xref: /freebsd/sys/kern/kern_thread.c (revision ca53e5aedfebcc1b4091b68e01b2d5cae923f85e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
5  *  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice(s), this list of conditions and the following disclaimer as
12  *    the first lines of this file unmodified other than the possible
13  *    addition of one or more copyright notices.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice(s), this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
22  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
28  * DAMAGE.
29  */
30 
31 #include "opt_witness.h"
32 #include "opt_hwpmc_hooks.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/bitstring.h>
44 #include <sys/epoch.h>
45 #include <sys/rangelock.h>
46 #include <sys/resourcevar.h>
47 #include <sys/sdt.h>
48 #include <sys/smp.h>
49 #include <sys/sched.h>
50 #include <sys/sleepqueue.h>
51 #include <sys/selinfo.h>
52 #include <sys/syscallsubr.h>
53 #include <sys/dtrace_bsd.h>
54 #include <sys/sysent.h>
55 #include <sys/turnstile.h>
56 #include <sys/taskqueue.h>
57 #include <sys/ktr.h>
58 #include <sys/rwlock.h>
59 #include <sys/umtx.h>
60 #include <sys/vmmeter.h>
61 #include <sys/cpuset.h>
62 #ifdef	HWPMC_HOOKS
63 #include <sys/pmckern.h>
64 #endif
65 #include <sys/priv.h>
66 
67 #include <security/audit/audit.h>
68 
69 #include <vm/pmap.h>
70 #include <vm/vm.h>
71 #include <vm/vm_extern.h>
72 #include <vm/uma.h>
73 #include <vm/vm_phys.h>
74 #include <sys/eventhandler.h>
75 
76 /*
77  * Asserts below verify the stability of struct thread and struct proc
78  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
79  * to drift, change to the structures must be accompanied by the
80  * assert update.
81  *
82  * On the stable branches after KBI freeze, conditions must not be
83  * violated.  Typically new fields are moved to the end of the
84  * structures.
85  */
86 #ifdef __amd64__
87 _Static_assert(offsetof(struct thread, td_flags) == 0xfc,
88     "struct thread KBI td_flags");
89 _Static_assert(offsetof(struct thread, td_pflags) == 0x104,
90     "struct thread KBI td_pflags");
91 _Static_assert(offsetof(struct thread, td_frame) == 0x4a0,
92     "struct thread KBI td_frame");
93 _Static_assert(offsetof(struct thread, td_emuldata) == 0x6b0,
94     "struct thread KBI td_emuldata");
95 _Static_assert(offsetof(struct proc, p_flag) == 0xb8,
96     "struct proc KBI p_flag");
97 _Static_assert(offsetof(struct proc, p_pid) == 0xc4,
98     "struct proc KBI p_pid");
99 _Static_assert(offsetof(struct proc, p_filemon) == 0x3c0,
100     "struct proc KBI p_filemon");
101 _Static_assert(offsetof(struct proc, p_comm) == 0x3d8,
102     "struct proc KBI p_comm");
103 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4b8,
104     "struct proc KBI p_emuldata");
105 #endif
106 #ifdef __i386__
107 _Static_assert(offsetof(struct thread, td_flags) == 0x98,
108     "struct thread KBI td_flags");
109 _Static_assert(offsetof(struct thread, td_pflags) == 0xa0,
110     "struct thread KBI td_pflags");
111 _Static_assert(offsetof(struct thread, td_frame) == 0x300,
112     "struct thread KBI td_frame");
113 _Static_assert(offsetof(struct thread, td_emuldata) == 0x344,
114     "struct thread KBI td_emuldata");
115 _Static_assert(offsetof(struct proc, p_flag) == 0x6c,
116     "struct proc KBI p_flag");
117 _Static_assert(offsetof(struct proc, p_pid) == 0x78,
118     "struct proc KBI p_pid");
119 _Static_assert(offsetof(struct proc, p_filemon) == 0x26c,
120     "struct proc KBI p_filemon");
121 _Static_assert(offsetof(struct proc, p_comm) == 0x280,
122     "struct proc KBI p_comm");
123 _Static_assert(offsetof(struct proc, p_emuldata) == 0x30c,
124     "struct proc KBI p_emuldata");
125 #endif
126 
127 SDT_PROVIDER_DECLARE(proc);
128 SDT_PROBE_DEFINE(proc, , , lwp__exit);
129 
130 /*
131  * thread related storage.
132  */
133 static uma_zone_t thread_zone;
134 
135 struct thread_domain_data {
136 	struct thread	*tdd_zombies;
137 	int		tdd_reapticks;
138 } __aligned(CACHE_LINE_SIZE);
139 
140 static struct thread_domain_data thread_domain_data[MAXMEMDOM];
141 
142 static struct task	thread_reap_task;
143 static struct callout  	thread_reap_callout;
144 
145 static void thread_zombie(struct thread *);
146 static void thread_reap(void);
147 static void thread_reap_all(void);
148 static void thread_reap_task_cb(void *, int);
149 static void thread_reap_callout_cb(void *);
150 static int thread_unsuspend_one(struct thread *td, struct proc *p,
151     bool boundary);
152 static void thread_free_batched(struct thread *td);
153 
154 static __exclusive_cache_line struct mtx tid_lock;
155 static bitstr_t *tid_bitmap;
156 
157 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
158 
159 static int maxthread;
160 SYSCTL_INT(_kern, OID_AUTO, maxthread, CTLFLAG_RDTUN,
161     &maxthread, 0, "Maximum number of threads");
162 
163 static __exclusive_cache_line int nthreads;
164 
165 static LIST_HEAD(tidhashhead, thread) *tidhashtbl;
166 static u_long	tidhash;
167 static u_long	tidhashlock;
168 static struct	rwlock *tidhashtbl_lock;
169 #define	TIDHASH(tid)		(&tidhashtbl[(tid) & tidhash])
170 #define	TIDHASHLOCK(tid)	(&tidhashtbl_lock[(tid) & tidhashlock])
171 
172 EVENTHANDLER_LIST_DEFINE(thread_ctor);
173 EVENTHANDLER_LIST_DEFINE(thread_dtor);
174 EVENTHANDLER_LIST_DEFINE(thread_init);
175 EVENTHANDLER_LIST_DEFINE(thread_fini);
176 
177 static bool
178 thread_count_inc_try(void)
179 {
180 	int nthreads_new;
181 
182 	nthreads_new = atomic_fetchadd_int(&nthreads, 1) + 1;
183 	if (nthreads_new >= maxthread - 100) {
184 		if (priv_check_cred(curthread->td_ucred, PRIV_MAXPROC) != 0 ||
185 		    nthreads_new >= maxthread) {
186 			atomic_subtract_int(&nthreads, 1);
187 			return (false);
188 		}
189 	}
190 	return (true);
191 }
192 
193 static bool
194 thread_count_inc(void)
195 {
196 	static struct timeval lastfail;
197 	static int curfail;
198 
199 	thread_reap();
200 	if (thread_count_inc_try()) {
201 		return (true);
202 	}
203 
204 	thread_reap_all();
205 	if (thread_count_inc_try()) {
206 		return (true);
207 	}
208 
209 	if (ppsratecheck(&lastfail, &curfail, 1)) {
210 		printf("maxthread limit exceeded by uid %u "
211 		    "(pid %d); consider increasing kern.maxthread\n",
212 		    curthread->td_ucred->cr_ruid, curproc->p_pid);
213 	}
214 	return (false);
215 }
216 
217 static void
218 thread_count_sub(int n)
219 {
220 
221 	atomic_subtract_int(&nthreads, n);
222 }
223 
224 static void
225 thread_count_dec(void)
226 {
227 
228 	thread_count_sub(1);
229 }
230 
231 static lwpid_t
232 tid_alloc(void)
233 {
234 	static lwpid_t trytid;
235 	lwpid_t tid;
236 
237 	mtx_lock(&tid_lock);
238 	/*
239 	 * It is an invariant that the bitmap is big enough to hold maxthread
240 	 * IDs. If we got to this point there has to be at least one free.
241 	 */
242 	if (trytid >= maxthread)
243 		trytid = 0;
244 	bit_ffc_at(tid_bitmap, trytid, maxthread, &tid);
245 	if (tid == -1) {
246 		KASSERT(trytid != 0, ("unexpectedly ran out of IDs"));
247 		trytid = 0;
248 		bit_ffc_at(tid_bitmap, trytid, maxthread, &tid);
249 		KASSERT(tid != -1, ("unexpectedly ran out of IDs"));
250 	}
251 	bit_set(tid_bitmap, tid);
252 	trytid = tid + 1;
253 	mtx_unlock(&tid_lock);
254 	return (tid + NO_PID);
255 }
256 
257 static void
258 tid_free_locked(lwpid_t rtid)
259 {
260 	lwpid_t tid;
261 
262 	mtx_assert(&tid_lock, MA_OWNED);
263 	KASSERT(rtid >= NO_PID,
264 	    ("%s: invalid tid %d\n", __func__, rtid));
265 	tid = rtid - NO_PID;
266 	KASSERT(bit_test(tid_bitmap, tid) != 0,
267 	    ("thread ID %d not allocated\n", rtid));
268 	bit_clear(tid_bitmap, tid);
269 }
270 
271 static void
272 tid_free(lwpid_t rtid)
273 {
274 
275 	mtx_lock(&tid_lock);
276 	tid_free_locked(rtid);
277 	mtx_unlock(&tid_lock);
278 }
279 
280 static void
281 tid_free_batch(lwpid_t *batch, int n)
282 {
283 	int i;
284 
285 	mtx_lock(&tid_lock);
286 	for (i = 0; i < n; i++) {
287 		tid_free_locked(batch[i]);
288 	}
289 	mtx_unlock(&tid_lock);
290 }
291 
292 /*
293  * Batching for thread reapping.
294  */
295 struct tidbatch {
296 	lwpid_t tab[16];
297 	int n;
298 };
299 
300 static void
301 tidbatch_prep(struct tidbatch *tb)
302 {
303 
304 	tb->n = 0;
305 }
306 
307 static void
308 tidbatch_add(struct tidbatch *tb, struct thread *td)
309 {
310 
311 	KASSERT(tb->n < nitems(tb->tab),
312 	    ("%s: count too high %d", __func__, tb->n));
313 	tb->tab[tb->n] = td->td_tid;
314 	tb->n++;
315 }
316 
317 static void
318 tidbatch_process(struct tidbatch *tb)
319 {
320 
321 	KASSERT(tb->n <= nitems(tb->tab),
322 	    ("%s: count too high %d", __func__, tb->n));
323 	if (tb->n == nitems(tb->tab)) {
324 		tid_free_batch(tb->tab, tb->n);
325 		tb->n = 0;
326 	}
327 }
328 
329 static void
330 tidbatch_final(struct tidbatch *tb)
331 {
332 
333 	KASSERT(tb->n <= nitems(tb->tab),
334 	    ("%s: count too high %d", __func__, tb->n));
335 	if (tb->n != 0) {
336 		tid_free_batch(tb->tab, tb->n);
337 	}
338 }
339 
340 /*
341  * Prepare a thread for use.
342  */
343 static int
344 thread_ctor(void *mem, int size, void *arg, int flags)
345 {
346 	struct thread	*td;
347 
348 	td = (struct thread *)mem;
349 	td->td_state = TDS_INACTIVE;
350 	td->td_lastcpu = td->td_oncpu = NOCPU;
351 
352 	/*
353 	 * Note that td_critnest begins life as 1 because the thread is not
354 	 * running and is thereby implicitly waiting to be on the receiving
355 	 * end of a context switch.
356 	 */
357 	td->td_critnest = 1;
358 	td->td_lend_user_pri = PRI_MAX;
359 #ifdef AUDIT
360 	audit_thread_alloc(td);
361 #endif
362 #ifdef KDTRACE_HOOKS
363 	kdtrace_thread_ctor(td);
364 #endif
365 	umtx_thread_alloc(td);
366 	MPASS(td->td_sel == NULL);
367 	return (0);
368 }
369 
370 /*
371  * Reclaim a thread after use.
372  */
373 static void
374 thread_dtor(void *mem, int size, void *arg)
375 {
376 	struct thread *td;
377 
378 	td = (struct thread *)mem;
379 
380 #ifdef INVARIANTS
381 	/* Verify that this thread is in a safe state to free. */
382 	switch (td->td_state) {
383 	case TDS_INHIBITED:
384 	case TDS_RUNNING:
385 	case TDS_CAN_RUN:
386 	case TDS_RUNQ:
387 		/*
388 		 * We must never unlink a thread that is in one of
389 		 * these states, because it is currently active.
390 		 */
391 		panic("bad state for thread unlinking");
392 		/* NOTREACHED */
393 	case TDS_INACTIVE:
394 		break;
395 	default:
396 		panic("bad thread state");
397 		/* NOTREACHED */
398 	}
399 #endif
400 #ifdef AUDIT
401 	audit_thread_free(td);
402 #endif
403 #ifdef KDTRACE_HOOKS
404 	kdtrace_thread_dtor(td);
405 #endif
406 	/* Free all OSD associated to this thread. */
407 	osd_thread_exit(td);
408 	td_softdep_cleanup(td);
409 	MPASS(td->td_su == NULL);
410 	seltdfini(td);
411 }
412 
413 /*
414  * Initialize type-stable parts of a thread (when newly created).
415  */
416 static int
417 thread_init(void *mem, int size, int flags)
418 {
419 	struct thread *td;
420 
421 	td = (struct thread *)mem;
422 
423 	td->td_allocdomain = vm_phys_domain(vtophys(td));
424 	td->td_sleepqueue = sleepq_alloc();
425 	td->td_turnstile = turnstile_alloc();
426 	td->td_rlqe = NULL;
427 	EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
428 	umtx_thread_init(td);
429 	td->td_kstack = 0;
430 	td->td_sel = NULL;
431 	return (0);
432 }
433 
434 /*
435  * Tear down type-stable parts of a thread (just before being discarded).
436  */
437 static void
438 thread_fini(void *mem, int size)
439 {
440 	struct thread *td;
441 
442 	td = (struct thread *)mem;
443 	EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
444 	rlqentry_free(td->td_rlqe);
445 	turnstile_free(td->td_turnstile);
446 	sleepq_free(td->td_sleepqueue);
447 	umtx_thread_fini(td);
448 	MPASS(td->td_sel == NULL);
449 }
450 
451 /*
452  * For a newly created process,
453  * link up all the structures and its initial threads etc.
454  * called from:
455  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
456  * proc_dtor() (should go away)
457  * proc_init()
458  */
459 void
460 proc_linkup0(struct proc *p, struct thread *td)
461 {
462 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
463 	proc_linkup(p, td);
464 }
465 
466 void
467 proc_linkup(struct proc *p, struct thread *td)
468 {
469 
470 	sigqueue_init(&p->p_sigqueue, p);
471 	p->p_ksi = ksiginfo_alloc(1);
472 	if (p->p_ksi != NULL) {
473 		/* XXX p_ksi may be null if ksiginfo zone is not ready */
474 		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
475 	}
476 	LIST_INIT(&p->p_mqnotifier);
477 	p->p_numthreads = 0;
478 	thread_link(td, p);
479 }
480 
481 extern int max_threads_per_proc;
482 
483 /*
484  * Initialize global thread allocation resources.
485  */
486 void
487 threadinit(void)
488 {
489 	u_long i;
490 	lwpid_t tid0;
491 	uint32_t flags;
492 
493 	/*
494 	 * Place an upper limit on threads which can be allocated.
495 	 *
496 	 * Note that other factors may make the de facto limit much lower.
497 	 *
498 	 * Platform limits are somewhat arbitrary but deemed "more than good
499 	 * enough" for the foreseable future.
500 	 */
501 	if (maxthread == 0) {
502 #ifdef _LP64
503 		maxthread = MIN(maxproc * max_threads_per_proc, 1000000);
504 #else
505 		maxthread = MIN(maxproc * max_threads_per_proc, 100000);
506 #endif
507 	}
508 
509 	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
510 	tid_bitmap = bit_alloc(maxthread, M_TIDHASH, M_WAITOK);
511 	/*
512 	 * Handle thread0.
513 	 */
514 	thread_count_inc();
515 	tid0 = tid_alloc();
516 	if (tid0 != THREAD0_TID)
517 		panic("tid0 %d != %d\n", tid0, THREAD0_TID);
518 
519 	flags = UMA_ZONE_NOFREE;
520 #ifdef __aarch64__
521 	/*
522 	 * Force thread structures to be allocated from the direct map.
523 	 * Otherwise, superpage promotions and demotions may temporarily
524 	 * invalidate thread structure mappings.  For most dynamically allocated
525 	 * structures this is not a problem, but translation faults cannot be
526 	 * handled without accessing curthread.
527 	 */
528 	flags |= UMA_ZONE_CONTIG;
529 #endif
530 	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
531 	    thread_ctor, thread_dtor, thread_init, thread_fini,
532 	    32 - 1, flags);
533 	tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
534 	tidhashlock = (tidhash + 1) / 64;
535 	if (tidhashlock > 0)
536 		tidhashlock--;
537 	tidhashtbl_lock = malloc(sizeof(*tidhashtbl_lock) * (tidhashlock + 1),
538 	    M_TIDHASH, M_WAITOK | M_ZERO);
539 	for (i = 0; i < tidhashlock + 1; i++)
540 		rw_init(&tidhashtbl_lock[i], "tidhash");
541 
542 	TASK_INIT(&thread_reap_task, 0, thread_reap_task_cb, NULL);
543 	callout_init(&thread_reap_callout, 1);
544 	callout_reset(&thread_reap_callout, 5 * hz, thread_reap_callout_cb, NULL);
545 }
546 
547 /*
548  * Place an unused thread on the zombie list.
549  */
550 void
551 thread_zombie(struct thread *td)
552 {
553 	struct thread_domain_data *tdd;
554 	struct thread *ztd;
555 
556 	tdd = &thread_domain_data[td->td_allocdomain];
557 	ztd = atomic_load_ptr(&tdd->tdd_zombies);
558 	for (;;) {
559 		td->td_zombie = ztd;
560 		if (atomic_fcmpset_rel_ptr((uintptr_t *)&tdd->tdd_zombies,
561 		    (uintptr_t *)&ztd, (uintptr_t)td))
562 			break;
563 		continue;
564 	}
565 }
566 
567 /*
568  * Release a thread that has exited after cpu_throw().
569  */
570 void
571 thread_stash(struct thread *td)
572 {
573 	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
574 	thread_zombie(td);
575 }
576 
577 /*
578  * Reap zombies from passed domain.
579  */
580 static void
581 thread_reap_domain(struct thread_domain_data *tdd)
582 {
583 	struct thread *itd, *ntd;
584 	struct tidbatch tidbatch;
585 	struct credbatch credbatch;
586 	int tdcount;
587 	struct plimit *lim;
588 	int limcount;
589 
590 	/*
591 	 * Reading upfront is pessimal if followed by concurrent atomic_swap,
592 	 * but most of the time the list is empty.
593 	 */
594 	if (tdd->tdd_zombies == NULL)
595 		return;
596 
597 	itd = (struct thread *)atomic_swap_ptr((uintptr_t *)&tdd->tdd_zombies,
598 	    (uintptr_t)NULL);
599 	if (itd == NULL)
600 		return;
601 
602 	/*
603 	 * Multiple CPUs can get here, the race is fine as ticks is only
604 	 * advisory.
605 	 */
606 	tdd->tdd_reapticks = ticks;
607 
608 	tidbatch_prep(&tidbatch);
609 	credbatch_prep(&credbatch);
610 	tdcount = 0;
611 	lim = NULL;
612 	limcount = 0;
613 
614 	while (itd != NULL) {
615 		ntd = itd->td_zombie;
616 		EVENTHANDLER_DIRECT_INVOKE(thread_dtor, itd);
617 		tidbatch_add(&tidbatch, itd);
618 		credbatch_add(&credbatch, itd);
619 		MPASS(itd->td_limit != NULL);
620 		if (lim != itd->td_limit) {
621 			if (limcount != 0) {
622 				lim_freen(lim, limcount);
623 				limcount = 0;
624 			}
625 		}
626 		lim = itd->td_limit;
627 		limcount++;
628 		thread_free_batched(itd);
629 		tidbatch_process(&tidbatch);
630 		credbatch_process(&credbatch);
631 		tdcount++;
632 		if (tdcount == 32) {
633 			thread_count_sub(tdcount);
634 			tdcount = 0;
635 		}
636 		itd = ntd;
637 	}
638 
639 	tidbatch_final(&tidbatch);
640 	credbatch_final(&credbatch);
641 	if (tdcount != 0) {
642 		thread_count_sub(tdcount);
643 	}
644 	MPASS(limcount != 0);
645 	lim_freen(lim, limcount);
646 }
647 
648 /*
649  * Reap zombies from all domains.
650  */
651 static void
652 thread_reap_all(void)
653 {
654 	struct thread_domain_data *tdd;
655 	int i, domain;
656 
657 	domain = PCPU_GET(domain);
658 	for (i = 0; i < vm_ndomains; i++) {
659 		tdd = &thread_domain_data[(i + domain) % vm_ndomains];
660 		thread_reap_domain(tdd);
661 	}
662 }
663 
664 /*
665  * Reap zombies from local domain.
666  */
667 static void
668 thread_reap(void)
669 {
670 	struct thread_domain_data *tdd;
671 	int domain;
672 
673 	domain = PCPU_GET(domain);
674 	tdd = &thread_domain_data[domain];
675 
676 	thread_reap_domain(tdd);
677 }
678 
679 static void
680 thread_reap_task_cb(void *arg __unused, int pending __unused)
681 {
682 
683 	thread_reap_all();
684 }
685 
686 static void
687 thread_reap_callout_cb(void *arg __unused)
688 {
689 	struct thread_domain_data *tdd;
690 	int i, cticks, lticks;
691 	bool wantreap;
692 
693 	wantreap = false;
694 	cticks = atomic_load_int(&ticks);
695 	for (i = 0; i < vm_ndomains; i++) {
696 		tdd = &thread_domain_data[i];
697 		lticks = tdd->tdd_reapticks;
698 		if (tdd->tdd_zombies != NULL &&
699 		    (u_int)(cticks - lticks) > 5 * hz) {
700 			wantreap = true;
701 			break;
702 		}
703 	}
704 
705 	if (wantreap)
706 		taskqueue_enqueue(taskqueue_thread, &thread_reap_task);
707 	callout_reset(&thread_reap_callout, 5 * hz, thread_reap_callout_cb, NULL);
708 }
709 
710 /*
711  * Allocate a thread.
712  */
713 struct thread *
714 thread_alloc(int pages)
715 {
716 	struct thread *td;
717 	lwpid_t tid;
718 
719 	if (!thread_count_inc()) {
720 		return (NULL);
721 	}
722 
723 	tid = tid_alloc();
724 	td = uma_zalloc(thread_zone, M_WAITOK);
725 	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
726 	if (!vm_thread_new(td, pages)) {
727 		uma_zfree(thread_zone, td);
728 		tid_free(tid);
729 		thread_count_dec();
730 		return (NULL);
731 	}
732 	td->td_tid = tid;
733 	cpu_thread_alloc(td);
734 	EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
735 	return (td);
736 }
737 
738 int
739 thread_alloc_stack(struct thread *td, int pages)
740 {
741 
742 	KASSERT(td->td_kstack == 0,
743 	    ("thread_alloc_stack called on a thread with kstack"));
744 	if (!vm_thread_new(td, pages))
745 		return (0);
746 	cpu_thread_alloc(td);
747 	return (1);
748 }
749 
750 /*
751  * Deallocate a thread.
752  */
753 static void
754 thread_free_batched(struct thread *td)
755 {
756 
757 	lock_profile_thread_exit(td);
758 	if (td->td_cpuset)
759 		cpuset_rel(td->td_cpuset);
760 	td->td_cpuset = NULL;
761 	cpu_thread_free(td);
762 	if (td->td_kstack != 0)
763 		vm_thread_dispose(td);
764 	callout_drain(&td->td_slpcallout);
765 	/*
766 	 * Freeing handled by the caller.
767 	 */
768 	td->td_tid = -1;
769 	uma_zfree(thread_zone, td);
770 }
771 
772 void
773 thread_free(struct thread *td)
774 {
775 	lwpid_t tid;
776 
777 	EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
778 	tid = td->td_tid;
779 	thread_free_batched(td);
780 	tid_free(tid);
781 	thread_count_dec();
782 }
783 
784 void
785 thread_cow_get_proc(struct thread *newtd, struct proc *p)
786 {
787 
788 	PROC_LOCK_ASSERT(p, MA_OWNED);
789 	newtd->td_realucred = crcowget(p->p_ucred);
790 	newtd->td_ucred = newtd->td_realucred;
791 	newtd->td_limit = lim_hold(p->p_limit);
792 	newtd->td_cowgen = p->p_cowgen;
793 }
794 
795 void
796 thread_cow_get(struct thread *newtd, struct thread *td)
797 {
798 
799 	MPASS(td->td_realucred == td->td_ucred);
800 	newtd->td_realucred = crcowget(td->td_realucred);
801 	newtd->td_ucred = newtd->td_realucred;
802 	newtd->td_limit = lim_hold(td->td_limit);
803 	newtd->td_cowgen = td->td_cowgen;
804 }
805 
806 void
807 thread_cow_free(struct thread *td)
808 {
809 
810 	if (td->td_realucred != NULL)
811 		crcowfree(td);
812 	if (td->td_limit != NULL)
813 		lim_free(td->td_limit);
814 }
815 
816 void
817 thread_cow_update(struct thread *td)
818 {
819 	struct proc *p;
820 	struct ucred *oldcred;
821 	struct plimit *oldlimit;
822 
823 	p = td->td_proc;
824 	oldlimit = NULL;
825 	PROC_LOCK(p);
826 	oldcred = crcowsync();
827 	if (td->td_limit != p->p_limit) {
828 		oldlimit = td->td_limit;
829 		td->td_limit = lim_hold(p->p_limit);
830 	}
831 	td->td_cowgen = p->p_cowgen;
832 	PROC_UNLOCK(p);
833 	if (oldcred != NULL)
834 		crfree(oldcred);
835 	if (oldlimit != NULL)
836 		lim_free(oldlimit);
837 }
838 
839 /*
840  * Discard the current thread and exit from its context.
841  * Always called with scheduler locked.
842  *
843  * Because we can't free a thread while we're operating under its context,
844  * push the current thread into our CPU's deadthread holder. This means
845  * we needn't worry about someone else grabbing our context before we
846  * do a cpu_throw().
847  */
848 void
849 thread_exit(void)
850 {
851 	uint64_t runtime, new_switchtime;
852 	struct thread *td;
853 	struct thread *td2;
854 	struct proc *p;
855 	int wakeup_swapper;
856 
857 	td = curthread;
858 	p = td->td_proc;
859 
860 	PROC_SLOCK_ASSERT(p, MA_OWNED);
861 	mtx_assert(&Giant, MA_NOTOWNED);
862 
863 	PROC_LOCK_ASSERT(p, MA_OWNED);
864 	KASSERT(p != NULL, ("thread exiting without a process"));
865 	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
866 	    (long)p->p_pid, td->td_name);
867 	SDT_PROBE0(proc, , , lwp__exit);
868 	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
869 	MPASS(td->td_realucred == td->td_ucred);
870 
871 	/*
872 	 * drop FPU & debug register state storage, or any other
873 	 * architecture specific resources that
874 	 * would not be on a new untouched process.
875 	 */
876 	cpu_thread_exit(td);
877 
878 	/*
879 	 * The last thread is left attached to the process
880 	 * So that the whole bundle gets recycled. Skip
881 	 * all this stuff if we never had threads.
882 	 * EXIT clears all sign of other threads when
883 	 * it goes to single threading, so the last thread always
884 	 * takes the short path.
885 	 */
886 	if (p->p_flag & P_HADTHREADS) {
887 		if (p->p_numthreads > 1) {
888 			atomic_add_int(&td->td_proc->p_exitthreads, 1);
889 			thread_unlink(td);
890 			td2 = FIRST_THREAD_IN_PROC(p);
891 			sched_exit_thread(td2, td);
892 
893 			/*
894 			 * The test below is NOT true if we are the
895 			 * sole exiting thread. P_STOPPED_SINGLE is unset
896 			 * in exit1() after it is the only survivor.
897 			 */
898 			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
899 				if (p->p_numthreads == p->p_suspcount) {
900 					thread_lock(p->p_singlethread);
901 					wakeup_swapper = thread_unsuspend_one(
902 						p->p_singlethread, p, false);
903 					if (wakeup_swapper)
904 						kick_proc0();
905 				}
906 			}
907 
908 			PCPU_SET(deadthread, td);
909 		} else {
910 			/*
911 			 * The last thread is exiting.. but not through exit()
912 			 */
913 			panic ("thread_exit: Last thread exiting on its own");
914 		}
915 	}
916 #ifdef	HWPMC_HOOKS
917 	/*
918 	 * If this thread is part of a process that is being tracked by hwpmc(4),
919 	 * inform the module of the thread's impending exit.
920 	 */
921 	if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
922 		PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
923 		PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
924 	} else if (PMC_SYSTEM_SAMPLING_ACTIVE())
925 		PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL);
926 #endif
927 	PROC_UNLOCK(p);
928 	PROC_STATLOCK(p);
929 	thread_lock(td);
930 	PROC_SUNLOCK(p);
931 
932 	/* Do the same timestamp bookkeeping that mi_switch() would do. */
933 	new_switchtime = cpu_ticks();
934 	runtime = new_switchtime - PCPU_GET(switchtime);
935 	td->td_runtime += runtime;
936 	td->td_incruntime += runtime;
937 	PCPU_SET(switchtime, new_switchtime);
938 	PCPU_SET(switchticks, ticks);
939 	VM_CNT_INC(v_swtch);
940 
941 	/* Save our resource usage in our process. */
942 	td->td_ru.ru_nvcsw++;
943 	ruxagg_locked(p, td);
944 	rucollect(&p->p_ru, &td->td_ru);
945 	PROC_STATUNLOCK(p);
946 
947 	td->td_state = TDS_INACTIVE;
948 #ifdef WITNESS
949 	witness_thread_exit(td);
950 #endif
951 	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
952 	sched_throw(td);
953 	panic("I'm a teapot!");
954 	/* NOTREACHED */
955 }
956 
957 /*
958  * Do any thread specific cleanups that may be needed in wait()
959  * called with Giant, proc and schedlock not held.
960  */
961 void
962 thread_wait(struct proc *p)
963 {
964 	struct thread *td;
965 
966 	mtx_assert(&Giant, MA_NOTOWNED);
967 	KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
968 	KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
969 	td = FIRST_THREAD_IN_PROC(p);
970 	/* Lock the last thread so we spin until it exits cpu_throw(). */
971 	thread_lock(td);
972 	thread_unlock(td);
973 	lock_profile_thread_exit(td);
974 	cpuset_rel(td->td_cpuset);
975 	td->td_cpuset = NULL;
976 	cpu_thread_clean(td);
977 	thread_cow_free(td);
978 	callout_drain(&td->td_slpcallout);
979 	thread_reap();	/* check for zombie threads etc. */
980 }
981 
982 /*
983  * Link a thread to a process.
984  * set up anything that needs to be initialized for it to
985  * be used by the process.
986  */
987 void
988 thread_link(struct thread *td, struct proc *p)
989 {
990 
991 	/*
992 	 * XXX This can't be enabled because it's called for proc0 before
993 	 * its lock has been created.
994 	 * PROC_LOCK_ASSERT(p, MA_OWNED);
995 	 */
996 	td->td_state    = TDS_INACTIVE;
997 	td->td_proc     = p;
998 	td->td_flags    = TDF_INMEM;
999 
1000 	LIST_INIT(&td->td_contested);
1001 	LIST_INIT(&td->td_lprof[0]);
1002 	LIST_INIT(&td->td_lprof[1]);
1003 #ifdef EPOCH_TRACE
1004 	SLIST_INIT(&td->td_epochs);
1005 #endif
1006 	sigqueue_init(&td->td_sigqueue, p);
1007 	callout_init(&td->td_slpcallout, 1);
1008 	TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
1009 	p->p_numthreads++;
1010 }
1011 
1012 /*
1013  * Called from:
1014  *  thread_exit()
1015  */
1016 void
1017 thread_unlink(struct thread *td)
1018 {
1019 	struct proc *p = td->td_proc;
1020 
1021 	PROC_LOCK_ASSERT(p, MA_OWNED);
1022 #ifdef EPOCH_TRACE
1023 	MPASS(SLIST_EMPTY(&td->td_epochs));
1024 #endif
1025 
1026 	TAILQ_REMOVE(&p->p_threads, td, td_plist);
1027 	p->p_numthreads--;
1028 	/* could clear a few other things here */
1029 	/* Must  NOT clear links to proc! */
1030 }
1031 
1032 static int
1033 calc_remaining(struct proc *p, int mode)
1034 {
1035 	int remaining;
1036 
1037 	PROC_LOCK_ASSERT(p, MA_OWNED);
1038 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1039 	if (mode == SINGLE_EXIT)
1040 		remaining = p->p_numthreads;
1041 	else if (mode == SINGLE_BOUNDARY)
1042 		remaining = p->p_numthreads - p->p_boundary_count;
1043 	else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
1044 		remaining = p->p_numthreads - p->p_suspcount;
1045 	else
1046 		panic("calc_remaining: wrong mode %d", mode);
1047 	return (remaining);
1048 }
1049 
1050 static int
1051 remain_for_mode(int mode)
1052 {
1053 
1054 	return (mode == SINGLE_ALLPROC ? 0 : 1);
1055 }
1056 
1057 static int
1058 weed_inhib(int mode, struct thread *td2, struct proc *p)
1059 {
1060 	int wakeup_swapper;
1061 
1062 	PROC_LOCK_ASSERT(p, MA_OWNED);
1063 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1064 	THREAD_LOCK_ASSERT(td2, MA_OWNED);
1065 
1066 	wakeup_swapper = 0;
1067 
1068 	/*
1069 	 * Since the thread lock is dropped by the scheduler we have
1070 	 * to retry to check for races.
1071 	 */
1072 restart:
1073 	switch (mode) {
1074 	case SINGLE_EXIT:
1075 		if (TD_IS_SUSPENDED(td2)) {
1076 			wakeup_swapper |= thread_unsuspend_one(td2, p, true);
1077 			thread_lock(td2);
1078 			goto restart;
1079 		}
1080 		if (TD_CAN_ABORT(td2)) {
1081 			wakeup_swapper |= sleepq_abort(td2, EINTR);
1082 			return (wakeup_swapper);
1083 		}
1084 		break;
1085 	case SINGLE_BOUNDARY:
1086 	case SINGLE_NO_EXIT:
1087 		if (TD_IS_SUSPENDED(td2) &&
1088 		    (td2->td_flags & TDF_BOUNDARY) == 0) {
1089 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
1090 			thread_lock(td2);
1091 			goto restart;
1092 		}
1093 		if (TD_CAN_ABORT(td2)) {
1094 			wakeup_swapper |= sleepq_abort(td2, ERESTART);
1095 			return (wakeup_swapper);
1096 		}
1097 		break;
1098 	case SINGLE_ALLPROC:
1099 		/*
1100 		 * ALLPROC suspend tries to avoid spurious EINTR for
1101 		 * threads sleeping interruptable, by suspending the
1102 		 * thread directly, similarly to sig_suspend_threads().
1103 		 * Since such sleep is not performed at the user
1104 		 * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
1105 		 * is used to avoid immediate un-suspend.
1106 		 */
1107 		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
1108 		    TDF_ALLPROCSUSP)) == 0) {
1109 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
1110 			thread_lock(td2);
1111 			goto restart;
1112 		}
1113 		if (TD_CAN_ABORT(td2)) {
1114 			if ((td2->td_flags & TDF_SBDRY) == 0) {
1115 				thread_suspend_one(td2);
1116 				td2->td_flags |= TDF_ALLPROCSUSP;
1117 			} else {
1118 				wakeup_swapper |= sleepq_abort(td2, ERESTART);
1119 				return (wakeup_swapper);
1120 			}
1121 		}
1122 		break;
1123 	default:
1124 		break;
1125 	}
1126 	thread_unlock(td2);
1127 	return (wakeup_swapper);
1128 }
1129 
1130 /*
1131  * Enforce single-threading.
1132  *
1133  * Returns 1 if the caller must abort (another thread is waiting to
1134  * exit the process or similar). Process is locked!
1135  * Returns 0 when you are successfully the only thread running.
1136  * A process has successfully single threaded in the suspend mode when
1137  * There are no threads in user mode. Threads in the kernel must be
1138  * allowed to continue until they get to the user boundary. They may even
1139  * copy out their return values and data before suspending. They may however be
1140  * accelerated in reaching the user boundary as we will wake up
1141  * any sleeping threads that are interruptable. (PCATCH).
1142  */
1143 int
1144 thread_single(struct proc *p, int mode)
1145 {
1146 	struct thread *td;
1147 	struct thread *td2;
1148 	int remaining, wakeup_swapper;
1149 
1150 	td = curthread;
1151 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1152 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1153 	    ("invalid mode %d", mode));
1154 	/*
1155 	 * If allowing non-ALLPROC singlethreading for non-curproc
1156 	 * callers, calc_remaining() and remain_for_mode() should be
1157 	 * adjusted to also account for td->td_proc != p.  For now
1158 	 * this is not implemented because it is not used.
1159 	 */
1160 	KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
1161 	    (mode != SINGLE_ALLPROC && td->td_proc == p),
1162 	    ("mode %d proc %p curproc %p", mode, p, td->td_proc));
1163 	mtx_assert(&Giant, MA_NOTOWNED);
1164 	PROC_LOCK_ASSERT(p, MA_OWNED);
1165 
1166 	if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
1167 		return (0);
1168 
1169 	/* Is someone already single threading? */
1170 	if (p->p_singlethread != NULL && p->p_singlethread != td)
1171 		return (1);
1172 
1173 	if (mode == SINGLE_EXIT) {
1174 		p->p_flag |= P_SINGLE_EXIT;
1175 		p->p_flag &= ~P_SINGLE_BOUNDARY;
1176 	} else {
1177 		p->p_flag &= ~P_SINGLE_EXIT;
1178 		if (mode == SINGLE_BOUNDARY)
1179 			p->p_flag |= P_SINGLE_BOUNDARY;
1180 		else
1181 			p->p_flag &= ~P_SINGLE_BOUNDARY;
1182 	}
1183 	if (mode == SINGLE_ALLPROC)
1184 		p->p_flag |= P_TOTAL_STOP;
1185 	p->p_flag |= P_STOPPED_SINGLE;
1186 	PROC_SLOCK(p);
1187 	p->p_singlethread = td;
1188 	remaining = calc_remaining(p, mode);
1189 	while (remaining != remain_for_mode(mode)) {
1190 		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
1191 			goto stopme;
1192 		wakeup_swapper = 0;
1193 		FOREACH_THREAD_IN_PROC(p, td2) {
1194 			if (td2 == td)
1195 				continue;
1196 			thread_lock(td2);
1197 			td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
1198 			if (TD_IS_INHIBITED(td2)) {
1199 				wakeup_swapper |= weed_inhib(mode, td2, p);
1200 #ifdef SMP
1201 			} else if (TD_IS_RUNNING(td2) && td != td2) {
1202 				forward_signal(td2);
1203 				thread_unlock(td2);
1204 #endif
1205 			} else
1206 				thread_unlock(td2);
1207 		}
1208 		if (wakeup_swapper)
1209 			kick_proc0();
1210 		remaining = calc_remaining(p, mode);
1211 
1212 		/*
1213 		 * Maybe we suspended some threads.. was it enough?
1214 		 */
1215 		if (remaining == remain_for_mode(mode))
1216 			break;
1217 
1218 stopme:
1219 		/*
1220 		 * Wake us up when everyone else has suspended.
1221 		 * In the mean time we suspend as well.
1222 		 */
1223 		thread_suspend_switch(td, p);
1224 		remaining = calc_remaining(p, mode);
1225 	}
1226 	if (mode == SINGLE_EXIT) {
1227 		/*
1228 		 * Convert the process to an unthreaded process.  The
1229 		 * SINGLE_EXIT is called by exit1() or execve(), in
1230 		 * both cases other threads must be retired.
1231 		 */
1232 		KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
1233 		p->p_singlethread = NULL;
1234 		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
1235 
1236 		/*
1237 		 * Wait for any remaining threads to exit cpu_throw().
1238 		 */
1239 		while (p->p_exitthreads != 0) {
1240 			PROC_SUNLOCK(p);
1241 			PROC_UNLOCK(p);
1242 			sched_relinquish(td);
1243 			PROC_LOCK(p);
1244 			PROC_SLOCK(p);
1245 		}
1246 	} else if (mode == SINGLE_BOUNDARY) {
1247 		/*
1248 		 * Wait until all suspended threads are removed from
1249 		 * the processors.  The thread_suspend_check()
1250 		 * increments p_boundary_count while it is still
1251 		 * running, which makes it possible for the execve()
1252 		 * to destroy vmspace while our other threads are
1253 		 * still using the address space.
1254 		 *
1255 		 * We lock the thread, which is only allowed to
1256 		 * succeed after context switch code finished using
1257 		 * the address space.
1258 		 */
1259 		FOREACH_THREAD_IN_PROC(p, td2) {
1260 			if (td2 == td)
1261 				continue;
1262 			thread_lock(td2);
1263 			KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
1264 			    ("td %p not on boundary", td2));
1265 			KASSERT(TD_IS_SUSPENDED(td2),
1266 			    ("td %p is not suspended", td2));
1267 			thread_unlock(td2);
1268 		}
1269 	}
1270 	PROC_SUNLOCK(p);
1271 	return (0);
1272 }
1273 
1274 bool
1275 thread_suspend_check_needed(void)
1276 {
1277 	struct proc *p;
1278 	struct thread *td;
1279 
1280 	td = curthread;
1281 	p = td->td_proc;
1282 	PROC_LOCK_ASSERT(p, MA_OWNED);
1283 	return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
1284 	    (td->td_dbgflags & TDB_SUSPEND) != 0));
1285 }
1286 
1287 /*
1288  * Called in from locations that can safely check to see
1289  * whether we have to suspend or at least throttle for a
1290  * single-thread event (e.g. fork).
1291  *
1292  * Such locations include userret().
1293  * If the "return_instead" argument is non zero, the thread must be able to
1294  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
1295  *
1296  * The 'return_instead' argument tells the function if it may do a
1297  * thread_exit() or suspend, or whether the caller must abort and back
1298  * out instead.
1299  *
1300  * If the thread that set the single_threading request has set the
1301  * P_SINGLE_EXIT bit in the process flags then this call will never return
1302  * if 'return_instead' is false, but will exit.
1303  *
1304  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
1305  *---------------+--------------------+---------------------
1306  *       0       | returns 0          |   returns 0 or 1
1307  *               | when ST ends       |   immediately
1308  *---------------+--------------------+---------------------
1309  *       1       | thread exits       |   returns 1
1310  *               |                    |  immediately
1311  * 0 = thread_exit() or suspension ok,
1312  * other = return error instead of stopping the thread.
1313  *
1314  * While a full suspension is under effect, even a single threading
1315  * thread would be suspended if it made this call (but it shouldn't).
1316  * This call should only be made from places where
1317  * thread_exit() would be safe as that may be the outcome unless
1318  * return_instead is set.
1319  */
1320 int
1321 thread_suspend_check(int return_instead)
1322 {
1323 	struct thread *td;
1324 	struct proc *p;
1325 	int wakeup_swapper;
1326 
1327 	td = curthread;
1328 	p = td->td_proc;
1329 	mtx_assert(&Giant, MA_NOTOWNED);
1330 	PROC_LOCK_ASSERT(p, MA_OWNED);
1331 	while (thread_suspend_check_needed()) {
1332 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1333 			KASSERT(p->p_singlethread != NULL,
1334 			    ("singlethread not set"));
1335 			/*
1336 			 * The only suspension in action is a
1337 			 * single-threading. Single threader need not stop.
1338 			 * It is safe to access p->p_singlethread unlocked
1339 			 * because it can only be set to our address by us.
1340 			 */
1341 			if (p->p_singlethread == td)
1342 				return (0);	/* Exempt from stopping. */
1343 		}
1344 		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
1345 			return (EINTR);
1346 
1347 		/* Should we goto user boundary if we didn't come from there? */
1348 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1349 		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
1350 			return (ERESTART);
1351 
1352 		/*
1353 		 * Ignore suspend requests if they are deferred.
1354 		 */
1355 		if ((td->td_flags & TDF_SBDRY) != 0) {
1356 			KASSERT(return_instead,
1357 			    ("TDF_SBDRY set for unsafe thread_suspend_check"));
1358 			KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
1359 			    (TDF_SEINTR | TDF_SERESTART),
1360 			    ("both TDF_SEINTR and TDF_SERESTART"));
1361 			return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
1362 		}
1363 
1364 		/*
1365 		 * If the process is waiting for us to exit,
1366 		 * this thread should just suicide.
1367 		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1368 		 */
1369 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1370 			PROC_UNLOCK(p);
1371 
1372 			/*
1373 			 * Allow Linux emulation layer to do some work
1374 			 * before thread suicide.
1375 			 */
1376 			if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1377 				(p->p_sysent->sv_thread_detach)(td);
1378 			umtx_thread_exit(td);
1379 			kern_thr_exit(td);
1380 			panic("stopped thread did not exit");
1381 		}
1382 
1383 		PROC_SLOCK(p);
1384 		thread_stopped(p);
1385 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1386 			if (p->p_numthreads == p->p_suspcount + 1) {
1387 				thread_lock(p->p_singlethread);
1388 				wakeup_swapper = thread_unsuspend_one(
1389 				    p->p_singlethread, p, false);
1390 				if (wakeup_swapper)
1391 					kick_proc0();
1392 			}
1393 		}
1394 		PROC_UNLOCK(p);
1395 		thread_lock(td);
1396 		/*
1397 		 * When a thread suspends, it just
1398 		 * gets taken off all queues.
1399 		 */
1400 		thread_suspend_one(td);
1401 		if (return_instead == 0) {
1402 			p->p_boundary_count++;
1403 			td->td_flags |= TDF_BOUNDARY;
1404 		}
1405 		PROC_SUNLOCK(p);
1406 		mi_switch(SW_INVOL | SWT_SUSPEND);
1407 		PROC_LOCK(p);
1408 	}
1409 	return (0);
1410 }
1411 
1412 /*
1413  * Check for possible stops and suspensions while executing a
1414  * casueword or similar transiently failing operation.
1415  *
1416  * The sleep argument controls whether the function can handle a stop
1417  * request itself or it should return ERESTART and the request is
1418  * proceed at the kernel/user boundary in ast.
1419  *
1420  * Typically, when retrying due to casueword(9) failure (rv == 1), we
1421  * should handle the stop requests there, with exception of cases when
1422  * the thread owns a kernel resource, for instance busied the umtx
1423  * key, or when functions return immediately if thread_check_susp()
1424  * returned non-zero.  On the other hand, retrying the whole lock
1425  * operation, we better not stop there but delegate the handling to
1426  * ast.
1427  *
1428  * If the request is for thread termination P_SINGLE_EXIT, we cannot
1429  * handle it at all, and simply return EINTR.
1430  */
1431 int
1432 thread_check_susp(struct thread *td, bool sleep)
1433 {
1434 	struct proc *p;
1435 	int error;
1436 
1437 	/*
1438 	 * The check for TDF_NEEDSUSPCHK is racy, but it is enough to
1439 	 * eventually break the lockstep loop.
1440 	 */
1441 	if ((td->td_flags & TDF_NEEDSUSPCHK) == 0)
1442 		return (0);
1443 	error = 0;
1444 	p = td->td_proc;
1445 	PROC_LOCK(p);
1446 	if (p->p_flag & P_SINGLE_EXIT)
1447 		error = EINTR;
1448 	else if (P_SHOULDSTOP(p) ||
1449 	    ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND)))
1450 		error = sleep ? thread_suspend_check(0) : ERESTART;
1451 	PROC_UNLOCK(p);
1452 	return (error);
1453 }
1454 
1455 void
1456 thread_suspend_switch(struct thread *td, struct proc *p)
1457 {
1458 
1459 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1460 	PROC_LOCK_ASSERT(p, MA_OWNED);
1461 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1462 	/*
1463 	 * We implement thread_suspend_one in stages here to avoid
1464 	 * dropping the proc lock while the thread lock is owned.
1465 	 */
1466 	if (p == td->td_proc) {
1467 		thread_stopped(p);
1468 		p->p_suspcount++;
1469 	}
1470 	PROC_UNLOCK(p);
1471 	thread_lock(td);
1472 	td->td_flags &= ~TDF_NEEDSUSPCHK;
1473 	TD_SET_SUSPENDED(td);
1474 	sched_sleep(td, 0);
1475 	PROC_SUNLOCK(p);
1476 	DROP_GIANT();
1477 	mi_switch(SW_VOL | SWT_SUSPEND);
1478 	PICKUP_GIANT();
1479 	PROC_LOCK(p);
1480 	PROC_SLOCK(p);
1481 }
1482 
1483 void
1484 thread_suspend_one(struct thread *td)
1485 {
1486 	struct proc *p;
1487 
1488 	p = td->td_proc;
1489 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1490 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1491 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1492 	p->p_suspcount++;
1493 	td->td_flags &= ~TDF_NEEDSUSPCHK;
1494 	TD_SET_SUSPENDED(td);
1495 	sched_sleep(td, 0);
1496 }
1497 
1498 static int
1499 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1500 {
1501 
1502 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1503 	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1504 	TD_CLR_SUSPENDED(td);
1505 	td->td_flags &= ~TDF_ALLPROCSUSP;
1506 	if (td->td_proc == p) {
1507 		PROC_SLOCK_ASSERT(p, MA_OWNED);
1508 		p->p_suspcount--;
1509 		if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1510 			td->td_flags &= ~TDF_BOUNDARY;
1511 			p->p_boundary_count--;
1512 		}
1513 	}
1514 	return (setrunnable(td, 0));
1515 }
1516 
1517 /*
1518  * Allow all threads blocked by single threading to continue running.
1519  */
1520 void
1521 thread_unsuspend(struct proc *p)
1522 {
1523 	struct thread *td;
1524 	int wakeup_swapper;
1525 
1526 	PROC_LOCK_ASSERT(p, MA_OWNED);
1527 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1528 	wakeup_swapper = 0;
1529 	if (!P_SHOULDSTOP(p)) {
1530                 FOREACH_THREAD_IN_PROC(p, td) {
1531 			thread_lock(td);
1532 			if (TD_IS_SUSPENDED(td)) {
1533 				wakeup_swapper |= thread_unsuspend_one(td, p,
1534 				    true);
1535 			} else
1536 				thread_unlock(td);
1537 		}
1538 	} else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1539 	    p->p_numthreads == p->p_suspcount) {
1540 		/*
1541 		 * Stopping everything also did the job for the single
1542 		 * threading request. Now we've downgraded to single-threaded,
1543 		 * let it continue.
1544 		 */
1545 		if (p->p_singlethread->td_proc == p) {
1546 			thread_lock(p->p_singlethread);
1547 			wakeup_swapper = thread_unsuspend_one(
1548 			    p->p_singlethread, p, false);
1549 		}
1550 	}
1551 	if (wakeup_swapper)
1552 		kick_proc0();
1553 }
1554 
1555 /*
1556  * End the single threading mode..
1557  */
1558 void
1559 thread_single_end(struct proc *p, int mode)
1560 {
1561 	struct thread *td;
1562 	int wakeup_swapper;
1563 
1564 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1565 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1566 	    ("invalid mode %d", mode));
1567 	PROC_LOCK_ASSERT(p, MA_OWNED);
1568 	KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1569 	    (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1570 	    ("mode %d does not match P_TOTAL_STOP", mode));
1571 	KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1572 	    ("thread_single_end from other thread %p %p",
1573 	    curthread, p->p_singlethread));
1574 	KASSERT(mode != SINGLE_BOUNDARY ||
1575 	    (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1576 	    ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1577 	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1578 	    P_TOTAL_STOP);
1579 	PROC_SLOCK(p);
1580 	p->p_singlethread = NULL;
1581 	wakeup_swapper = 0;
1582 	/*
1583 	 * If there are other threads they may now run,
1584 	 * unless of course there is a blanket 'stop order'
1585 	 * on the process. The single threader must be allowed
1586 	 * to continue however as this is a bad place to stop.
1587 	 */
1588 	if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1589                 FOREACH_THREAD_IN_PROC(p, td) {
1590 			thread_lock(td);
1591 			if (TD_IS_SUSPENDED(td)) {
1592 				wakeup_swapper |= thread_unsuspend_one(td, p,
1593 				    mode == SINGLE_BOUNDARY);
1594 			} else
1595 				thread_unlock(td);
1596 		}
1597 	}
1598 	KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1599 	    ("inconsistent boundary count %d", p->p_boundary_count));
1600 	PROC_SUNLOCK(p);
1601 	if (wakeup_swapper)
1602 		kick_proc0();
1603 }
1604 
1605 /*
1606  * Locate a thread by number and return with proc lock held.
1607  *
1608  * thread exit establishes proc -> tidhash lock ordering, but lookup
1609  * takes tidhash first and needs to return locked proc.
1610  *
1611  * The problem is worked around by relying on type-safety of both
1612  * structures and doing the work in 2 steps:
1613  * - tidhash-locked lookup which saves both thread and proc pointers
1614  * - proc-locked verification that the found thread still matches
1615  */
1616 static bool
1617 tdfind_hash(lwpid_t tid, pid_t pid, struct proc **pp, struct thread **tdp)
1618 {
1619 #define RUN_THRESH	16
1620 	struct proc *p;
1621 	struct thread *td;
1622 	int run;
1623 	bool locked;
1624 
1625 	run = 0;
1626 	rw_rlock(TIDHASHLOCK(tid));
1627 	locked = true;
1628 	LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1629 		if (td->td_tid != tid) {
1630 			run++;
1631 			continue;
1632 		}
1633 		p = td->td_proc;
1634 		if (pid != -1 && p->p_pid != pid) {
1635 			td = NULL;
1636 			break;
1637 		}
1638 		if (run > RUN_THRESH) {
1639 			if (rw_try_upgrade(TIDHASHLOCK(tid))) {
1640 				LIST_REMOVE(td, td_hash);
1641 				LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1642 					td, td_hash);
1643 				rw_wunlock(TIDHASHLOCK(tid));
1644 				locked = false;
1645 				break;
1646 			}
1647 		}
1648 		break;
1649 	}
1650 	if (locked)
1651 		rw_runlock(TIDHASHLOCK(tid));
1652 	if (td == NULL)
1653 		return (false);
1654 	*pp = p;
1655 	*tdp = td;
1656 	return (true);
1657 }
1658 
1659 struct thread *
1660 tdfind(lwpid_t tid, pid_t pid)
1661 {
1662 	struct proc *p;
1663 	struct thread *td;
1664 
1665 	td = curthread;
1666 	if (td->td_tid == tid) {
1667 		if (pid != -1 && td->td_proc->p_pid != pid)
1668 			return (NULL);
1669 		PROC_LOCK(td->td_proc);
1670 		return (td);
1671 	}
1672 
1673 	for (;;) {
1674 		if (!tdfind_hash(tid, pid, &p, &td))
1675 			return (NULL);
1676 		PROC_LOCK(p);
1677 		if (td->td_tid != tid) {
1678 			PROC_UNLOCK(p);
1679 			continue;
1680 		}
1681 		if (td->td_proc != p) {
1682 			PROC_UNLOCK(p);
1683 			continue;
1684 		}
1685 		if (p->p_state == PRS_NEW) {
1686 			PROC_UNLOCK(p);
1687 			return (NULL);
1688 		}
1689 		return (td);
1690 	}
1691 }
1692 
1693 void
1694 tidhash_add(struct thread *td)
1695 {
1696 	rw_wlock(TIDHASHLOCK(td->td_tid));
1697 	LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1698 	rw_wunlock(TIDHASHLOCK(td->td_tid));
1699 }
1700 
1701 void
1702 tidhash_remove(struct thread *td)
1703 {
1704 
1705 	rw_wlock(TIDHASHLOCK(td->td_tid));
1706 	LIST_REMOVE(td, td_hash);
1707 	rw_wunlock(TIDHASHLOCK(td->td_tid));
1708 }
1709