xref: /freebsd/sys/kern/kern_thread.c (revision c0020399a650364d0134f79f3fa319f84064372d)
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28 
29 #include "opt_witness.h"
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/lock.h>
38 #include <sys/mutex.h>
39 #include <sys/proc.h>
40 #include <sys/resourcevar.h>
41 #include <sys/smp.h>
42 #include <sys/sysctl.h>
43 #include <sys/sched.h>
44 #include <sys/sleepqueue.h>
45 #include <sys/selinfo.h>
46 #include <sys/turnstile.h>
47 #include <sys/ktr.h>
48 #include <sys/umtx.h>
49 #include <sys/cpuset.h>
50 
51 #include <security/audit/audit.h>
52 
53 #include <vm/vm.h>
54 #include <vm/vm_extern.h>
55 #include <vm/uma.h>
56 #include <sys/eventhandler.h>
57 
58 /*
59  * thread related storage.
60  */
61 static uma_zone_t thread_zone;
62 
63 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
64 
65 int max_threads_per_proc = 1500;
66 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
67 	&max_threads_per_proc, 0, "Limit on threads per proc");
68 
69 int max_threads_hits;
70 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
71 	&max_threads_hits, 0, "");
72 
73 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
74 static struct mtx zombie_lock;
75 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
76 
77 static void thread_zombie(struct thread *);
78 
79 struct mtx tid_lock;
80 static struct unrhdr *tid_unrhdr;
81 
82 /*
83  * Prepare a thread for use.
84  */
85 static int
86 thread_ctor(void *mem, int size, void *arg, int flags)
87 {
88 	struct thread	*td;
89 
90 	td = (struct thread *)mem;
91 	td->td_state = TDS_INACTIVE;
92 	td->td_oncpu = NOCPU;
93 
94 	td->td_tid = alloc_unr(tid_unrhdr);
95 	td->td_syscalls = 0;
96 
97 	/*
98 	 * Note that td_critnest begins life as 1 because the thread is not
99 	 * running and is thereby implicitly waiting to be on the receiving
100 	 * end of a context switch.
101 	 */
102 	td->td_critnest = 1;
103 	EVENTHANDLER_INVOKE(thread_ctor, td);
104 #ifdef AUDIT
105 	audit_thread_alloc(td);
106 #endif
107 	umtx_thread_alloc(td);
108 	return (0);
109 }
110 
111 /*
112  * Reclaim a thread after use.
113  */
114 static void
115 thread_dtor(void *mem, int size, void *arg)
116 {
117 	struct thread *td;
118 
119 	td = (struct thread *)mem;
120 
121 #ifdef INVARIANTS
122 	/* Verify that this thread is in a safe state to free. */
123 	switch (td->td_state) {
124 	case TDS_INHIBITED:
125 	case TDS_RUNNING:
126 	case TDS_CAN_RUN:
127 	case TDS_RUNQ:
128 		/*
129 		 * We must never unlink a thread that is in one of
130 		 * these states, because it is currently active.
131 		 */
132 		panic("bad state for thread unlinking");
133 		/* NOTREACHED */
134 	case TDS_INACTIVE:
135 		break;
136 	default:
137 		panic("bad thread state");
138 		/* NOTREACHED */
139 	}
140 #endif
141 #ifdef AUDIT
142 	audit_thread_free(td);
143 #endif
144 	/* Free all OSD associated to this thread. */
145 	osd_thread_exit(td);
146 
147 	EVENTHANDLER_INVOKE(thread_dtor, td);
148 	free_unr(tid_unrhdr, td->td_tid);
149 }
150 
151 /*
152  * Initialize type-stable parts of a thread (when newly created).
153  */
154 static int
155 thread_init(void *mem, int size, int flags)
156 {
157 	struct thread *td;
158 
159 	td = (struct thread *)mem;
160 
161 	td->td_sleepqueue = sleepq_alloc();
162 	td->td_turnstile = turnstile_alloc();
163 	EVENTHANDLER_INVOKE(thread_init, td);
164 	td->td_sched = (struct td_sched *)&td[1];
165 	umtx_thread_init(td);
166 	td->td_kstack = 0;
167 	return (0);
168 }
169 
170 /*
171  * Tear down type-stable parts of a thread (just before being discarded).
172  */
173 static void
174 thread_fini(void *mem, int size)
175 {
176 	struct thread *td;
177 
178 	td = (struct thread *)mem;
179 	EVENTHANDLER_INVOKE(thread_fini, td);
180 	turnstile_free(td->td_turnstile);
181 	sleepq_free(td->td_sleepqueue);
182 	umtx_thread_fini(td);
183 	seltdfini(td);
184 }
185 
186 /*
187  * For a newly created process,
188  * link up all the structures and its initial threads etc.
189  * called from:
190  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
191  * proc_dtor() (should go away)
192  * proc_init()
193  */
194 void
195 proc_linkup0(struct proc *p, struct thread *td)
196 {
197 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
198 	proc_linkup(p, td);
199 }
200 
201 void
202 proc_linkup(struct proc *p, struct thread *td)
203 {
204 
205 	sigqueue_init(&p->p_sigqueue, p);
206 	p->p_ksi = ksiginfo_alloc(1);
207 	if (p->p_ksi != NULL) {
208 		/* XXX p_ksi may be null if ksiginfo zone is not ready */
209 		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
210 	}
211 	LIST_INIT(&p->p_mqnotifier);
212 	p->p_numthreads = 0;
213 	thread_link(td, p);
214 }
215 
216 /*
217  * Initialize global thread allocation resources.
218  */
219 void
220 threadinit(void)
221 {
222 
223 	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
224 	/* leave one number for thread0 */
225 	tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
226 
227 	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
228 	    thread_ctor, thread_dtor, thread_init, thread_fini,
229 	    16 - 1, 0);
230 }
231 
232 /*
233  * Place an unused thread on the zombie list.
234  * Use the slpq as that must be unused by now.
235  */
236 void
237 thread_zombie(struct thread *td)
238 {
239 	mtx_lock_spin(&zombie_lock);
240 	TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
241 	mtx_unlock_spin(&zombie_lock);
242 }
243 
244 /*
245  * Release a thread that has exited after cpu_throw().
246  */
247 void
248 thread_stash(struct thread *td)
249 {
250 	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
251 	thread_zombie(td);
252 }
253 
254 /*
255  * Reap zombie resources.
256  */
257 void
258 thread_reap(void)
259 {
260 	struct thread *td_first, *td_next;
261 
262 	/*
263 	 * Don't even bother to lock if none at this instant,
264 	 * we really don't care about the next instant..
265 	 */
266 	if (!TAILQ_EMPTY(&zombie_threads)) {
267 		mtx_lock_spin(&zombie_lock);
268 		td_first = TAILQ_FIRST(&zombie_threads);
269 		if (td_first)
270 			TAILQ_INIT(&zombie_threads);
271 		mtx_unlock_spin(&zombie_lock);
272 		while (td_first) {
273 			td_next = TAILQ_NEXT(td_first, td_slpq);
274 			if (td_first->td_ucred)
275 				crfree(td_first->td_ucred);
276 			thread_free(td_first);
277 			td_first = td_next;
278 		}
279 	}
280 }
281 
282 /*
283  * Allocate a thread.
284  */
285 struct thread *
286 thread_alloc(void)
287 {
288 	struct thread *td;
289 
290 	thread_reap(); /* check if any zombies to get */
291 
292 	td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
293 	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
294 	if (!vm_thread_new(td, 0)) {
295 		uma_zfree(thread_zone, td);
296 		return (NULL);
297 	}
298 	cpu_thread_alloc(td);
299 	return (td);
300 }
301 
302 
303 /*
304  * Deallocate a thread.
305  */
306 void
307 thread_free(struct thread *td)
308 {
309 
310 	lock_profile_thread_exit(td);
311 	if (td->td_cpuset)
312 		cpuset_rel(td->td_cpuset);
313 	td->td_cpuset = NULL;
314 	cpu_thread_free(td);
315 	if (td->td_altkstack != 0)
316 		vm_thread_dispose_altkstack(td);
317 	if (td->td_kstack != 0)
318 		vm_thread_dispose(td);
319 	uma_zfree(thread_zone, td);
320 }
321 
322 /*
323  * Discard the current thread and exit from its context.
324  * Always called with scheduler locked.
325  *
326  * Because we can't free a thread while we're operating under its context,
327  * push the current thread into our CPU's deadthread holder. This means
328  * we needn't worry about someone else grabbing our context before we
329  * do a cpu_throw().
330  */
331 void
332 thread_exit(void)
333 {
334 	uint64_t new_switchtime;
335 	struct thread *td;
336 	struct thread *td2;
337 	struct proc *p;
338 	int wakeup_swapper;
339 
340 	td = curthread;
341 	p = td->td_proc;
342 
343 	PROC_SLOCK_ASSERT(p, MA_OWNED);
344 	mtx_assert(&Giant, MA_NOTOWNED);
345 
346 	PROC_LOCK_ASSERT(p, MA_OWNED);
347 	KASSERT(p != NULL, ("thread exiting without a process"));
348 	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
349 	    (long)p->p_pid, td->td_name);
350 	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
351 
352 #ifdef AUDIT
353 	AUDIT_SYSCALL_EXIT(0, td);
354 #endif
355 	umtx_thread_exit(td);
356 	/*
357 	 * drop FPU & debug register state storage, or any other
358 	 * architecture specific resources that
359 	 * would not be on a new untouched process.
360 	 */
361 	cpu_thread_exit(td);	/* XXXSMP */
362 
363 	/* Do the same timestamp bookkeeping that mi_switch() would do. */
364 	new_switchtime = cpu_ticks();
365 	p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
366 	PCPU_SET(switchtime, new_switchtime);
367 	PCPU_SET(switchticks, ticks);
368 	PCPU_INC(cnt.v_swtch);
369 	/* Save our resource usage in our process. */
370 	td->td_ru.ru_nvcsw++;
371 	rucollect(&p->p_ru, &td->td_ru);
372 	/*
373 	 * The last thread is left attached to the process
374 	 * So that the whole bundle gets recycled. Skip
375 	 * all this stuff if we never had threads.
376 	 * EXIT clears all sign of other threads when
377 	 * it goes to single threading, so the last thread always
378 	 * takes the short path.
379 	 */
380 	if (p->p_flag & P_HADTHREADS) {
381 		if (p->p_numthreads > 1) {
382 			thread_unlink(td);
383 			td2 = FIRST_THREAD_IN_PROC(p);
384 			sched_exit_thread(td2, td);
385 
386 			/*
387 			 * The test below is NOT true if we are the
388 			 * sole exiting thread. P_STOPPED_SNGL is unset
389 			 * in exit1() after it is the only survivor.
390 			 */
391 			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
392 				if (p->p_numthreads == p->p_suspcount) {
393 					thread_lock(p->p_singlethread);
394 					wakeup_swapper = thread_unsuspend_one(
395 						p->p_singlethread);
396 					thread_unlock(p->p_singlethread);
397 					if (wakeup_swapper)
398 						kick_proc0();
399 				}
400 			}
401 
402 			atomic_add_int(&td->td_proc->p_exitthreads, 1);
403 			PCPU_SET(deadthread, td);
404 		} else {
405 			/*
406 			 * The last thread is exiting.. but not through exit()
407 			 */
408 			panic ("thread_exit: Last thread exiting on its own");
409 		}
410 	}
411 	PROC_UNLOCK(p);
412 	thread_lock(td);
413 	/* Save our tick information with both the thread and proc locked */
414 	ruxagg(&p->p_rux, td);
415 	PROC_SUNLOCK(p);
416 	td->td_state = TDS_INACTIVE;
417 #ifdef WITNESS
418 	witness_thread_exit(td);
419 #endif
420 	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
421 	sched_throw(td);
422 	panic("I'm a teapot!");
423 	/* NOTREACHED */
424 }
425 
426 /*
427  * Do any thread specific cleanups that may be needed in wait()
428  * called with Giant, proc and schedlock not held.
429  */
430 void
431 thread_wait(struct proc *p)
432 {
433 	struct thread *td;
434 
435 	mtx_assert(&Giant, MA_NOTOWNED);
436 	KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
437 	td = FIRST_THREAD_IN_PROC(p);
438 	/* Lock the last thread so we spin until it exits cpu_throw(). */
439 	thread_lock(td);
440 	thread_unlock(td);
441 	/* Wait for any remaining threads to exit cpu_throw(). */
442 	while (p->p_exitthreads)
443 		sched_relinquish(curthread);
444 	lock_profile_thread_exit(td);
445 	cpuset_rel(td->td_cpuset);
446 	td->td_cpuset = NULL;
447 	cpu_thread_clean(td);
448 	crfree(td->td_ucred);
449 	thread_reap();	/* check for zombie threads etc. */
450 }
451 
452 /*
453  * Link a thread to a process.
454  * set up anything that needs to be initialized for it to
455  * be used by the process.
456  */
457 void
458 thread_link(struct thread *td, struct proc *p)
459 {
460 
461 	/*
462 	 * XXX This can't be enabled because it's called for proc0 before
463 	 * its lock has been created.
464 	 * PROC_LOCK_ASSERT(p, MA_OWNED);
465 	 */
466 	td->td_state    = TDS_INACTIVE;
467 	td->td_proc     = p;
468 	td->td_flags    = TDF_INMEM;
469 
470 	LIST_INIT(&td->td_contested);
471 	LIST_INIT(&td->td_lprof[0]);
472 	LIST_INIT(&td->td_lprof[1]);
473 	sigqueue_init(&td->td_sigqueue, p);
474 	callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
475 	TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
476 	p->p_numthreads++;
477 }
478 
479 /*
480  * Convert a process with one thread to an unthreaded process.
481  */
482 void
483 thread_unthread(struct thread *td)
484 {
485 	struct proc *p = td->td_proc;
486 
487 	KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
488 	p->p_flag &= ~P_HADTHREADS;
489 }
490 
491 /*
492  * Called from:
493  *  thread_exit()
494  */
495 void
496 thread_unlink(struct thread *td)
497 {
498 	struct proc *p = td->td_proc;
499 
500 	PROC_LOCK_ASSERT(p, MA_OWNED);
501 	TAILQ_REMOVE(&p->p_threads, td, td_plist);
502 	p->p_numthreads--;
503 	/* could clear a few other things here */
504 	/* Must  NOT clear links to proc! */
505 }
506 
507 /*
508  * Enforce single-threading.
509  *
510  * Returns 1 if the caller must abort (another thread is waiting to
511  * exit the process or similar). Process is locked!
512  * Returns 0 when you are successfully the only thread running.
513  * A process has successfully single threaded in the suspend mode when
514  * There are no threads in user mode. Threads in the kernel must be
515  * allowed to continue until they get to the user boundary. They may even
516  * copy out their return values and data before suspending. They may however be
517  * accelerated in reaching the user boundary as we will wake up
518  * any sleeping threads that are interruptable. (PCATCH).
519  */
520 int
521 thread_single(int mode)
522 {
523 	struct thread *td;
524 	struct thread *td2;
525 	struct proc *p;
526 	int remaining, wakeup_swapper;
527 
528 	td = curthread;
529 	p = td->td_proc;
530 	mtx_assert(&Giant, MA_NOTOWNED);
531 	PROC_LOCK_ASSERT(p, MA_OWNED);
532 	KASSERT((td != NULL), ("curthread is NULL"));
533 
534 	if ((p->p_flag & P_HADTHREADS) == 0)
535 		return (0);
536 
537 	/* Is someone already single threading? */
538 	if (p->p_singlethread != NULL && p->p_singlethread != td)
539 		return (1);
540 
541 	if (mode == SINGLE_EXIT) {
542 		p->p_flag |= P_SINGLE_EXIT;
543 		p->p_flag &= ~P_SINGLE_BOUNDARY;
544 	} else {
545 		p->p_flag &= ~P_SINGLE_EXIT;
546 		if (mode == SINGLE_BOUNDARY)
547 			p->p_flag |= P_SINGLE_BOUNDARY;
548 		else
549 			p->p_flag &= ~P_SINGLE_BOUNDARY;
550 	}
551 	p->p_flag |= P_STOPPED_SINGLE;
552 	PROC_SLOCK(p);
553 	p->p_singlethread = td;
554 	if (mode == SINGLE_EXIT)
555 		remaining = p->p_numthreads;
556 	else if (mode == SINGLE_BOUNDARY)
557 		remaining = p->p_numthreads - p->p_boundary_count;
558 	else
559 		remaining = p->p_numthreads - p->p_suspcount;
560 	while (remaining != 1) {
561 		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
562 			goto stopme;
563 		wakeup_swapper = 0;
564 		FOREACH_THREAD_IN_PROC(p, td2) {
565 			if (td2 == td)
566 				continue;
567 			thread_lock(td2);
568 			td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
569 			if (TD_IS_INHIBITED(td2)) {
570 				switch (mode) {
571 				case SINGLE_EXIT:
572 					if (TD_IS_SUSPENDED(td2))
573 						wakeup_swapper |=
574 						    thread_unsuspend_one(td2);
575 					if (TD_ON_SLEEPQ(td2) &&
576 					    (td2->td_flags & TDF_SINTR))
577 						wakeup_swapper |=
578 						    sleepq_abort(td2, EINTR);
579 					break;
580 				case SINGLE_BOUNDARY:
581 					if (TD_IS_SUSPENDED(td2) &&
582 					    !(td2->td_flags & TDF_BOUNDARY))
583 						wakeup_swapper |=
584 						    thread_unsuspend_one(td2);
585 					if (TD_ON_SLEEPQ(td2) &&
586 					    (td2->td_flags & TDF_SINTR))
587 						wakeup_swapper |=
588 						    sleepq_abort(td2, ERESTART);
589 					break;
590 				default:
591 					if (TD_IS_SUSPENDED(td2)) {
592 						thread_unlock(td2);
593 						continue;
594 					}
595 					/*
596 					 * maybe other inhibited states too?
597 					 */
598 					if ((td2->td_flags & TDF_SINTR) &&
599 					    (td2->td_inhibitors &
600 					    (TDI_SLEEPING | TDI_SWAPPED)))
601 						thread_suspend_one(td2);
602 					break;
603 				}
604 			}
605 #ifdef SMP
606 			else if (TD_IS_RUNNING(td2) && td != td2) {
607 				forward_signal(td2);
608 			}
609 #endif
610 			thread_unlock(td2);
611 		}
612 		if (wakeup_swapper)
613 			kick_proc0();
614 		if (mode == SINGLE_EXIT)
615 			remaining = p->p_numthreads;
616 		else if (mode == SINGLE_BOUNDARY)
617 			remaining = p->p_numthreads - p->p_boundary_count;
618 		else
619 			remaining = p->p_numthreads - p->p_suspcount;
620 
621 		/*
622 		 * Maybe we suspended some threads.. was it enough?
623 		 */
624 		if (remaining == 1)
625 			break;
626 
627 stopme:
628 		/*
629 		 * Wake us up when everyone else has suspended.
630 		 * In the mean time we suspend as well.
631 		 */
632 		thread_suspend_switch(td);
633 		if (mode == SINGLE_EXIT)
634 			remaining = p->p_numthreads;
635 		else if (mode == SINGLE_BOUNDARY)
636 			remaining = p->p_numthreads - p->p_boundary_count;
637 		else
638 			remaining = p->p_numthreads - p->p_suspcount;
639 	}
640 	if (mode == SINGLE_EXIT) {
641 		/*
642 		 * We have gotten rid of all the other threads and we
643 		 * are about to either exit or exec. In either case,
644 		 * we try our utmost  to revert to being a non-threaded
645 		 * process.
646 		 */
647 		p->p_singlethread = NULL;
648 		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
649 		thread_unthread(td);
650 	}
651 	PROC_SUNLOCK(p);
652 	return (0);
653 }
654 
655 /*
656  * Called in from locations that can safely check to see
657  * whether we have to suspend or at least throttle for a
658  * single-thread event (e.g. fork).
659  *
660  * Such locations include userret().
661  * If the "return_instead" argument is non zero, the thread must be able to
662  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
663  *
664  * The 'return_instead' argument tells the function if it may do a
665  * thread_exit() or suspend, or whether the caller must abort and back
666  * out instead.
667  *
668  * If the thread that set the single_threading request has set the
669  * P_SINGLE_EXIT bit in the process flags then this call will never return
670  * if 'return_instead' is false, but will exit.
671  *
672  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
673  *---------------+--------------------+---------------------
674  *       0       | returns 0          |   returns 0 or 1
675  *               | when ST ends       |   immediatly
676  *---------------+--------------------+---------------------
677  *       1       | thread exits       |   returns 1
678  *               |                    |  immediatly
679  * 0 = thread_exit() or suspension ok,
680  * other = return error instead of stopping the thread.
681  *
682  * While a full suspension is under effect, even a single threading
683  * thread would be suspended if it made this call (but it shouldn't).
684  * This call should only be made from places where
685  * thread_exit() would be safe as that may be the outcome unless
686  * return_instead is set.
687  */
688 int
689 thread_suspend_check(int return_instead)
690 {
691 	struct thread *td;
692 	struct proc *p;
693 	int wakeup_swapper;
694 
695 	td = curthread;
696 	p = td->td_proc;
697 	mtx_assert(&Giant, MA_NOTOWNED);
698 	PROC_LOCK_ASSERT(p, MA_OWNED);
699 	while (P_SHOULDSTOP(p) ||
700 	      ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
701 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
702 			KASSERT(p->p_singlethread != NULL,
703 			    ("singlethread not set"));
704 			/*
705 			 * The only suspension in action is a
706 			 * single-threading. Single threader need not stop.
707 			 * XXX Should be safe to access unlocked
708 			 * as it can only be set to be true by us.
709 			 */
710 			if (p->p_singlethread == td)
711 				return (0);	/* Exempt from stopping. */
712 		}
713 		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
714 			return (EINTR);
715 
716 		/* Should we goto user boundary if we didn't come from there? */
717 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
718 		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
719 			return (ERESTART);
720 
721 		/* If thread will exit, flush its pending signals */
722 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
723 			sigqueue_flush(&td->td_sigqueue);
724 
725 		PROC_SLOCK(p);
726 		thread_stopped(p);
727 		/*
728 		 * If the process is waiting for us to exit,
729 		 * this thread should just suicide.
730 		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
731 		 */
732 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
733 			thread_exit();
734 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
735 			if (p->p_numthreads == p->p_suspcount + 1) {
736 				thread_lock(p->p_singlethread);
737 				wakeup_swapper =
738 				    thread_unsuspend_one(p->p_singlethread);
739 				thread_unlock(p->p_singlethread);
740 				if (wakeup_swapper)
741 					kick_proc0();
742 			}
743 		}
744 		PROC_UNLOCK(p);
745 		thread_lock(td);
746 		/*
747 		 * When a thread suspends, it just
748 		 * gets taken off all queues.
749 		 */
750 		thread_suspend_one(td);
751 		if (return_instead == 0) {
752 			p->p_boundary_count++;
753 			td->td_flags |= TDF_BOUNDARY;
754 		}
755 		PROC_SUNLOCK(p);
756 		mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
757 		if (return_instead == 0)
758 			td->td_flags &= ~TDF_BOUNDARY;
759 		thread_unlock(td);
760 		PROC_LOCK(p);
761 		if (return_instead == 0)
762 			p->p_boundary_count--;
763 	}
764 	return (0);
765 }
766 
767 void
768 thread_suspend_switch(struct thread *td)
769 {
770 	struct proc *p;
771 
772 	p = td->td_proc;
773 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
774 	PROC_LOCK_ASSERT(p, MA_OWNED);
775 	PROC_SLOCK_ASSERT(p, MA_OWNED);
776 	/*
777 	 * We implement thread_suspend_one in stages here to avoid
778 	 * dropping the proc lock while the thread lock is owned.
779 	 */
780 	thread_stopped(p);
781 	p->p_suspcount++;
782 	PROC_UNLOCK(p);
783 	thread_lock(td);
784 	td->td_flags &= ~TDF_NEEDSUSPCHK;
785 	TD_SET_SUSPENDED(td);
786 	sched_sleep(td, 0);
787 	PROC_SUNLOCK(p);
788 	DROP_GIANT();
789 	mi_switch(SW_VOL | SWT_SUSPEND, NULL);
790 	thread_unlock(td);
791 	PICKUP_GIANT();
792 	PROC_LOCK(p);
793 	PROC_SLOCK(p);
794 }
795 
796 void
797 thread_suspend_one(struct thread *td)
798 {
799 	struct proc *p = td->td_proc;
800 
801 	PROC_SLOCK_ASSERT(p, MA_OWNED);
802 	THREAD_LOCK_ASSERT(td, MA_OWNED);
803 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
804 	p->p_suspcount++;
805 	td->td_flags &= ~TDF_NEEDSUSPCHK;
806 	TD_SET_SUSPENDED(td);
807 	sched_sleep(td, 0);
808 }
809 
810 int
811 thread_unsuspend_one(struct thread *td)
812 {
813 	struct proc *p = td->td_proc;
814 
815 	PROC_SLOCK_ASSERT(p, MA_OWNED);
816 	THREAD_LOCK_ASSERT(td, MA_OWNED);
817 	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
818 	TD_CLR_SUSPENDED(td);
819 	p->p_suspcount--;
820 	return (setrunnable(td));
821 }
822 
823 /*
824  * Allow all threads blocked by single threading to continue running.
825  */
826 void
827 thread_unsuspend(struct proc *p)
828 {
829 	struct thread *td;
830 	int wakeup_swapper;
831 
832 	PROC_LOCK_ASSERT(p, MA_OWNED);
833 	PROC_SLOCK_ASSERT(p, MA_OWNED);
834 	wakeup_swapper = 0;
835 	if (!P_SHOULDSTOP(p)) {
836                 FOREACH_THREAD_IN_PROC(p, td) {
837 			thread_lock(td);
838 			if (TD_IS_SUSPENDED(td)) {
839 				wakeup_swapper |= thread_unsuspend_one(td);
840 			}
841 			thread_unlock(td);
842 		}
843 	} else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
844 	    (p->p_numthreads == p->p_suspcount)) {
845 		/*
846 		 * Stopping everything also did the job for the single
847 		 * threading request. Now we've downgraded to single-threaded,
848 		 * let it continue.
849 		 */
850 		thread_lock(p->p_singlethread);
851 		wakeup_swapper = thread_unsuspend_one(p->p_singlethread);
852 		thread_unlock(p->p_singlethread);
853 	}
854 	if (wakeup_swapper)
855 		kick_proc0();
856 }
857 
858 /*
859  * End the single threading mode..
860  */
861 void
862 thread_single_end(void)
863 {
864 	struct thread *td;
865 	struct proc *p;
866 	int wakeup_swapper;
867 
868 	td = curthread;
869 	p = td->td_proc;
870 	PROC_LOCK_ASSERT(p, MA_OWNED);
871 	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
872 	PROC_SLOCK(p);
873 	p->p_singlethread = NULL;
874 	wakeup_swapper = 0;
875 	/*
876 	 * If there are other threads they may now run,
877 	 * unless of course there is a blanket 'stop order'
878 	 * on the process. The single threader must be allowed
879 	 * to continue however as this is a bad place to stop.
880 	 */
881 	if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
882                 FOREACH_THREAD_IN_PROC(p, td) {
883 			thread_lock(td);
884 			if (TD_IS_SUSPENDED(td)) {
885 				wakeup_swapper |= thread_unsuspend_one(td);
886 			}
887 			thread_unlock(td);
888 		}
889 	}
890 	PROC_SUNLOCK(p);
891 	if (wakeup_swapper)
892 		kick_proc0();
893 }
894 
895 struct thread *
896 thread_find(struct proc *p, lwpid_t tid)
897 {
898 	struct thread *td;
899 
900 	PROC_LOCK_ASSERT(p, MA_OWNED);
901 	FOREACH_THREAD_IN_PROC(p, td) {
902 		if (td->td_tid == tid)
903 			break;
904 	}
905 	return (td);
906 }
907