xref: /freebsd/sys/kern/kern_thread.c (revision f18976136625a7d016e97bfd9eabddf640b3e06d)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
5  *  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice(s), this list of conditions and the following disclaimer as
12  *    the first lines of this file unmodified other than the possible
13  *    addition of one or more copyright notices.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice(s), this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
22  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
28  * DAMAGE.
29  */
30 
31 #include "opt_witness.h"
32 #include "opt_hwpmc_hooks.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/epoch.h>
44 #include <sys/rangelock.h>
45 #include <sys/resourcevar.h>
46 #include <sys/sdt.h>
47 #include <sys/smp.h>
48 #include <sys/sched.h>
49 #include <sys/sleepqueue.h>
50 #include <sys/selinfo.h>
51 #include <sys/syscallsubr.h>
52 #include <sys/sysent.h>
53 #include <sys/turnstile.h>
54 #include <sys/ktr.h>
55 #include <sys/rwlock.h>
56 #include <sys/umtx.h>
57 #include <sys/vmmeter.h>
58 #include <sys/cpuset.h>
59 #ifdef	HWPMC_HOOKS
60 #include <sys/pmckern.h>
61 #endif
62 
63 #include <security/audit/audit.h>
64 
65 #include <vm/vm.h>
66 #include <vm/vm_extern.h>
67 #include <vm/uma.h>
68 #include <sys/eventhandler.h>
69 
70 /*
71  * Asserts below verify the stability of struct thread and struct proc
72  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
73  * to drift, change to the structures must be accompanied by the
74  * assert update.
75  *
76  * On the stable branches after KBI freeze, conditions must not be
77  * violated.  Typically new fields are moved to the end of the
78  * structures.
79  */
80 #ifdef __amd64__
81 _Static_assert(offsetof(struct thread, td_flags) == 0xfc,
82     "struct thread KBI td_flags");
83 _Static_assert(offsetof(struct thread, td_pflags) == 0x104,
84     "struct thread KBI td_pflags");
85 _Static_assert(offsetof(struct thread, td_frame) == 0x478,
86     "struct thread KBI td_frame");
87 _Static_assert(offsetof(struct thread, td_emuldata) == 0x540,
88     "struct thread KBI td_emuldata");
89 _Static_assert(offsetof(struct proc, p_flag) == 0xb0,
90     "struct proc KBI p_flag");
91 _Static_assert(offsetof(struct proc, p_pid) == 0xbc,
92     "struct proc KBI p_pid");
93 _Static_assert(offsetof(struct proc, p_filemon) == 0x3c8,
94     "struct proc KBI p_filemon");
95 _Static_assert(offsetof(struct proc, p_comm) == 0x3e0,
96     "struct proc KBI p_comm");
97 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4c0,
98     "struct proc KBI p_emuldata");
99 #endif
100 #ifdef __i386__
101 _Static_assert(offsetof(struct thread, td_flags) == 0x98,
102     "struct thread KBI td_flags");
103 _Static_assert(offsetof(struct thread, td_pflags) == 0xa0,
104     "struct thread KBI td_pflags");
105 _Static_assert(offsetof(struct thread, td_frame) == 0x2f0,
106     "struct thread KBI td_frame");
107 _Static_assert(offsetof(struct thread, td_emuldata) == 0x338,
108     "struct thread KBI td_emuldata");
109 _Static_assert(offsetof(struct proc, p_flag) == 0x68,
110     "struct proc KBI p_flag");
111 _Static_assert(offsetof(struct proc, p_pid) == 0x74,
112     "struct proc KBI p_pid");
113 _Static_assert(offsetof(struct proc, p_filemon) == 0x278,
114     "struct proc KBI p_filemon");
115 _Static_assert(offsetof(struct proc, p_comm) == 0x28c,
116     "struct proc KBI p_comm");
117 _Static_assert(offsetof(struct proc, p_emuldata) == 0x318,
118     "struct proc KBI p_emuldata");
119 #endif
120 
121 SDT_PROVIDER_DECLARE(proc);
122 SDT_PROBE_DEFINE(proc, , , lwp__exit);
123 
124 /*
125  * thread related storage.
126  */
127 static uma_zone_t thread_zone;
128 
129 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
130 static struct mtx zombie_lock;
131 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
132 
133 static void thread_zombie(struct thread *);
134 static int thread_unsuspend_one(struct thread *td, struct proc *p,
135     bool boundary);
136 
137 #define TID_BUFFER_SIZE	1024
138 
139 struct mtx tid_lock;
140 static struct unrhdr *tid_unrhdr;
141 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
142 static int tid_head, tid_tail;
143 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
144 
145 struct	tidhashhead *tidhashtbl;
146 u_long	tidhash;
147 struct	rwlock tidhash_lock;
148 
149 EVENTHANDLER_LIST_DEFINE(thread_ctor);
150 EVENTHANDLER_LIST_DEFINE(thread_dtor);
151 EVENTHANDLER_LIST_DEFINE(thread_init);
152 EVENTHANDLER_LIST_DEFINE(thread_fini);
153 
154 static lwpid_t
155 tid_alloc(void)
156 {
157 	lwpid_t	tid;
158 
159 	tid = alloc_unr(tid_unrhdr);
160 	if (tid != -1)
161 		return (tid);
162 	mtx_lock(&tid_lock);
163 	if (tid_head == tid_tail) {
164 		mtx_unlock(&tid_lock);
165 		return (-1);
166 	}
167 	tid = tid_buffer[tid_head];
168 	tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
169 	mtx_unlock(&tid_lock);
170 	return (tid);
171 }
172 
173 static void
174 tid_free(lwpid_t tid)
175 {
176 	lwpid_t tmp_tid = -1;
177 
178 	mtx_lock(&tid_lock);
179 	if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
180 		tmp_tid = tid_buffer[tid_head];
181 		tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
182 	}
183 	tid_buffer[tid_tail] = tid;
184 	tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
185 	mtx_unlock(&tid_lock);
186 	if (tmp_tid != -1)
187 		free_unr(tid_unrhdr, tmp_tid);
188 }
189 
190 /*
191  * Prepare a thread for use.
192  */
193 static int
194 thread_ctor(void *mem, int size, void *arg, int flags)
195 {
196 	struct thread	*td;
197 
198 	td = (struct thread *)mem;
199 	td->td_state = TDS_INACTIVE;
200 	td->td_lastcpu = td->td_oncpu = NOCPU;
201 
202 	td->td_tid = tid_alloc();
203 
204 	/*
205 	 * Note that td_critnest begins life as 1 because the thread is not
206 	 * running and is thereby implicitly waiting to be on the receiving
207 	 * end of a context switch.
208 	 */
209 	td->td_critnest = 1;
210 	td->td_lend_user_pri = PRI_MAX;
211 	EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
212 #ifdef AUDIT
213 	audit_thread_alloc(td);
214 #endif
215 	umtx_thread_alloc(td);
216 	return (0);
217 }
218 
219 /*
220  * Reclaim a thread after use.
221  */
222 static void
223 thread_dtor(void *mem, int size, void *arg)
224 {
225 	struct thread *td;
226 
227 	td = (struct thread *)mem;
228 
229 #ifdef INVARIANTS
230 	/* Verify that this thread is in a safe state to free. */
231 	switch (td->td_state) {
232 	case TDS_INHIBITED:
233 	case TDS_RUNNING:
234 	case TDS_CAN_RUN:
235 	case TDS_RUNQ:
236 		/*
237 		 * We must never unlink a thread that is in one of
238 		 * these states, because it is currently active.
239 		 */
240 		panic("bad state for thread unlinking");
241 		/* NOTREACHED */
242 	case TDS_INACTIVE:
243 		break;
244 	default:
245 		panic("bad thread state");
246 		/* NOTREACHED */
247 	}
248 #endif
249 #ifdef AUDIT
250 	audit_thread_free(td);
251 #endif
252 	/* Free all OSD associated to this thread. */
253 	osd_thread_exit(td);
254 	td_softdep_cleanup(td);
255 	MPASS(td->td_su == NULL);
256 
257 	EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
258 	tid_free(td->td_tid);
259 }
260 
261 /*
262  * Initialize type-stable parts of a thread (when newly created).
263  */
264 static int
265 thread_init(void *mem, int size, int flags)
266 {
267 	struct thread *td;
268 
269 	td = (struct thread *)mem;
270 
271 	td->td_sleepqueue = sleepq_alloc();
272 	td->td_turnstile = turnstile_alloc();
273 	td->td_rlqe = NULL;
274 	EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
275 	umtx_thread_init(td);
276 	epoch_thread_init(td);
277 	td->td_kstack = 0;
278 	td->td_sel = NULL;
279 	return (0);
280 }
281 
282 /*
283  * Tear down type-stable parts of a thread (just before being discarded).
284  */
285 static void
286 thread_fini(void *mem, int size)
287 {
288 	struct thread *td;
289 
290 	td = (struct thread *)mem;
291 	EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
292 	rlqentry_free(td->td_rlqe);
293 	turnstile_free(td->td_turnstile);
294 	sleepq_free(td->td_sleepqueue);
295 	umtx_thread_fini(td);
296 	epoch_thread_fini(td);
297 	seltdfini(td);
298 }
299 
300 /*
301  * For a newly created process,
302  * link up all the structures and its initial threads etc.
303  * called from:
304  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
305  * proc_dtor() (should go away)
306  * proc_init()
307  */
308 void
309 proc_linkup0(struct proc *p, struct thread *td)
310 {
311 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
312 	proc_linkup(p, td);
313 }
314 
315 void
316 proc_linkup(struct proc *p, struct thread *td)
317 {
318 
319 	sigqueue_init(&p->p_sigqueue, p);
320 	p->p_ksi = ksiginfo_alloc(1);
321 	if (p->p_ksi != NULL) {
322 		/* XXX p_ksi may be null if ksiginfo zone is not ready */
323 		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
324 	}
325 	LIST_INIT(&p->p_mqnotifier);
326 	p->p_numthreads = 0;
327 	thread_link(td, p);
328 }
329 
330 /*
331  * Initialize global thread allocation resources.
332  */
333 void
334 threadinit(void)
335 {
336 
337 	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
338 
339 	/*
340 	 * pid_max cannot be greater than PID_MAX.
341 	 * leave one number for thread0.
342 	 */
343 	tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
344 
345 	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
346 	    thread_ctor, thread_dtor, thread_init, thread_fini,
347 	    32 - 1, UMA_ZONE_NOFREE);
348 	tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
349 	rw_init(&tidhash_lock, "tidhash");
350 }
351 
352 /*
353  * Place an unused thread on the zombie list.
354  * Use the slpq as that must be unused by now.
355  */
356 void
357 thread_zombie(struct thread *td)
358 {
359 	mtx_lock_spin(&zombie_lock);
360 	TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
361 	mtx_unlock_spin(&zombie_lock);
362 }
363 
364 /*
365  * Release a thread that has exited after cpu_throw().
366  */
367 void
368 thread_stash(struct thread *td)
369 {
370 	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
371 	thread_zombie(td);
372 }
373 
374 /*
375  * Reap zombie resources.
376  */
377 void
378 thread_reap(void)
379 {
380 	struct thread *td_first, *td_next;
381 
382 	/*
383 	 * Don't even bother to lock if none at this instant,
384 	 * we really don't care about the next instant.
385 	 */
386 	if (!TAILQ_EMPTY(&zombie_threads)) {
387 		mtx_lock_spin(&zombie_lock);
388 		td_first = TAILQ_FIRST(&zombie_threads);
389 		if (td_first)
390 			TAILQ_INIT(&zombie_threads);
391 		mtx_unlock_spin(&zombie_lock);
392 		while (td_first) {
393 			td_next = TAILQ_NEXT(td_first, td_slpq);
394 			thread_cow_free(td_first);
395 			thread_free(td_first);
396 			td_first = td_next;
397 		}
398 	}
399 }
400 
401 /*
402  * Allocate a thread.
403  */
404 struct thread *
405 thread_alloc(int pages)
406 {
407 	struct thread *td;
408 
409 	thread_reap(); /* check if any zombies to get */
410 
411 	td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
412 	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
413 	if (!vm_thread_new(td, pages)) {
414 		uma_zfree(thread_zone, td);
415 		return (NULL);
416 	}
417 	cpu_thread_alloc(td);
418 	return (td);
419 }
420 
421 int
422 thread_alloc_stack(struct thread *td, int pages)
423 {
424 
425 	KASSERT(td->td_kstack == 0,
426 	    ("thread_alloc_stack called on a thread with kstack"));
427 	if (!vm_thread_new(td, pages))
428 		return (0);
429 	cpu_thread_alloc(td);
430 	return (1);
431 }
432 
433 /*
434  * Deallocate a thread.
435  */
436 void
437 thread_free(struct thread *td)
438 {
439 
440 	lock_profile_thread_exit(td);
441 	if (td->td_cpuset)
442 		cpuset_rel(td->td_cpuset);
443 	td->td_cpuset = NULL;
444 	cpu_thread_free(td);
445 	if (td->td_kstack != 0)
446 		vm_thread_dispose(td);
447 	callout_drain(&td->td_slpcallout);
448 	uma_zfree(thread_zone, td);
449 }
450 
451 void
452 thread_cow_get_proc(struct thread *newtd, struct proc *p)
453 {
454 
455 	PROC_LOCK_ASSERT(p, MA_OWNED);
456 	newtd->td_ucred = crhold(p->p_ucred);
457 	newtd->td_limit = lim_hold(p->p_limit);
458 	newtd->td_cowgen = p->p_cowgen;
459 }
460 
461 void
462 thread_cow_get(struct thread *newtd, struct thread *td)
463 {
464 
465 	newtd->td_ucred = crhold(td->td_ucred);
466 	newtd->td_limit = lim_hold(td->td_limit);
467 	newtd->td_cowgen = td->td_cowgen;
468 }
469 
470 void
471 thread_cow_free(struct thread *td)
472 {
473 
474 	if (td->td_ucred != NULL)
475 		crfree(td->td_ucred);
476 	if (td->td_limit != NULL)
477 		lim_free(td->td_limit);
478 }
479 
480 void
481 thread_cow_update(struct thread *td)
482 {
483 	struct proc *p;
484 	struct ucred *oldcred;
485 	struct plimit *oldlimit;
486 
487 	p = td->td_proc;
488 	oldcred = NULL;
489 	oldlimit = NULL;
490 	PROC_LOCK(p);
491 	if (td->td_ucred != p->p_ucred) {
492 		oldcred = td->td_ucred;
493 		td->td_ucred = crhold(p->p_ucred);
494 	}
495 	if (td->td_limit != p->p_limit) {
496 		oldlimit = td->td_limit;
497 		td->td_limit = lim_hold(p->p_limit);
498 	}
499 	td->td_cowgen = p->p_cowgen;
500 	PROC_UNLOCK(p);
501 	if (oldcred != NULL)
502 		crfree(oldcred);
503 	if (oldlimit != NULL)
504 		lim_free(oldlimit);
505 }
506 
507 /*
508  * Discard the current thread and exit from its context.
509  * Always called with scheduler locked.
510  *
511  * Because we can't free a thread while we're operating under its context,
512  * push the current thread into our CPU's deadthread holder. This means
513  * we needn't worry about someone else grabbing our context before we
514  * do a cpu_throw().
515  */
516 void
517 thread_exit(void)
518 {
519 	uint64_t runtime, new_switchtime;
520 	struct thread *td;
521 	struct thread *td2;
522 	struct proc *p;
523 	int wakeup_swapper;
524 
525 	td = curthread;
526 	p = td->td_proc;
527 
528 	PROC_SLOCK_ASSERT(p, MA_OWNED);
529 	mtx_assert(&Giant, MA_NOTOWNED);
530 
531 	PROC_LOCK_ASSERT(p, MA_OWNED);
532 	KASSERT(p != NULL, ("thread exiting without a process"));
533 	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
534 	    (long)p->p_pid, td->td_name);
535 	SDT_PROBE0(proc, , , lwp__exit);
536 	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
537 
538 	/*
539 	 * drop FPU & debug register state storage, or any other
540 	 * architecture specific resources that
541 	 * would not be on a new untouched process.
542 	 */
543 	cpu_thread_exit(td);
544 
545 	/*
546 	 * The last thread is left attached to the process
547 	 * So that the whole bundle gets recycled. Skip
548 	 * all this stuff if we never had threads.
549 	 * EXIT clears all sign of other threads when
550 	 * it goes to single threading, so the last thread always
551 	 * takes the short path.
552 	 */
553 	if (p->p_flag & P_HADTHREADS) {
554 		if (p->p_numthreads > 1) {
555 			atomic_add_int(&td->td_proc->p_exitthreads, 1);
556 			thread_unlink(td);
557 			td2 = FIRST_THREAD_IN_PROC(p);
558 			sched_exit_thread(td2, td);
559 
560 			/*
561 			 * The test below is NOT true if we are the
562 			 * sole exiting thread. P_STOPPED_SINGLE is unset
563 			 * in exit1() after it is the only survivor.
564 			 */
565 			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
566 				if (p->p_numthreads == p->p_suspcount) {
567 					thread_lock(p->p_singlethread);
568 					wakeup_swapper = thread_unsuspend_one(
569 						p->p_singlethread, p, false);
570 					thread_unlock(p->p_singlethread);
571 					if (wakeup_swapper)
572 						kick_proc0();
573 				}
574 			}
575 
576 			PCPU_SET(deadthread, td);
577 		} else {
578 			/*
579 			 * The last thread is exiting.. but not through exit()
580 			 */
581 			panic ("thread_exit: Last thread exiting on its own");
582 		}
583 	}
584 #ifdef	HWPMC_HOOKS
585 	/*
586 	 * If this thread is part of a process that is being tracked by hwpmc(4),
587 	 * inform the module of the thread's impending exit.
588 	 */
589 	if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
590 		PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
591 		PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
592 	} else if (PMC_SYSTEM_SAMPLING_ACTIVE())
593 		PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL);
594 #endif
595 	PROC_UNLOCK(p);
596 	PROC_STATLOCK(p);
597 	thread_lock(td);
598 	PROC_SUNLOCK(p);
599 
600 	/* Do the same timestamp bookkeeping that mi_switch() would do. */
601 	new_switchtime = cpu_ticks();
602 	runtime = new_switchtime - PCPU_GET(switchtime);
603 	td->td_runtime += runtime;
604 	td->td_incruntime += runtime;
605 	PCPU_SET(switchtime, new_switchtime);
606 	PCPU_SET(switchticks, ticks);
607 	VM_CNT_INC(v_swtch);
608 
609 	/* Save our resource usage in our process. */
610 	td->td_ru.ru_nvcsw++;
611 	ruxagg(p, td);
612 	rucollect(&p->p_ru, &td->td_ru);
613 	PROC_STATUNLOCK(p);
614 
615 	td->td_state = TDS_INACTIVE;
616 #ifdef WITNESS
617 	witness_thread_exit(td);
618 #endif
619 	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
620 	sched_throw(td);
621 	panic("I'm a teapot!");
622 	/* NOTREACHED */
623 }
624 
625 /*
626  * Do any thread specific cleanups that may be needed in wait()
627  * called with Giant, proc and schedlock not held.
628  */
629 void
630 thread_wait(struct proc *p)
631 {
632 	struct thread *td;
633 
634 	mtx_assert(&Giant, MA_NOTOWNED);
635 	KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
636 	KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
637 	td = FIRST_THREAD_IN_PROC(p);
638 	/* Lock the last thread so we spin until it exits cpu_throw(). */
639 	thread_lock(td);
640 	thread_unlock(td);
641 	lock_profile_thread_exit(td);
642 	cpuset_rel(td->td_cpuset);
643 	td->td_cpuset = NULL;
644 	cpu_thread_clean(td);
645 	thread_cow_free(td);
646 	callout_drain(&td->td_slpcallout);
647 	thread_reap();	/* check for zombie threads etc. */
648 }
649 
650 /*
651  * Link a thread to a process.
652  * set up anything that needs to be initialized for it to
653  * be used by the process.
654  */
655 void
656 thread_link(struct thread *td, struct proc *p)
657 {
658 
659 	/*
660 	 * XXX This can't be enabled because it's called for proc0 before
661 	 * its lock has been created.
662 	 * PROC_LOCK_ASSERT(p, MA_OWNED);
663 	 */
664 	td->td_state    = TDS_INACTIVE;
665 	td->td_proc     = p;
666 	td->td_flags    = TDF_INMEM;
667 
668 	LIST_INIT(&td->td_contested);
669 	LIST_INIT(&td->td_lprof[0]);
670 	LIST_INIT(&td->td_lprof[1]);
671 	SLIST_INIT(&td->td_epochs);
672 	sigqueue_init(&td->td_sigqueue, p);
673 	callout_init(&td->td_slpcallout, 1);
674 	TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
675 	p->p_numthreads++;
676 }
677 
678 /*
679  * Called from:
680  *  thread_exit()
681  */
682 void
683 thread_unlink(struct thread *td)
684 {
685 	struct proc *p = td->td_proc;
686 
687 	PROC_LOCK_ASSERT(p, MA_OWNED);
688 	MPASS(SLIST_EMPTY(&td->td_epochs));
689 
690 	TAILQ_REMOVE(&p->p_threads, td, td_plist);
691 	p->p_numthreads--;
692 	/* could clear a few other things here */
693 	/* Must  NOT clear links to proc! */
694 }
695 
696 static int
697 calc_remaining(struct proc *p, int mode)
698 {
699 	int remaining;
700 
701 	PROC_LOCK_ASSERT(p, MA_OWNED);
702 	PROC_SLOCK_ASSERT(p, MA_OWNED);
703 	if (mode == SINGLE_EXIT)
704 		remaining = p->p_numthreads;
705 	else if (mode == SINGLE_BOUNDARY)
706 		remaining = p->p_numthreads - p->p_boundary_count;
707 	else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
708 		remaining = p->p_numthreads - p->p_suspcount;
709 	else
710 		panic("calc_remaining: wrong mode %d", mode);
711 	return (remaining);
712 }
713 
714 static int
715 remain_for_mode(int mode)
716 {
717 
718 	return (mode == SINGLE_ALLPROC ? 0 : 1);
719 }
720 
721 static int
722 weed_inhib(int mode, struct thread *td2, struct proc *p)
723 {
724 	int wakeup_swapper;
725 
726 	PROC_LOCK_ASSERT(p, MA_OWNED);
727 	PROC_SLOCK_ASSERT(p, MA_OWNED);
728 	THREAD_LOCK_ASSERT(td2, MA_OWNED);
729 
730 	wakeup_swapper = 0;
731 	switch (mode) {
732 	case SINGLE_EXIT:
733 		if (TD_IS_SUSPENDED(td2))
734 			wakeup_swapper |= thread_unsuspend_one(td2, p, true);
735 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
736 			wakeup_swapper |= sleepq_abort(td2, EINTR);
737 		break;
738 	case SINGLE_BOUNDARY:
739 	case SINGLE_NO_EXIT:
740 		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
741 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
742 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
743 			wakeup_swapper |= sleepq_abort(td2, ERESTART);
744 		break;
745 	case SINGLE_ALLPROC:
746 		/*
747 		 * ALLPROC suspend tries to avoid spurious EINTR for
748 		 * threads sleeping interruptable, by suspending the
749 		 * thread directly, similarly to sig_suspend_threads().
750 		 * Since such sleep is not performed at the user
751 		 * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
752 		 * is used to avoid immediate un-suspend.
753 		 */
754 		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
755 		    TDF_ALLPROCSUSP)) == 0)
756 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
757 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
758 			if ((td2->td_flags & TDF_SBDRY) == 0) {
759 				thread_suspend_one(td2);
760 				td2->td_flags |= TDF_ALLPROCSUSP;
761 			} else {
762 				wakeup_swapper |= sleepq_abort(td2, ERESTART);
763 			}
764 		}
765 		break;
766 	}
767 	return (wakeup_swapper);
768 }
769 
770 /*
771  * Enforce single-threading.
772  *
773  * Returns 1 if the caller must abort (another thread is waiting to
774  * exit the process or similar). Process is locked!
775  * Returns 0 when you are successfully the only thread running.
776  * A process has successfully single threaded in the suspend mode when
777  * There are no threads in user mode. Threads in the kernel must be
778  * allowed to continue until they get to the user boundary. They may even
779  * copy out their return values and data before suspending. They may however be
780  * accelerated in reaching the user boundary as we will wake up
781  * any sleeping threads that are interruptable. (PCATCH).
782  */
783 int
784 thread_single(struct proc *p, int mode)
785 {
786 	struct thread *td;
787 	struct thread *td2;
788 	int remaining, wakeup_swapper;
789 
790 	td = curthread;
791 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
792 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
793 	    ("invalid mode %d", mode));
794 	/*
795 	 * If allowing non-ALLPROC singlethreading for non-curproc
796 	 * callers, calc_remaining() and remain_for_mode() should be
797 	 * adjusted to also account for td->td_proc != p.  For now
798 	 * this is not implemented because it is not used.
799 	 */
800 	KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
801 	    (mode != SINGLE_ALLPROC && td->td_proc == p),
802 	    ("mode %d proc %p curproc %p", mode, p, td->td_proc));
803 	mtx_assert(&Giant, MA_NOTOWNED);
804 	PROC_LOCK_ASSERT(p, MA_OWNED);
805 
806 	if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
807 		return (0);
808 
809 	/* Is someone already single threading? */
810 	if (p->p_singlethread != NULL && p->p_singlethread != td)
811 		return (1);
812 
813 	if (mode == SINGLE_EXIT) {
814 		p->p_flag |= P_SINGLE_EXIT;
815 		p->p_flag &= ~P_SINGLE_BOUNDARY;
816 	} else {
817 		p->p_flag &= ~P_SINGLE_EXIT;
818 		if (mode == SINGLE_BOUNDARY)
819 			p->p_flag |= P_SINGLE_BOUNDARY;
820 		else
821 			p->p_flag &= ~P_SINGLE_BOUNDARY;
822 	}
823 	if (mode == SINGLE_ALLPROC)
824 		p->p_flag |= P_TOTAL_STOP;
825 	p->p_flag |= P_STOPPED_SINGLE;
826 	PROC_SLOCK(p);
827 	p->p_singlethread = td;
828 	remaining = calc_remaining(p, mode);
829 	while (remaining != remain_for_mode(mode)) {
830 		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
831 			goto stopme;
832 		wakeup_swapper = 0;
833 		FOREACH_THREAD_IN_PROC(p, td2) {
834 			if (td2 == td)
835 				continue;
836 			thread_lock(td2);
837 			td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
838 			if (TD_IS_INHIBITED(td2)) {
839 				wakeup_swapper |= weed_inhib(mode, td2, p);
840 #ifdef SMP
841 			} else if (TD_IS_RUNNING(td2) && td != td2) {
842 				forward_signal(td2);
843 #endif
844 			}
845 			thread_unlock(td2);
846 		}
847 		if (wakeup_swapper)
848 			kick_proc0();
849 		remaining = calc_remaining(p, mode);
850 
851 		/*
852 		 * Maybe we suspended some threads.. was it enough?
853 		 */
854 		if (remaining == remain_for_mode(mode))
855 			break;
856 
857 stopme:
858 		/*
859 		 * Wake us up when everyone else has suspended.
860 		 * In the mean time we suspend as well.
861 		 */
862 		thread_suspend_switch(td, p);
863 		remaining = calc_remaining(p, mode);
864 	}
865 	if (mode == SINGLE_EXIT) {
866 		/*
867 		 * Convert the process to an unthreaded process.  The
868 		 * SINGLE_EXIT is called by exit1() or execve(), in
869 		 * both cases other threads must be retired.
870 		 */
871 		KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
872 		p->p_singlethread = NULL;
873 		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
874 
875 		/*
876 		 * Wait for any remaining threads to exit cpu_throw().
877 		 */
878 		while (p->p_exitthreads != 0) {
879 			PROC_SUNLOCK(p);
880 			PROC_UNLOCK(p);
881 			sched_relinquish(td);
882 			PROC_LOCK(p);
883 			PROC_SLOCK(p);
884 		}
885 	} else if (mode == SINGLE_BOUNDARY) {
886 		/*
887 		 * Wait until all suspended threads are removed from
888 		 * the processors.  The thread_suspend_check()
889 		 * increments p_boundary_count while it is still
890 		 * running, which makes it possible for the execve()
891 		 * to destroy vmspace while our other threads are
892 		 * still using the address space.
893 		 *
894 		 * We lock the thread, which is only allowed to
895 		 * succeed after context switch code finished using
896 		 * the address space.
897 		 */
898 		FOREACH_THREAD_IN_PROC(p, td2) {
899 			if (td2 == td)
900 				continue;
901 			thread_lock(td2);
902 			KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
903 			    ("td %p not on boundary", td2));
904 			KASSERT(TD_IS_SUSPENDED(td2),
905 			    ("td %p is not suspended", td2));
906 			thread_unlock(td2);
907 		}
908 	}
909 	PROC_SUNLOCK(p);
910 	return (0);
911 }
912 
913 bool
914 thread_suspend_check_needed(void)
915 {
916 	struct proc *p;
917 	struct thread *td;
918 
919 	td = curthread;
920 	p = td->td_proc;
921 	PROC_LOCK_ASSERT(p, MA_OWNED);
922 	return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
923 	    (td->td_dbgflags & TDB_SUSPEND) != 0));
924 }
925 
926 /*
927  * Called in from locations that can safely check to see
928  * whether we have to suspend or at least throttle for a
929  * single-thread event (e.g. fork).
930  *
931  * Such locations include userret().
932  * If the "return_instead" argument is non zero, the thread must be able to
933  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
934  *
935  * The 'return_instead' argument tells the function if it may do a
936  * thread_exit() or suspend, or whether the caller must abort and back
937  * out instead.
938  *
939  * If the thread that set the single_threading request has set the
940  * P_SINGLE_EXIT bit in the process flags then this call will never return
941  * if 'return_instead' is false, but will exit.
942  *
943  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
944  *---------------+--------------------+---------------------
945  *       0       | returns 0          |   returns 0 or 1
946  *               | when ST ends       |   immediately
947  *---------------+--------------------+---------------------
948  *       1       | thread exits       |   returns 1
949  *               |                    |  immediately
950  * 0 = thread_exit() or suspension ok,
951  * other = return error instead of stopping the thread.
952  *
953  * While a full suspension is under effect, even a single threading
954  * thread would be suspended if it made this call (but it shouldn't).
955  * This call should only be made from places where
956  * thread_exit() would be safe as that may be the outcome unless
957  * return_instead is set.
958  */
959 int
960 thread_suspend_check(int return_instead)
961 {
962 	struct thread *td;
963 	struct proc *p;
964 	int wakeup_swapper;
965 
966 	td = curthread;
967 	p = td->td_proc;
968 	mtx_assert(&Giant, MA_NOTOWNED);
969 	PROC_LOCK_ASSERT(p, MA_OWNED);
970 	while (thread_suspend_check_needed()) {
971 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
972 			KASSERT(p->p_singlethread != NULL,
973 			    ("singlethread not set"));
974 			/*
975 			 * The only suspension in action is a
976 			 * single-threading. Single threader need not stop.
977 			 * It is safe to access p->p_singlethread unlocked
978 			 * because it can only be set to our address by us.
979 			 */
980 			if (p->p_singlethread == td)
981 				return (0);	/* Exempt from stopping. */
982 		}
983 		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
984 			return (EINTR);
985 
986 		/* Should we goto user boundary if we didn't come from there? */
987 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
988 		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
989 			return (ERESTART);
990 
991 		/*
992 		 * Ignore suspend requests if they are deferred.
993 		 */
994 		if ((td->td_flags & TDF_SBDRY) != 0) {
995 			KASSERT(return_instead,
996 			    ("TDF_SBDRY set for unsafe thread_suspend_check"));
997 			KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
998 			    (TDF_SEINTR | TDF_SERESTART),
999 			    ("both TDF_SEINTR and TDF_SERESTART"));
1000 			return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
1001 		}
1002 
1003 		/*
1004 		 * If the process is waiting for us to exit,
1005 		 * this thread should just suicide.
1006 		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1007 		 */
1008 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1009 			PROC_UNLOCK(p);
1010 
1011 			/*
1012 			 * Allow Linux emulation layer to do some work
1013 			 * before thread suicide.
1014 			 */
1015 			if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1016 				(p->p_sysent->sv_thread_detach)(td);
1017 			umtx_thread_exit(td);
1018 			kern_thr_exit(td);
1019 			panic("stopped thread did not exit");
1020 		}
1021 
1022 		PROC_SLOCK(p);
1023 		thread_stopped(p);
1024 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1025 			if (p->p_numthreads == p->p_suspcount + 1) {
1026 				thread_lock(p->p_singlethread);
1027 				wakeup_swapper = thread_unsuspend_one(
1028 				    p->p_singlethread, p, false);
1029 				thread_unlock(p->p_singlethread);
1030 				if (wakeup_swapper)
1031 					kick_proc0();
1032 			}
1033 		}
1034 		PROC_UNLOCK(p);
1035 		thread_lock(td);
1036 		/*
1037 		 * When a thread suspends, it just
1038 		 * gets taken off all queues.
1039 		 */
1040 		thread_suspend_one(td);
1041 		if (return_instead == 0) {
1042 			p->p_boundary_count++;
1043 			td->td_flags |= TDF_BOUNDARY;
1044 		}
1045 		PROC_SUNLOCK(p);
1046 		mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
1047 		thread_unlock(td);
1048 		PROC_LOCK(p);
1049 	}
1050 	return (0);
1051 }
1052 
1053 void
1054 thread_suspend_switch(struct thread *td, struct proc *p)
1055 {
1056 
1057 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1058 	PROC_LOCK_ASSERT(p, MA_OWNED);
1059 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1060 	/*
1061 	 * We implement thread_suspend_one in stages here to avoid
1062 	 * dropping the proc lock while the thread lock is owned.
1063 	 */
1064 	if (p == td->td_proc) {
1065 		thread_stopped(p);
1066 		p->p_suspcount++;
1067 	}
1068 	PROC_UNLOCK(p);
1069 	thread_lock(td);
1070 	td->td_flags &= ~TDF_NEEDSUSPCHK;
1071 	TD_SET_SUSPENDED(td);
1072 	sched_sleep(td, 0);
1073 	PROC_SUNLOCK(p);
1074 	DROP_GIANT();
1075 	mi_switch(SW_VOL | SWT_SUSPEND, NULL);
1076 	thread_unlock(td);
1077 	PICKUP_GIANT();
1078 	PROC_LOCK(p);
1079 	PROC_SLOCK(p);
1080 }
1081 
1082 void
1083 thread_suspend_one(struct thread *td)
1084 {
1085 	struct proc *p;
1086 
1087 	p = td->td_proc;
1088 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1089 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1090 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1091 	p->p_suspcount++;
1092 	td->td_flags &= ~TDF_NEEDSUSPCHK;
1093 	TD_SET_SUSPENDED(td);
1094 	sched_sleep(td, 0);
1095 }
1096 
1097 static int
1098 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1099 {
1100 
1101 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1102 	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1103 	TD_CLR_SUSPENDED(td);
1104 	td->td_flags &= ~TDF_ALLPROCSUSP;
1105 	if (td->td_proc == p) {
1106 		PROC_SLOCK_ASSERT(p, MA_OWNED);
1107 		p->p_suspcount--;
1108 		if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1109 			td->td_flags &= ~TDF_BOUNDARY;
1110 			p->p_boundary_count--;
1111 		}
1112 	}
1113 	return (setrunnable(td));
1114 }
1115 
1116 /*
1117  * Allow all threads blocked by single threading to continue running.
1118  */
1119 void
1120 thread_unsuspend(struct proc *p)
1121 {
1122 	struct thread *td;
1123 	int wakeup_swapper;
1124 
1125 	PROC_LOCK_ASSERT(p, MA_OWNED);
1126 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1127 	wakeup_swapper = 0;
1128 	if (!P_SHOULDSTOP(p)) {
1129                 FOREACH_THREAD_IN_PROC(p, td) {
1130 			thread_lock(td);
1131 			if (TD_IS_SUSPENDED(td)) {
1132 				wakeup_swapper |= thread_unsuspend_one(td, p,
1133 				    true);
1134 			}
1135 			thread_unlock(td);
1136 		}
1137 	} else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1138 	    p->p_numthreads == p->p_suspcount) {
1139 		/*
1140 		 * Stopping everything also did the job for the single
1141 		 * threading request. Now we've downgraded to single-threaded,
1142 		 * let it continue.
1143 		 */
1144 		if (p->p_singlethread->td_proc == p) {
1145 			thread_lock(p->p_singlethread);
1146 			wakeup_swapper = thread_unsuspend_one(
1147 			    p->p_singlethread, p, false);
1148 			thread_unlock(p->p_singlethread);
1149 		}
1150 	}
1151 	if (wakeup_swapper)
1152 		kick_proc0();
1153 }
1154 
1155 /*
1156  * End the single threading mode..
1157  */
1158 void
1159 thread_single_end(struct proc *p, int mode)
1160 {
1161 	struct thread *td;
1162 	int wakeup_swapper;
1163 
1164 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1165 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1166 	    ("invalid mode %d", mode));
1167 	PROC_LOCK_ASSERT(p, MA_OWNED);
1168 	KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1169 	    (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1170 	    ("mode %d does not match P_TOTAL_STOP", mode));
1171 	KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1172 	    ("thread_single_end from other thread %p %p",
1173 	    curthread, p->p_singlethread));
1174 	KASSERT(mode != SINGLE_BOUNDARY ||
1175 	    (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1176 	    ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1177 	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1178 	    P_TOTAL_STOP);
1179 	PROC_SLOCK(p);
1180 	p->p_singlethread = NULL;
1181 	wakeup_swapper = 0;
1182 	/*
1183 	 * If there are other threads they may now run,
1184 	 * unless of course there is a blanket 'stop order'
1185 	 * on the process. The single threader must be allowed
1186 	 * to continue however as this is a bad place to stop.
1187 	 */
1188 	if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1189                 FOREACH_THREAD_IN_PROC(p, td) {
1190 			thread_lock(td);
1191 			if (TD_IS_SUSPENDED(td)) {
1192 				wakeup_swapper |= thread_unsuspend_one(td, p,
1193 				    mode == SINGLE_BOUNDARY);
1194 			}
1195 			thread_unlock(td);
1196 		}
1197 	}
1198 	KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1199 	    ("inconsistent boundary count %d", p->p_boundary_count));
1200 	PROC_SUNLOCK(p);
1201 	if (wakeup_swapper)
1202 		kick_proc0();
1203 }
1204 
1205 struct thread *
1206 thread_find(struct proc *p, lwpid_t tid)
1207 {
1208 	struct thread *td;
1209 
1210 	PROC_LOCK_ASSERT(p, MA_OWNED);
1211 	FOREACH_THREAD_IN_PROC(p, td) {
1212 		if (td->td_tid == tid)
1213 			break;
1214 	}
1215 	return (td);
1216 }
1217 
1218 /* Locate a thread by number; return with proc lock held. */
1219 struct thread *
1220 tdfind(lwpid_t tid, pid_t pid)
1221 {
1222 #define RUN_THRESH	16
1223 	struct thread *td;
1224 	int run = 0;
1225 
1226 	rw_rlock(&tidhash_lock);
1227 	LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1228 		if (td->td_tid == tid) {
1229 			if (pid != -1 && td->td_proc->p_pid != pid) {
1230 				td = NULL;
1231 				break;
1232 			}
1233 			PROC_LOCK(td->td_proc);
1234 			if (td->td_proc->p_state == PRS_NEW) {
1235 				PROC_UNLOCK(td->td_proc);
1236 				td = NULL;
1237 				break;
1238 			}
1239 			if (run > RUN_THRESH) {
1240 				if (rw_try_upgrade(&tidhash_lock)) {
1241 					LIST_REMOVE(td, td_hash);
1242 					LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1243 						td, td_hash);
1244 					rw_wunlock(&tidhash_lock);
1245 					return (td);
1246 				}
1247 			}
1248 			break;
1249 		}
1250 		run++;
1251 	}
1252 	rw_runlock(&tidhash_lock);
1253 	return (td);
1254 }
1255 
1256 void
1257 tidhash_add(struct thread *td)
1258 {
1259 	rw_wlock(&tidhash_lock);
1260 	LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1261 	rw_wunlock(&tidhash_lock);
1262 }
1263 
1264 void
1265 tidhash_remove(struct thread *td)
1266 {
1267 	rw_wlock(&tidhash_lock);
1268 	LIST_REMOVE(td, td_hash);
1269 	rw_wunlock(&tidhash_lock);
1270 }
1271