread_suspend_one(td);
1031 		if (return_instead == 0) {
1032 			p->p_boundary_count++;
1033 			td->td_flags |= TDF_BOUNDARY;
1034 		}
1035 		PROC_SUNLOCK(p);
1036 		mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
1037 		thread_unlock(td);
1038 		PROC_LOCK(p);
1039 	}
1040 	return (0);
1041 }
1042 
1043 void
1044 thread_suspend_switch(struct thread *td, struct proc *p)
1045 {
1046 
1047 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1048 	PROC_LOCK_ASSERT(p, MA_OWNED);
1049 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1050 	/*
1051 	 * We implement thread_suspend_one in stages here to avoid
1052 	 * dropping the proc lock while the thread lock is owned.
1053 	 */
1054 	if (p == td->td_proc) {
1055 		thread_stopped(p);
1056 		p->p_suspcount++;
1057 	}
1058 	PROC_UNLOCK(p);
1059 	thread_lock(td);
1060 	td->td_flags &= ~TDF_NEEDSUSPCHK;
1061 	TD_SET_SUSPENDED(td);
1062 	sched_sleep(td, 0);
1063 	PROC_SUNLOCK(p);
1064 	DROP_GIANT();
1065 	mi_switch(SW_VOL | SWT_SUSPEND, NULL);
1066 	thread_unlock(td);
1067 	PICKUP_GIANT();
1068 	PROC_LOCK(p);
1069 	PROC_SLOCK(p);
1070 }
1071 
1072 void
1073 thread_suspend_one(struct thread *td)
1074 {
1075 	struct proc *p;
1076 
1077 	p = td->td_proc;
1078 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1079 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1080 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1081 	p->p_suspcount++;
1082 	td->td_flags &= ~TDF_NEEDSUSPCHK;
1083 	TD_SET_SUSPENDED(td);
1084 	sched_sleep(td, 0);
1085 }
1086 
1087 static int
1088 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1089 {
1090 
1091 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1092 	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1093 	TD_CLR_SUSPENDED(td);
1094 	td->td_flags &= ~TDF_ALLPROCSUSP;
1095 	if (td->td_proc == p) {
1096 		PROC_SLOCK_ASSERT(p, MA_OWNED);
1097 		p->p_suspcount--;
1098 		if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1099 			td->td_flags &= ~TDF_BOUNDARY;
1100 			p->p_boundary_count--;
1101 		}
1102 	}
1103 	return (setrunnable(td));
1104 }
1105 
1106 /*
1107  * Allow all threads blocked by single threading to continue running.
1108  */
1109 void
1110 thread_unsuspend(struct proc *p)
1111 {
1112 	struct thread *td;
1113 	int wakeup_swapper;
1114 
1115 	PROC_LOCK_ASSERT(p, MA_OWNED);
1116 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1117 	wakeup_swapper = 0;
1118 	if (!P_SHOULDSTOP(p)) {
1119                 FOREACH_THREAD_IN_PROC(p, td) {
1120 			thread_lock(td);
1121 			if (TD_IS_SUSPENDED(td)) {
1122 				wakeup_swapper |= thread_unsuspend_one(td, p,
1123 				    true);
1124 			}
1125 			thread_unlock(td);
1126 		}
1127 	} else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1128 	    p->p_numthreads == p->p_suspcount) {
1129 		/*
1130 		 * Stopping everything also did the job for the single
1131 		 * threading request. Now we've downgraded to single-threaded,
1132 		 * let it continue.
1133 		 */
1134 		if (p->p_singlethread->td_proc == p) {
1135 			thread_lock(p->p_singlethread);
1136 			wakeup_swapper = thread_unsuspend_one(
1137 			    p->p_singlethread, p, false);
1138 			thread_unlock(p->p_singlethread);
1139 		}
1140 	}
1141 	if (wakeup_swapper)
1142 		kick_proc0();
1143 }
1144 
1145 /*
1146  * End the single threading mode..
1147  */
1148 void
1149 thread_single_end(struct proc *p, int mode)
1150 {
1151 	struct thread *td;
1152 	int wakeup_swapper;
1153 
1154 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1155 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1156 	    ("invalid mode %d", mode));
1157 	PROC_LOCK_ASSERT(p, MA_OWNED);
1158 	KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1159 	    (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1160 	    ("mode %d does not match P_TOTAL_STOP", mode));
1161 	KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1162 	    ("thread_single_end from other thread %p %p",
1163 	    curthread, p->p_singlethread));
1164 	KASSERT(mode != SINGLE_BOUNDARY ||
1165 	    (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1166 	    ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1167 	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1168 	    P_TOTAL_STOP);
1169 	PROC_SLOCK(p);
1170 	p->p_singlethread = NULL;
1171 	wakeup_swapper = 0;
1172 	/*
1173 	 * If there are other threads they may now run,
1174 	 * unless of course there is a blanket 'stop order'
1175 	 * on the process. The single threader must be allowed
1176 	 * to continue however as this is a bad place to stop.
1177 	 */
1178 	if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1179                 FOREACH_THREAD_IN_PROC(p, td) {
1180 			thread_lock(td);
1181 			if (TD_IS_SUSPENDED(td)) {
1182 				wakeup_swapper |= thread_unsuspend_one(td, p,
1183 				    mode == SINGLE_BOUNDARY);
1184 			}
1185 			thread_unlock(td);
1186 		}
1187 	}
1188 	KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1189 	    ("inconsistent boundary count %d", p->p_boundary_count));
1190 	PROC_SUNLOCK(p);
1191 	if (wakeup_swapper)
1192 		kick_proc0();
1193 }
1194 
1195 struct thread *
1196 thread_find(struct proc *p, lwpid_t tid)
1197 {
1198 	struct thread *td;
1199 
1200 	PROC_LOCK_ASSERT(p, MA_OWNED);
1201 	FOREACH_THREAD_IN_PROC(p, td) {
1202 		if (td->td_tid == tid)
1203 			break;
1204 	}
1205 	return (td);
1206 }
1207 
1208 /* Locate a thread by number; return with proc lock held. */
1209 struct thread *
1210 tdfind(lwpid_t tid, pid_t pid)
1211 {
1212 #define RUN_THRESH	16
1213 	struct thread *td;
1214 	int run = 0;
1215 
1216 	rw_rlock(&tidhash_lock);
1217 	LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1218 		if (td->td_tid == tid) {
1219 			if (pid != -1 && td->td_proc->p_pid != pid) {
1220 				td = NULL;
1221 				break;
1222 			}
1223 			PROC_LOCK(td->td_proc);
1224 			if (td->td_proc->p_state == PRS_NEW) {
1225 				PROC_UNLOCK(td->td_proc);
1226 				td = NULL;
1227 				break;
1228 			}
1229 			if (run > RUN_THRESH) {
1230 				if (rw_try_upgrade(&tidhash_lock)) {
1231 					LIST_REMOVE(td, td_hash);
1232 					LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1233 						td, td_hash);
1234 					rw_wunlock(&tidhash_lock);
1235 					return (td);
1236 				}
1237 			}
1238 			break;
1239 		}
1240 		run++;
1241 	}
1242 	rw_runlock(&tidhash_lock);
1243 	return (td);
1244 }
1245 
1246 void
1247 tidhash_add(struct thread *td)
1248 {
1249 	rw_wlock(&tidhash_lock);
1250 	LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1251 	rw_wunlock(&tidhash_lock);
1252 }
1253 
1254 void
1255 tidhash_remove(struct thread *td)
1256 {
1257 	rw_wlock(&tidhash_lock);
1258 	LIST_REMOVE(td, td_hash);
1259 	rw_wunlock(&tidhash_lock);
1260 }
1261