xref: /freebsd/sys/kern/kern_thread.c (revision c128b2d129a8e305b673ef5e3da76af1fb91ae60)
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/kernel.h>
35 #include <sys/lock.h>
36 #include <sys/mutex.h>
37 #include <sys/proc.h>
38 #include <sys/smp.h>
39 #include <sys/sysctl.h>
40 #include <sys/sched.h>
41 #include <sys/sleepqueue.h>
42 #include <sys/turnstile.h>
43 #include <sys/ktr.h>
44 #include <sys/umtx.h>
45 
46 #include <security/audit/audit.h>
47 
48 #include <vm/vm.h>
49 #include <vm/vm_extern.h>
50 #include <vm/uma.h>
51 
52 /*
53  * KSEGRP related storage.
54  */
55 static uma_zone_t ksegrp_zone;
56 static uma_zone_t thread_zone;
57 
58 /* DEBUG ONLY */
59 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
60 static int thread_debug = 0;
61 SYSCTL_INT(_kern_threads, OID_AUTO, debug, CTLFLAG_RW,
62 	&thread_debug, 0, "thread debug");
63 
64 int max_threads_per_proc = 1500;
65 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
66 	&max_threads_per_proc, 0, "Limit on threads per proc");
67 
68 int max_groups_per_proc = 1500;
69 SYSCTL_INT(_kern_threads, OID_AUTO, max_groups_per_proc, CTLFLAG_RW,
70 	&max_groups_per_proc, 0, "Limit on thread groups per proc");
71 
72 int max_threads_hits;
73 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
74 	&max_threads_hits, 0, "");
75 
76 int virtual_cpu;
77 
78 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
79 TAILQ_HEAD(, ksegrp) zombie_ksegrps = TAILQ_HEAD_INITIALIZER(zombie_ksegrps);
80 struct mtx kse_zombie_lock;
81 MTX_SYSINIT(kse_zombie_lock, &kse_zombie_lock, "kse zombie lock", MTX_SPIN);
82 
83 static int
84 sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS)
85 {
86 	int error, new_val;
87 	int def_val;
88 
89 	def_val = mp_ncpus;
90 	if (virtual_cpu == 0)
91 		new_val = def_val;
92 	else
93 		new_val = virtual_cpu;
94 	error = sysctl_handle_int(oidp, &new_val, 0, req);
95 	if (error != 0 || req->newptr == NULL)
96 		return (error);
97 	if (new_val < 0)
98 		return (EINVAL);
99 	virtual_cpu = new_val;
100 	return (0);
101 }
102 
103 /* DEBUG ONLY */
104 SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW,
105 	0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I",
106 	"debug virtual cpus");
107 
108 struct mtx tid_lock;
109 static struct unrhdr *tid_unrhdr;
110 
111 /*
112  * Prepare a thread for use.
113  */
114 static int
115 thread_ctor(void *mem, int size, void *arg, int flags)
116 {
117 	struct thread	*td;
118 
119 	td = (struct thread *)mem;
120 	td->td_state = TDS_INACTIVE;
121 	td->td_oncpu = NOCPU;
122 
123 	td->td_tid = alloc_unr(tid_unrhdr);
124 
125 	/*
126 	 * Note that td_critnest begins life as 1 because the thread is not
127 	 * running and is thereby implicitly waiting to be on the receiving
128 	 * end of a context switch.  A context switch must occur inside a
129 	 * critical section, and in fact, includes hand-off of the sched_lock.
130 	 * After a context switch to a newly created thread, it will release
131 	 * sched_lock for the first time, and its td_critnest will hit 0 for
132 	 * the first time.  This happens on the far end of a context switch,
133 	 * and when it context switches away from itself, it will in fact go
134 	 * back into a critical section, and hand off the sched lock to the
135 	 * next thread.
136 	 */
137 	td->td_critnest = 1;
138 
139 #ifdef AUDIT
140 	audit_thread_alloc(td);
141 #endif
142 	return (0);
143 }
144 
145 /*
146  * Reclaim a thread after use.
147  */
148 static void
149 thread_dtor(void *mem, int size, void *arg)
150 {
151 	struct thread *td;
152 
153 	td = (struct thread *)mem;
154 
155 #ifdef INVARIANTS
156 	/* Verify that this thread is in a safe state to free. */
157 	switch (td->td_state) {
158 	case TDS_INHIBITED:
159 	case TDS_RUNNING:
160 	case TDS_CAN_RUN:
161 	case TDS_RUNQ:
162 		/*
163 		 * We must never unlink a thread that is in one of
164 		 * these states, because it is currently active.
165 		 */
166 		panic("bad state for thread unlinking");
167 		/* NOTREACHED */
168 	case TDS_INACTIVE:
169 		break;
170 	default:
171 		panic("bad thread state");
172 		/* NOTREACHED */
173 	}
174 #endif
175 #ifdef AUDIT
176 	audit_thread_free(td);
177 #endif
178 	free_unr(tid_unrhdr, td->td_tid);
179 	sched_newthread(td);
180 }
181 
182 /*
183  * Initialize type-stable parts of a thread (when newly created).
184  */
185 static int
186 thread_init(void *mem, int size, int flags)
187 {
188 	struct thread *td;
189 
190 	td = (struct thread *)mem;
191 
192 	vm_thread_new(td, 0);
193 	cpu_thread_setup(td);
194 	td->td_sleepqueue = sleepq_alloc();
195 	td->td_turnstile = turnstile_alloc();
196 	td->td_umtxq = umtxq_alloc();
197 	td->td_sched = (struct td_sched *)&td[1];
198 	sched_newthread(td);
199 	return (0);
200 }
201 
202 /*
203  * Tear down type-stable parts of a thread (just before being discarded).
204  */
205 static void
206 thread_fini(void *mem, int size)
207 {
208 	struct thread *td;
209 
210 	td = (struct thread *)mem;
211 	turnstile_free(td->td_turnstile);
212 	sleepq_free(td->td_sleepqueue);
213 	umtxq_free(td->td_umtxq);
214 	vm_thread_dispose(td);
215 }
216 
217 /*
218  * Initialize type-stable parts of a ksegrp (when newly created).
219  */
220 static int
221 ksegrp_ctor(void *mem, int size, void *arg, int flags)
222 {
223 	struct ksegrp	*kg;
224 
225 	kg = (struct ksegrp *)mem;
226 	bzero(mem, size);
227 	kg->kg_sched = (struct kg_sched *)&kg[1];
228 	return (0);
229 }
230 
231 void
232 ksegrp_link(struct ksegrp *kg, struct proc *p)
233 {
234 
235 	TAILQ_INIT(&kg->kg_threads);
236 	TAILQ_INIT(&kg->kg_runq);	/* links with td_runq */
237 	TAILQ_INIT(&kg->kg_upcalls);	/* all upcall structure in ksegrp */
238 	kg->kg_proc = p;
239 	/*
240 	 * the following counters are in the -zero- section
241 	 * and may not need clearing
242 	 */
243 	kg->kg_numthreads = 0;
244 	kg->kg_numupcalls = 0;
245 	/* link it in now that it's consistent */
246 	p->p_numksegrps++;
247 	TAILQ_INSERT_HEAD(&p->p_ksegrps, kg, kg_ksegrp);
248 }
249 
250 /*
251  * Called from:
252  *   thread-exit()
253  */
254 void
255 ksegrp_unlink(struct ksegrp *kg)
256 {
257 	struct proc *p;
258 
259 	mtx_assert(&sched_lock, MA_OWNED);
260 	KASSERT((kg->kg_numthreads == 0), ("ksegrp_unlink: residual threads"));
261 	KASSERT((kg->kg_numupcalls == 0), ("ksegrp_unlink: residual upcalls"));
262 
263 	p = kg->kg_proc;
264 	TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp);
265 	p->p_numksegrps--;
266 	/*
267 	 * Aggregate stats from the KSE
268 	 */
269 	if (p->p_procscopegrp == kg)
270 		p->p_procscopegrp = NULL;
271 }
272 
273 /*
274  * For a newly created process,
275  * link up all the structures and its initial threads etc.
276  * called from:
277  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
278  * proc_dtor() (should go away)
279  * proc_init()
280  */
281 void
282 proc_linkup(struct proc *p, struct ksegrp *kg, struct thread *td)
283 {
284 
285 	TAILQ_INIT(&p->p_ksegrps);	     /* all ksegrps in proc */
286 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
287 	TAILQ_INIT(&p->p_suspended);	     /* Threads suspended */
288 	sigqueue_init(&p->p_sigqueue, p);
289 	p->p_ksi = ksiginfo_alloc(1);
290 	if (p->p_ksi != NULL) {
291 		/* XXX p_ksi may be null if ksiginfo zone is not ready */
292 		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
293 	}
294 	LIST_INIT(&p->p_mqnotifier);
295 	p->p_numksegrps = 0;
296 	p->p_numthreads = 0;
297 
298 	ksegrp_link(kg, p);
299 	thread_link(td, kg);
300 }
301 
302 /*
303  * Initialize global thread allocation resources.
304  */
305 void
306 threadinit(void)
307 {
308 
309 	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
310 	tid_unrhdr = new_unrhdr(PID_MAX + 1, INT_MAX, &tid_lock);
311 
312 	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
313 	    thread_ctor, thread_dtor, thread_init, thread_fini,
314 	    UMA_ALIGN_CACHE, 0);
315 	ksegrp_zone = uma_zcreate("KSEGRP", sched_sizeof_ksegrp(),
316 	    ksegrp_ctor, NULL, NULL, NULL,
317 	    UMA_ALIGN_CACHE, 0);
318 	kseinit();	/* set up kse specific stuff  e.g. upcall zone*/
319 }
320 
321 /*
322  * Stash an embarasingly extra thread into the zombie thread queue.
323  */
324 void
325 thread_stash(struct thread *td)
326 {
327 	mtx_lock_spin(&kse_zombie_lock);
328 	TAILQ_INSERT_HEAD(&zombie_threads, td, td_runq);
329 	mtx_unlock_spin(&kse_zombie_lock);
330 }
331 
332 /*
333  * Stash an embarasingly extra ksegrp into the zombie ksegrp queue.
334  */
335 void
336 ksegrp_stash(struct ksegrp *kg)
337 {
338 	mtx_lock_spin(&kse_zombie_lock);
339 	TAILQ_INSERT_HEAD(&zombie_ksegrps, kg, kg_ksegrp);
340 	mtx_unlock_spin(&kse_zombie_lock);
341 }
342 
343 /*
344  * Reap zombie kse resource.
345  */
346 void
347 thread_reap(void)
348 {
349 	struct thread *td_first, *td_next;
350 	struct ksegrp *kg_first, * kg_next;
351 
352 	/*
353 	 * Don't even bother to lock if none at this instant,
354 	 * we really don't care about the next instant..
355 	 */
356 	if ((!TAILQ_EMPTY(&zombie_threads))
357 	    || (!TAILQ_EMPTY(&zombie_ksegrps))) {
358 		mtx_lock_spin(&kse_zombie_lock);
359 		td_first = TAILQ_FIRST(&zombie_threads);
360 		kg_first = TAILQ_FIRST(&zombie_ksegrps);
361 		if (td_first)
362 			TAILQ_INIT(&zombie_threads);
363 		if (kg_first)
364 			TAILQ_INIT(&zombie_ksegrps);
365 		mtx_unlock_spin(&kse_zombie_lock);
366 		while (td_first) {
367 			td_next = TAILQ_NEXT(td_first, td_runq);
368 			if (td_first->td_ucred)
369 				crfree(td_first->td_ucred);
370 			thread_free(td_first);
371 			td_first = td_next;
372 		}
373 		while (kg_first) {
374 			kg_next = TAILQ_NEXT(kg_first, kg_ksegrp);
375 			ksegrp_free(kg_first);
376 			kg_first = kg_next;
377 		}
378 		/*
379 		 * there will always be a thread on the list if one of these
380 		 * is there.
381 		 */
382 		kse_GC();
383 	}
384 }
385 
386 /*
387  * Allocate a ksegrp.
388  */
389 struct ksegrp *
390 ksegrp_alloc(void)
391 {
392 	return (uma_zalloc(ksegrp_zone, M_WAITOK));
393 }
394 
395 /*
396  * Allocate a thread.
397  */
398 struct thread *
399 thread_alloc(void)
400 {
401 	thread_reap(); /* check if any zombies to get */
402 	return (uma_zalloc(thread_zone, M_WAITOK));
403 }
404 
405 /*
406  * Deallocate a ksegrp.
407  */
408 void
409 ksegrp_free(struct ksegrp *td)
410 {
411 	uma_zfree(ksegrp_zone, td);
412 }
413 
414 /*
415  * Deallocate a thread.
416  */
417 void
418 thread_free(struct thread *td)
419 {
420 
421 	cpu_thread_clean(td);
422 	uma_zfree(thread_zone, td);
423 }
424 
425 /*
426  * Discard the current thread and exit from its context.
427  * Always called with scheduler locked.
428  *
429  * Because we can't free a thread while we're operating under its context,
430  * push the current thread into our CPU's deadthread holder. This means
431  * we needn't worry about someone else grabbing our context before we
432  * do a cpu_throw().  This may not be needed now as we are under schedlock.
433  * Maybe we can just do a thread_stash() as thr_exit1 does.
434  */
435 /*  XXX
436  * libthr expects its thread exit to return for the last
437  * thread, meaning that the program is back to non-threaded
438  * mode I guess. Because we do this (cpu_throw) unconditionally
439  * here, they have their own version of it. (thr_exit1())
440  * that doesn't do it all if this was the last thread.
441  * It is also called from thread_suspend_check().
442  * Of course in the end, they end up coming here through exit1
443  * anyhow..  After fixing 'thr' to play by the rules we should be able
444  * to merge these two functions together.
445  *
446  * called from:
447  * exit1()
448  * kse_exit()
449  * thr_exit()
450  * thread_user_enter()
451  * thread_userret()
452  * thread_suspend_check()
453  */
454 void
455 thread_exit(void)
456 {
457 	struct thread *td;
458 	struct proc *p;
459 	struct ksegrp	*kg;
460 
461 	td = curthread;
462 	kg = td->td_ksegrp;
463 	p = td->td_proc;
464 
465 	mtx_assert(&sched_lock, MA_OWNED);
466 	mtx_assert(&Giant, MA_NOTOWNED);
467 	PROC_LOCK_ASSERT(p, MA_OWNED);
468 	KASSERT(p != NULL, ("thread exiting without a process"));
469 	KASSERT(kg != NULL, ("thread exiting without a kse group"));
470 	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
471 	    (long)p->p_pid, p->p_comm);
472 	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
473 
474 #ifdef AUDIT
475 	AUDIT_SYSCALL_EXIT(0, td);
476 #endif
477 
478 	if (td->td_standin != NULL) {
479 		/*
480 		 * Note that we don't need to free the cred here as it
481 		 * is done in thread_reap().
482 		 */
483 		thread_stash(td->td_standin);
484 		td->td_standin = NULL;
485 	}
486 
487 	/*
488 	 * drop FPU & debug register state storage, or any other
489 	 * architecture specific resources that
490 	 * would not be on a new untouched process.
491 	 */
492 	cpu_thread_exit(td);	/* XXXSMP */
493 
494 	/*
495 	 * The thread is exiting. scheduler can release its stuff
496 	 * and collect stats etc.
497 	 */
498 	sched_thread_exit(td);
499 
500 	/*
501 	 * The last thread is left attached to the process
502 	 * So that the whole bundle gets recycled. Skip
503 	 * all this stuff if we never had threads.
504 	 * EXIT clears all sign of other threads when
505 	 * it goes to single threading, so the last thread always
506 	 * takes the short path.
507 	 */
508 	if (p->p_flag & P_HADTHREADS) {
509 		if (p->p_numthreads > 1) {
510 			thread_unlink(td);
511 
512 			/* XXX first arg not used in 4BSD or ULE */
513 			sched_exit_thread(FIRST_THREAD_IN_PROC(p), td);
514 
515 			/*
516 			 * The test below is NOT true if we are the
517 			 * sole exiting thread. P_STOPPED_SNGL is unset
518 			 * in exit1() after it is the only survivor.
519 			 */
520 			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
521 				if (p->p_numthreads == p->p_suspcount) {
522 					thread_unsuspend_one(p->p_singlethread);
523 				}
524 			}
525 
526 			/*
527 			 * Because each upcall structure has an owner thread,
528 			 * owner thread exits only when process is in exiting
529 			 * state, so upcall to userland is no longer needed,
530 			 * deleting upcall structure is safe here.
531 			 * So when all threads in a group is exited, all upcalls
532 			 * in the group should be automatically freed.
533 			 *  XXXKSE This is a KSE thing and should be exported
534 			 * there somehow.
535 			 */
536 			upcall_remove(td);
537 
538 			/*
539 			 * If the thread we unlinked above was the last one,
540 			 * then this ksegrp should go away too.
541 			 */
542 			if (kg->kg_numthreads == 0) {
543 				/*
544 				 * let the scheduler know about this in case
545 				 * it needs to recover stats or resources.
546 				 * Theoretically we could let
547 				 * sched_exit_ksegrp()  do the equivalent of
548 				 * setting the concurrency to 0
549 				 * but don't do it yet to avoid changing
550 				 * the existing scheduler code until we
551 				 * are ready.
552 				 * We supply a random other ksegrp
553 				 * as the recipient of any built up
554 				 * cpu usage etc. (If the scheduler wants it).
555 				 * XXXKSE
556 				 * This is probably not fair so think of
557  				 * a better answer.
558 				 */
559 				sched_exit_ksegrp(FIRST_KSEGRP_IN_PROC(p), td);
560 				sched_set_concurrency(kg, 0); /* XXX TEMP */
561 				ksegrp_unlink(kg);
562 				ksegrp_stash(kg);
563 			}
564 			PROC_UNLOCK(p);
565 			td->td_ksegrp	= NULL;
566 			PCPU_SET(deadthread, td);
567 		} else {
568 			/*
569 			 * The last thread is exiting.. but not through exit()
570 			 * what should we do?
571 			 * Theoretically this can't happen
572  			 * exit1() - clears threading flags before coming here
573  			 * kse_exit() - treats last thread specially
574  			 * thr_exit() - treats last thread specially
575  			 * thread_user_enter() - only if more exist
576  			 * thread_userret() - only if more exist
577  			 * thread_suspend_check() - only if more exist
578 			 */
579 			panic ("thread_exit: Last thread exiting on its own");
580 		}
581 	} else {
582 		/*
583 		 * non threaded process comes here.
584 		 * This includes an EX threaded process that is coming
585 		 * here via exit1(). (exit1 dethreads the proc first).
586 		 */
587 		PROC_UNLOCK(p);
588 	}
589 	td->td_state = TDS_INACTIVE;
590 	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
591 	cpu_throw(td, choosethread());
592 	panic("I'm a teapot!");
593 	/* NOTREACHED */
594 }
595 
596 /*
597  * Do any thread specific cleanups that may be needed in wait()
598  * called with Giant, proc and schedlock not held.
599  */
600 void
601 thread_wait(struct proc *p)
602 {
603 	struct thread *td;
604 
605 	mtx_assert(&Giant, MA_NOTOWNED);
606 	KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
607 	KASSERT((p->p_numksegrps == 1), ("Multiple ksegrps in wait1()"));
608 	FOREACH_THREAD_IN_PROC(p, td) {
609 		if (td->td_standin != NULL) {
610 			if (td->td_standin->td_ucred != NULL) {
611 				crfree(td->td_standin->td_ucred);
612 				td->td_standin->td_ucred = NULL;
613 			}
614 			thread_free(td->td_standin);
615 			td->td_standin = NULL;
616 		}
617 		cpu_thread_clean(td);
618 		crfree(td->td_ucred);
619 	}
620 	thread_reap();	/* check for zombie threads etc. */
621 }
622 
623 /*
624  * Link a thread to a process.
625  * set up anything that needs to be initialized for it to
626  * be used by the process.
627  *
628  * Note that we do not link to the proc's ucred here.
629  * The thread is linked as if running but no KSE assigned.
630  * Called from:
631  *  proc_linkup()
632  *  thread_schedule_upcall()
633  *  thr_create()
634  */
635 void
636 thread_link(struct thread *td, struct ksegrp *kg)
637 {
638 	struct proc *p;
639 
640 	p = kg->kg_proc;
641 	td->td_state    = TDS_INACTIVE;
642 	td->td_proc     = p;
643 	td->td_ksegrp   = kg;
644 	td->td_flags    = 0;
645 	td->td_kflags	= 0;
646 
647 	LIST_INIT(&td->td_contested);
648 	sigqueue_init(&td->td_sigqueue, p);
649 	callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
650 	TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
651 	TAILQ_INSERT_HEAD(&kg->kg_threads, td, td_kglist);
652 	p->p_numthreads++;
653 	kg->kg_numthreads++;
654 }
655 
656 /*
657  * Convert a process with one thread to an unthreaded process.
658  * Called from:
659  *  thread_single(exit)  (called from execve and exit)
660  *  kse_exit()		XXX may need cleaning up wrt KSE stuff
661  */
662 void
663 thread_unthread(struct thread *td)
664 {
665 	struct proc *p = td->td_proc;
666 
667 	KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
668 	upcall_remove(td);
669 	p->p_flag &= ~(P_SA|P_HADTHREADS);
670 	td->td_mailbox = NULL;
671 	td->td_pflags &= ~(TDP_SA | TDP_CAN_UNBIND);
672 	if (td->td_standin != NULL) {
673 		thread_stash(td->td_standin);
674 		td->td_standin = NULL;
675 	}
676 	sched_set_concurrency(td->td_ksegrp, 1);
677 }
678 
679 /*
680  * Called from:
681  *  thread_exit()
682  */
683 void
684 thread_unlink(struct thread *td)
685 {
686 	struct proc *p = td->td_proc;
687 	struct ksegrp *kg = td->td_ksegrp;
688 
689 	mtx_assert(&sched_lock, MA_OWNED);
690 	TAILQ_REMOVE(&p->p_threads, td, td_plist);
691 	p->p_numthreads--;
692 	TAILQ_REMOVE(&kg->kg_threads, td, td_kglist);
693 	kg->kg_numthreads--;
694 	/* could clear a few other things here */
695 	/* Must  NOT clear links to proc and ksegrp! */
696 }
697 
698 /*
699  * Enforce single-threading.
700  *
701  * Returns 1 if the caller must abort (another thread is waiting to
702  * exit the process or similar). Process is locked!
703  * Returns 0 when you are successfully the only thread running.
704  * A process has successfully single threaded in the suspend mode when
705  * There are no threads in user mode. Threads in the kernel must be
706  * allowed to continue until they get to the user boundary. They may even
707  * copy out their return values and data before suspending. They may however be
708  * accellerated in reaching the user boundary as we will wake up
709  * any sleeping threads that are interruptable. (PCATCH).
710  */
711 int
712 thread_single(int mode)
713 {
714 	struct thread *td;
715 	struct thread *td2;
716 	struct proc *p;
717 	int remaining;
718 
719 	td = curthread;
720 	p = td->td_proc;
721 	mtx_assert(&Giant, MA_NOTOWNED);
722 	PROC_LOCK_ASSERT(p, MA_OWNED);
723 	KASSERT((td != NULL), ("curthread is NULL"));
724 
725 	if ((p->p_flag & P_HADTHREADS) == 0)
726 		return (0);
727 
728 	/* Is someone already single threading? */
729 	if (p->p_singlethread != NULL && p->p_singlethread != td)
730 		return (1);
731 
732 	if (mode == SINGLE_EXIT) {
733 		p->p_flag |= P_SINGLE_EXIT;
734 		p->p_flag &= ~P_SINGLE_BOUNDARY;
735 	} else {
736 		p->p_flag &= ~P_SINGLE_EXIT;
737 		if (mode == SINGLE_BOUNDARY)
738 			p->p_flag |= P_SINGLE_BOUNDARY;
739 		else
740 			p->p_flag &= ~P_SINGLE_BOUNDARY;
741 	}
742 	p->p_flag |= P_STOPPED_SINGLE;
743 	mtx_lock_spin(&sched_lock);
744 	p->p_singlethread = td;
745 	if (mode == SINGLE_EXIT)
746 		remaining = p->p_numthreads;
747 	else if (mode == SINGLE_BOUNDARY)
748 		remaining = p->p_numthreads - p->p_boundary_count;
749 	else
750 		remaining = p->p_numthreads - p->p_suspcount;
751 	while (remaining != 1) {
752 		FOREACH_THREAD_IN_PROC(p, td2) {
753 			if (td2 == td)
754 				continue;
755 			td2->td_flags |= TDF_ASTPENDING;
756 			if (TD_IS_INHIBITED(td2)) {
757 				switch (mode) {
758 				case SINGLE_EXIT:
759 					if (td->td_flags & TDF_DBSUSPEND)
760 						td->td_flags &= ~TDF_DBSUSPEND;
761 					if (TD_IS_SUSPENDED(td2))
762 						thread_unsuspend_one(td2);
763 					if (TD_ON_SLEEPQ(td2) &&
764 					    (td2->td_flags & TDF_SINTR))
765 						sleepq_abort(td2, EINTR);
766 					break;
767 				case SINGLE_BOUNDARY:
768 					if (TD_IS_SUSPENDED(td2) &&
769 					    !(td2->td_flags & TDF_BOUNDARY))
770 						thread_unsuspend_one(td2);
771 					if (TD_ON_SLEEPQ(td2) &&
772 					    (td2->td_flags & TDF_SINTR))
773 						sleepq_abort(td2, ERESTART);
774 					break;
775 				default:
776 					if (TD_IS_SUSPENDED(td2))
777 						continue;
778 					/*
779 					 * maybe other inhibitted states too?
780 					 */
781 					if ((td2->td_flags & TDF_SINTR) &&
782 					    (td2->td_inhibitors &
783 					    (TDI_SLEEPING | TDI_SWAPPED)))
784 						thread_suspend_one(td2);
785 					break;
786 				}
787 			}
788 #ifdef SMP
789 			else if (TD_IS_RUNNING(td2) && td != td2) {
790 				forward_signal(td2);
791 			}
792 #endif
793 		}
794 		if (mode == SINGLE_EXIT)
795 			remaining = p->p_numthreads;
796 		else if (mode == SINGLE_BOUNDARY)
797 			remaining = p->p_numthreads - p->p_boundary_count;
798 		else
799 			remaining = p->p_numthreads - p->p_suspcount;
800 
801 		/*
802 		 * Maybe we suspended some threads.. was it enough?
803 		 */
804 		if (remaining == 1)
805 			break;
806 
807 		/*
808 		 * Wake us up when everyone else has suspended.
809 		 * In the mean time we suspend as well.
810 		 */
811 		thread_suspend_one(td);
812 		PROC_UNLOCK(p);
813 		mi_switch(SW_VOL, NULL);
814 		mtx_unlock_spin(&sched_lock);
815 		PROC_LOCK(p);
816 		mtx_lock_spin(&sched_lock);
817 		if (mode == SINGLE_EXIT)
818 			remaining = p->p_numthreads;
819 		else if (mode == SINGLE_BOUNDARY)
820 			remaining = p->p_numthreads - p->p_boundary_count;
821 		else
822 			remaining = p->p_numthreads - p->p_suspcount;
823 	}
824 	if (mode == SINGLE_EXIT) {
825 		/*
826 		 * We have gotten rid of all the other threads and we
827 		 * are about to either exit or exec. In either case,
828 		 * we try our utmost  to revert to being a non-threaded
829 		 * process.
830 		 */
831 		p->p_singlethread = NULL;
832 		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
833 		thread_unthread(td);
834 	}
835 	mtx_unlock_spin(&sched_lock);
836 	return (0);
837 }
838 
839 /*
840  * Called in from locations that can safely check to see
841  * whether we have to suspend or at least throttle for a
842  * single-thread event (e.g. fork).
843  *
844  * Such locations include userret().
845  * If the "return_instead" argument is non zero, the thread must be able to
846  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
847  *
848  * The 'return_instead' argument tells the function if it may do a
849  * thread_exit() or suspend, or whether the caller must abort and back
850  * out instead.
851  *
852  * If the thread that set the single_threading request has set the
853  * P_SINGLE_EXIT bit in the process flags then this call will never return
854  * if 'return_instead' is false, but will exit.
855  *
856  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
857  *---------------+--------------------+---------------------
858  *       0       | returns 0          |   returns 0 or 1
859  *               | when ST ends       |   immediatly
860  *---------------+--------------------+---------------------
861  *       1       | thread exits       |   returns 1
862  *               |                    |  immediatly
863  * 0 = thread_exit() or suspension ok,
864  * other = return error instead of stopping the thread.
865  *
866  * While a full suspension is under effect, even a single threading
867  * thread would be suspended if it made this call (but it shouldn't).
868  * This call should only be made from places where
869  * thread_exit() would be safe as that may be the outcome unless
870  * return_instead is set.
871  */
872 int
873 thread_suspend_check(int return_instead)
874 {
875 	struct thread *td;
876 	struct proc *p;
877 
878 	td = curthread;
879 	p = td->td_proc;
880 	mtx_assert(&Giant, MA_NOTOWNED);
881 	PROC_LOCK_ASSERT(p, MA_OWNED);
882 	while (P_SHOULDSTOP(p) ||
883 	      ((p->p_flag & P_TRACED) && (td->td_flags & TDF_DBSUSPEND))) {
884 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
885 			KASSERT(p->p_singlethread != NULL,
886 			    ("singlethread not set"));
887 			/*
888 			 * The only suspension in action is a
889 			 * single-threading. Single threader need not stop.
890 			 * XXX Should be safe to access unlocked
891 			 * as it can only be set to be true by us.
892 			 */
893 			if (p->p_singlethread == td)
894 				return (0);	/* Exempt from stopping. */
895 		}
896 		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
897 			return (EINTR);
898 
899 		/* Should we goto user boundary if we didn't come from there? */
900 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
901 		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
902 			return (ERESTART);
903 
904 		/* If thread will exit, flush its pending signals */
905 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
906 			sigqueue_flush(&td->td_sigqueue);
907 
908 		mtx_lock_spin(&sched_lock);
909 		thread_stopped(p);
910 		/*
911 		 * If the process is waiting for us to exit,
912 		 * this thread should just suicide.
913 		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
914 		 */
915 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
916 			thread_exit();
917 
918 		/*
919 		 * When a thread suspends, it just
920 		 * moves to the processes's suspend queue
921 		 * and stays there.
922 		 */
923 		thread_suspend_one(td);
924 		if (return_instead == 0) {
925 			p->p_boundary_count++;
926 			td->td_flags |= TDF_BOUNDARY;
927 		}
928 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
929 			if (p->p_numthreads == p->p_suspcount)
930 				thread_unsuspend_one(p->p_singlethread);
931 		}
932 		PROC_UNLOCK(p);
933 		mi_switch(SW_INVOL, NULL);
934 		if (return_instead == 0) {
935 			p->p_boundary_count--;
936 			td->td_flags &= ~TDF_BOUNDARY;
937 		}
938 		mtx_unlock_spin(&sched_lock);
939 		PROC_LOCK(p);
940 	}
941 	return (0);
942 }
943 
944 void
945 thread_suspend_one(struct thread *td)
946 {
947 	struct proc *p = td->td_proc;
948 
949 	mtx_assert(&sched_lock, MA_OWNED);
950 	PROC_LOCK_ASSERT(p, MA_OWNED);
951 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
952 	p->p_suspcount++;
953 	TD_SET_SUSPENDED(td);
954 	TAILQ_INSERT_TAIL(&p->p_suspended, td, td_runq);
955 }
956 
957 void
958 thread_unsuspend_one(struct thread *td)
959 {
960 	struct proc *p = td->td_proc;
961 
962 	mtx_assert(&sched_lock, MA_OWNED);
963 	PROC_LOCK_ASSERT(p, MA_OWNED);
964 	TAILQ_REMOVE(&p->p_suspended, td, td_runq);
965 	TD_CLR_SUSPENDED(td);
966 	p->p_suspcount--;
967 	setrunnable(td);
968 }
969 
970 /*
971  * Allow all threads blocked by single threading to continue running.
972  */
973 void
974 thread_unsuspend(struct proc *p)
975 {
976 	struct thread *td;
977 
978 	mtx_assert(&sched_lock, MA_OWNED);
979 	PROC_LOCK_ASSERT(p, MA_OWNED);
980 	if (!P_SHOULDSTOP(p)) {
981 		while ((td = TAILQ_FIRST(&p->p_suspended))) {
982 			thread_unsuspend_one(td);
983 		}
984 	} else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
985 	    (p->p_numthreads == p->p_suspcount)) {
986 		/*
987 		 * Stopping everything also did the job for the single
988 		 * threading request. Now we've downgraded to single-threaded,
989 		 * let it continue.
990 		 */
991 		thread_unsuspend_one(p->p_singlethread);
992 	}
993 }
994 
995 /*
996  * End the single threading mode..
997  */
998 void
999 thread_single_end(void)
1000 {
1001 	struct thread *td;
1002 	struct proc *p;
1003 
1004 	td = curthread;
1005 	p = td->td_proc;
1006 	PROC_LOCK_ASSERT(p, MA_OWNED);
1007 	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
1008 	mtx_lock_spin(&sched_lock);
1009 	p->p_singlethread = NULL;
1010 	p->p_procscopegrp = NULL;
1011 	/*
1012 	 * If there are other threads they mey now run,
1013 	 * unless of course there is a blanket 'stop order'
1014 	 * on the process. The single threader must be allowed
1015 	 * to continue however as this is a bad place to stop.
1016 	 */
1017 	if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
1018 		while ((td = TAILQ_FIRST(&p->p_suspended))) {
1019 			thread_unsuspend_one(td);
1020 		}
1021 	}
1022 	mtx_unlock_spin(&sched_lock);
1023 }
1024 
1025 /*
1026  * Called before going into an interruptible sleep to see if we have been
1027  * interrupted or requested to exit.
1028  */
1029 int
1030 thread_sleep_check(struct thread *td)
1031 {
1032 	struct proc *p;
1033 
1034 	p = td->td_proc;
1035 	mtx_assert(&sched_lock, MA_OWNED);
1036 	if (p->p_flag & P_HADTHREADS) {
1037 		if (p->p_singlethread != td) {
1038 			if (p->p_flag & P_SINGLE_EXIT)
1039 				return (EINTR);
1040 			if (p->p_flag & P_SINGLE_BOUNDARY)
1041 				return (ERESTART);
1042 		}
1043 		if (td->td_flags & TDF_INTERRUPT)
1044 			return (td->td_intrval);
1045 	}
1046 	return (0);
1047 }
1048 
1049 struct thread *
1050 thread_find(struct proc *p, lwpid_t tid)
1051 {
1052 	struct thread *td;
1053 
1054 	PROC_LOCK_ASSERT(p, MA_OWNED);
1055 	mtx_lock_spin(&sched_lock);
1056 	FOREACH_THREAD_IN_PROC(p, td) {
1057 		if (td->td_tid == tid)
1058 			break;
1059 	}
1060 	mtx_unlock_spin(&sched_lock);
1061 	return (td);
1062 }
1063