1 /*- 2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice(s), this list of conditions and the following disclaimer as 10 * the first lines of this file unmodified other than the possible 11 * addition of one or more copyright notices. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice(s), this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY 17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 19 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY 20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 26 * DAMAGE. 27 */ 28 29 #include "opt_witness.h" 30 #include "opt_hwpmc_hooks.h" 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/lock.h> 39 #include <sys/mutex.h> 40 #include <sys/proc.h> 41 #include <sys/rangelock.h> 42 #include <sys/resourcevar.h> 43 #include <sys/sdt.h> 44 #include <sys/smp.h> 45 #include <sys/sched.h> 46 #include <sys/sleepqueue.h> 47 #include <sys/selinfo.h> 48 #include <sys/syscallsubr.h> 49 #include <sys/sysent.h> 50 #include <sys/turnstile.h> 51 #include <sys/ktr.h> 52 #include <sys/rwlock.h> 53 #include <sys/umtx.h> 54 #include <sys/cpuset.h> 55 #ifdef HWPMC_HOOKS 56 #include <sys/pmckern.h> 57 #endif 58 59 #include <security/audit/audit.h> 60 61 #include <vm/vm.h> 62 #include <vm/vm_extern.h> 63 #include <vm/uma.h> 64 #include <vm/vm_domain.h> 65 #include <sys/eventhandler.h> 66 67 SDT_PROVIDER_DECLARE(proc); 68 SDT_PROBE_DEFINE(proc, , , lwp__exit); 69 70 /* 71 * thread related storage. 72 */ 73 static uma_zone_t thread_zone; 74 75 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads); 76 static struct mtx zombie_lock; 77 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN); 78 79 static void thread_zombie(struct thread *); 80 static int thread_unsuspend_one(struct thread *td, struct proc *p, 81 bool boundary); 82 83 #define TID_BUFFER_SIZE 1024 84 85 struct mtx tid_lock; 86 static struct unrhdr *tid_unrhdr; 87 static lwpid_t tid_buffer[TID_BUFFER_SIZE]; 88 static int tid_head, tid_tail; 89 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash"); 90 91 struct tidhashhead *tidhashtbl; 92 u_long tidhash; 93 struct rwlock tidhash_lock; 94 95 static lwpid_t 96 tid_alloc(void) 97 { 98 lwpid_t tid; 99 100 tid = alloc_unr(tid_unrhdr); 101 if (tid != -1) 102 return (tid); 103 mtx_lock(&tid_lock); 104 if (tid_head == tid_tail) { 105 mtx_unlock(&tid_lock); 106 return (-1); 107 } 108 tid = tid_buffer[tid_head]; 109 tid_head = (tid_head + 1) % TID_BUFFER_SIZE; 110 mtx_unlock(&tid_lock); 111 return (tid); 112 } 113 114 static void 115 tid_free(lwpid_t tid) 116 { 117 lwpid_t tmp_tid = -1; 118 119 mtx_lock(&tid_lock); 120 if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) { 121 tmp_tid = tid_buffer[tid_head]; 122 tid_head = (tid_head + 1) % TID_BUFFER_SIZE; 123 } 124 tid_buffer[tid_tail] = tid; 125 tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE; 126 mtx_unlock(&tid_lock); 127 if (tmp_tid != -1) 128 free_unr(tid_unrhdr, tmp_tid); 129 } 130 131 /* 132 * Prepare a thread for use. 133 */ 134 static int 135 thread_ctor(void *mem, int size, void *arg, int flags) 136 { 137 struct thread *td; 138 139 td = (struct thread *)mem; 140 td->td_state = TDS_INACTIVE; 141 td->td_oncpu = NOCPU; 142 143 td->td_tid = tid_alloc(); 144 145 /* 146 * Note that td_critnest begins life as 1 because the thread is not 147 * running and is thereby implicitly waiting to be on the receiving 148 * end of a context switch. 149 */ 150 td->td_critnest = 1; 151 td->td_lend_user_pri = PRI_MAX; 152 EVENTHANDLER_INVOKE(thread_ctor, td); 153 #ifdef AUDIT 154 audit_thread_alloc(td); 155 #endif 156 umtx_thread_alloc(td); 157 return (0); 158 } 159 160 /* 161 * Reclaim a thread after use. 162 */ 163 static void 164 thread_dtor(void *mem, int size, void *arg) 165 { 166 struct thread *td; 167 168 td = (struct thread *)mem; 169 170 #ifdef INVARIANTS 171 /* Verify that this thread is in a safe state to free. */ 172 switch (td->td_state) { 173 case TDS_INHIBITED: 174 case TDS_RUNNING: 175 case TDS_CAN_RUN: 176 case TDS_RUNQ: 177 /* 178 * We must never unlink a thread that is in one of 179 * these states, because it is currently active. 180 */ 181 panic("bad state for thread unlinking"); 182 /* NOTREACHED */ 183 case TDS_INACTIVE: 184 break; 185 default: 186 panic("bad thread state"); 187 /* NOTREACHED */ 188 } 189 #endif 190 #ifdef AUDIT 191 audit_thread_free(td); 192 #endif 193 /* Free all OSD associated to this thread. */ 194 osd_thread_exit(td); 195 td_softdep_cleanup(td); 196 MPASS(td->td_su == NULL); 197 198 EVENTHANDLER_INVOKE(thread_dtor, td); 199 tid_free(td->td_tid); 200 } 201 202 /* 203 * Initialize type-stable parts of a thread (when newly created). 204 */ 205 static int 206 thread_init(void *mem, int size, int flags) 207 { 208 struct thread *td; 209 210 td = (struct thread *)mem; 211 212 td->td_sleepqueue = sleepq_alloc(); 213 td->td_turnstile = turnstile_alloc(); 214 td->td_rlqe = NULL; 215 EVENTHANDLER_INVOKE(thread_init, td); 216 umtx_thread_init(td); 217 td->td_kstack = 0; 218 td->td_sel = NULL; 219 return (0); 220 } 221 222 /* 223 * Tear down type-stable parts of a thread (just before being discarded). 224 */ 225 static void 226 thread_fini(void *mem, int size) 227 { 228 struct thread *td; 229 230 td = (struct thread *)mem; 231 EVENTHANDLER_INVOKE(thread_fini, td); 232 rlqentry_free(td->td_rlqe); 233 turnstile_free(td->td_turnstile); 234 sleepq_free(td->td_sleepqueue); 235 umtx_thread_fini(td); 236 seltdfini(td); 237 } 238 239 /* 240 * For a newly created process, 241 * link up all the structures and its initial threads etc. 242 * called from: 243 * {arch}/{arch}/machdep.c {arch}_init(), init386() etc. 244 * proc_dtor() (should go away) 245 * proc_init() 246 */ 247 void 248 proc_linkup0(struct proc *p, struct thread *td) 249 { 250 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 251 proc_linkup(p, td); 252 } 253 254 void 255 proc_linkup(struct proc *p, struct thread *td) 256 { 257 258 sigqueue_init(&p->p_sigqueue, p); 259 p->p_ksi = ksiginfo_alloc(1); 260 if (p->p_ksi != NULL) { 261 /* XXX p_ksi may be null if ksiginfo zone is not ready */ 262 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS; 263 } 264 LIST_INIT(&p->p_mqnotifier); 265 p->p_numthreads = 0; 266 thread_link(td, p); 267 } 268 269 /* 270 * Initialize global thread allocation resources. 271 */ 272 void 273 threadinit(void) 274 { 275 276 mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF); 277 278 /* 279 * pid_max cannot be greater than PID_MAX. 280 * leave one number for thread0. 281 */ 282 tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock); 283 284 thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(), 285 thread_ctor, thread_dtor, thread_init, thread_fini, 286 32 - 1, UMA_ZONE_NOFREE); 287 tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash); 288 rw_init(&tidhash_lock, "tidhash"); 289 } 290 291 /* 292 * Place an unused thread on the zombie list. 293 * Use the slpq as that must be unused by now. 294 */ 295 void 296 thread_zombie(struct thread *td) 297 { 298 mtx_lock_spin(&zombie_lock); 299 TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq); 300 mtx_unlock_spin(&zombie_lock); 301 } 302 303 /* 304 * Release a thread that has exited after cpu_throw(). 305 */ 306 void 307 thread_stash(struct thread *td) 308 { 309 atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1); 310 thread_zombie(td); 311 } 312 313 /* 314 * Reap zombie resources. 315 */ 316 void 317 thread_reap(void) 318 { 319 struct thread *td_first, *td_next; 320 321 /* 322 * Don't even bother to lock if none at this instant, 323 * we really don't care about the next instant. 324 */ 325 if (!TAILQ_EMPTY(&zombie_threads)) { 326 mtx_lock_spin(&zombie_lock); 327 td_first = TAILQ_FIRST(&zombie_threads); 328 if (td_first) 329 TAILQ_INIT(&zombie_threads); 330 mtx_unlock_spin(&zombie_lock); 331 while (td_first) { 332 td_next = TAILQ_NEXT(td_first, td_slpq); 333 thread_cow_free(td_first); 334 thread_free(td_first); 335 td_first = td_next; 336 } 337 } 338 } 339 340 /* 341 * Allocate a thread. 342 */ 343 struct thread * 344 thread_alloc(int pages) 345 { 346 struct thread *td; 347 348 thread_reap(); /* check if any zombies to get */ 349 350 td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK); 351 KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack")); 352 if (!vm_thread_new(td, pages)) { 353 uma_zfree(thread_zone, td); 354 return (NULL); 355 } 356 cpu_thread_alloc(td); 357 vm_domain_policy_init(&td->td_vm_dom_policy); 358 return (td); 359 } 360 361 int 362 thread_alloc_stack(struct thread *td, int pages) 363 { 364 365 KASSERT(td->td_kstack == 0, 366 ("thread_alloc_stack called on a thread with kstack")); 367 if (!vm_thread_new(td, pages)) 368 return (0); 369 cpu_thread_alloc(td); 370 return (1); 371 } 372 373 /* 374 * Deallocate a thread. 375 */ 376 void 377 thread_free(struct thread *td) 378 { 379 380 lock_profile_thread_exit(td); 381 if (td->td_cpuset) 382 cpuset_rel(td->td_cpuset); 383 td->td_cpuset = NULL; 384 cpu_thread_free(td); 385 if (td->td_kstack != 0) 386 vm_thread_dispose(td); 387 vm_domain_policy_cleanup(&td->td_vm_dom_policy); 388 callout_drain(&td->td_slpcallout); 389 uma_zfree(thread_zone, td); 390 } 391 392 void 393 thread_cow_get_proc(struct thread *newtd, struct proc *p) 394 { 395 396 PROC_LOCK_ASSERT(p, MA_OWNED); 397 newtd->td_ucred = crhold(p->p_ucred); 398 newtd->td_limit = lim_hold(p->p_limit); 399 newtd->td_cowgen = p->p_cowgen; 400 } 401 402 void 403 thread_cow_get(struct thread *newtd, struct thread *td) 404 { 405 406 newtd->td_ucred = crhold(td->td_ucred); 407 newtd->td_limit = lim_hold(td->td_limit); 408 newtd->td_cowgen = td->td_cowgen; 409 } 410 411 void 412 thread_cow_free(struct thread *td) 413 { 414 415 if (td->td_ucred != NULL) 416 crfree(td->td_ucred); 417 if (td->td_limit != NULL) 418 lim_free(td->td_limit); 419 } 420 421 void 422 thread_cow_update(struct thread *td) 423 { 424 struct proc *p; 425 struct ucred *oldcred; 426 struct plimit *oldlimit; 427 428 p = td->td_proc; 429 oldcred = NULL; 430 oldlimit = NULL; 431 PROC_LOCK(p); 432 if (td->td_ucred != p->p_ucred) { 433 oldcred = td->td_ucred; 434 td->td_ucred = crhold(p->p_ucred); 435 } 436 if (td->td_limit != p->p_limit) { 437 oldlimit = td->td_limit; 438 td->td_limit = lim_hold(p->p_limit); 439 } 440 td->td_cowgen = p->p_cowgen; 441 PROC_UNLOCK(p); 442 if (oldcred != NULL) 443 crfree(oldcred); 444 if (oldlimit != NULL) 445 lim_free(oldlimit); 446 } 447 448 /* 449 * Discard the current thread and exit from its context. 450 * Always called with scheduler locked. 451 * 452 * Because we can't free a thread while we're operating under its context, 453 * push the current thread into our CPU's deadthread holder. This means 454 * we needn't worry about someone else grabbing our context before we 455 * do a cpu_throw(). 456 */ 457 void 458 thread_exit(void) 459 { 460 uint64_t runtime, new_switchtime; 461 struct thread *td; 462 struct thread *td2; 463 struct proc *p; 464 int wakeup_swapper; 465 466 td = curthread; 467 p = td->td_proc; 468 469 PROC_SLOCK_ASSERT(p, MA_OWNED); 470 mtx_assert(&Giant, MA_NOTOWNED); 471 472 PROC_LOCK_ASSERT(p, MA_OWNED); 473 KASSERT(p != NULL, ("thread exiting without a process")); 474 CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td, 475 (long)p->p_pid, td->td_name); 476 KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending")); 477 478 #ifdef AUDIT 479 AUDIT_SYSCALL_EXIT(0, td); 480 #endif 481 /* 482 * drop FPU & debug register state storage, or any other 483 * architecture specific resources that 484 * would not be on a new untouched process. 485 */ 486 cpu_thread_exit(td); 487 488 /* 489 * The last thread is left attached to the process 490 * So that the whole bundle gets recycled. Skip 491 * all this stuff if we never had threads. 492 * EXIT clears all sign of other threads when 493 * it goes to single threading, so the last thread always 494 * takes the short path. 495 */ 496 if (p->p_flag & P_HADTHREADS) { 497 if (p->p_numthreads > 1) { 498 atomic_add_int(&td->td_proc->p_exitthreads, 1); 499 thread_unlink(td); 500 td2 = FIRST_THREAD_IN_PROC(p); 501 sched_exit_thread(td2, td); 502 503 /* 504 * The test below is NOT true if we are the 505 * sole exiting thread. P_STOPPED_SINGLE is unset 506 * in exit1() after it is the only survivor. 507 */ 508 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 509 if (p->p_numthreads == p->p_suspcount) { 510 thread_lock(p->p_singlethread); 511 wakeup_swapper = thread_unsuspend_one( 512 p->p_singlethread, p, false); 513 thread_unlock(p->p_singlethread); 514 if (wakeup_swapper) 515 kick_proc0(); 516 } 517 } 518 519 PCPU_SET(deadthread, td); 520 } else { 521 /* 522 * The last thread is exiting.. but not through exit() 523 */ 524 panic ("thread_exit: Last thread exiting on its own"); 525 } 526 } 527 #ifdef HWPMC_HOOKS 528 /* 529 * If this thread is part of a process that is being tracked by hwpmc(4), 530 * inform the module of the thread's impending exit. 531 */ 532 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 533 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT); 534 #endif 535 PROC_UNLOCK(p); 536 PROC_STATLOCK(p); 537 thread_lock(td); 538 PROC_SUNLOCK(p); 539 540 /* Do the same timestamp bookkeeping that mi_switch() would do. */ 541 new_switchtime = cpu_ticks(); 542 runtime = new_switchtime - PCPU_GET(switchtime); 543 td->td_runtime += runtime; 544 td->td_incruntime += runtime; 545 PCPU_SET(switchtime, new_switchtime); 546 PCPU_SET(switchticks, ticks); 547 PCPU_INC(cnt.v_swtch); 548 549 /* Save our resource usage in our process. */ 550 td->td_ru.ru_nvcsw++; 551 ruxagg(p, td); 552 rucollect(&p->p_ru, &td->td_ru); 553 PROC_STATUNLOCK(p); 554 555 td->td_state = TDS_INACTIVE; 556 #ifdef WITNESS 557 witness_thread_exit(td); 558 #endif 559 CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td); 560 sched_throw(td); 561 panic("I'm a teapot!"); 562 /* NOTREACHED */ 563 } 564 565 /* 566 * Do any thread specific cleanups that may be needed in wait() 567 * called with Giant, proc and schedlock not held. 568 */ 569 void 570 thread_wait(struct proc *p) 571 { 572 struct thread *td; 573 574 mtx_assert(&Giant, MA_NOTOWNED); 575 KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()")); 576 KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking")); 577 td = FIRST_THREAD_IN_PROC(p); 578 /* Lock the last thread so we spin until it exits cpu_throw(). */ 579 thread_lock(td); 580 thread_unlock(td); 581 lock_profile_thread_exit(td); 582 cpuset_rel(td->td_cpuset); 583 td->td_cpuset = NULL; 584 cpu_thread_clean(td); 585 thread_cow_free(td); 586 callout_drain(&td->td_slpcallout); 587 thread_reap(); /* check for zombie threads etc. */ 588 } 589 590 /* 591 * Link a thread to a process. 592 * set up anything that needs to be initialized for it to 593 * be used by the process. 594 */ 595 void 596 thread_link(struct thread *td, struct proc *p) 597 { 598 599 /* 600 * XXX This can't be enabled because it's called for proc0 before 601 * its lock has been created. 602 * PROC_LOCK_ASSERT(p, MA_OWNED); 603 */ 604 td->td_state = TDS_INACTIVE; 605 td->td_proc = p; 606 td->td_flags = TDF_INMEM; 607 608 LIST_INIT(&td->td_contested); 609 LIST_INIT(&td->td_lprof[0]); 610 LIST_INIT(&td->td_lprof[1]); 611 sigqueue_init(&td->td_sigqueue, p); 612 callout_init(&td->td_slpcallout, 1); 613 TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist); 614 p->p_numthreads++; 615 } 616 617 /* 618 * Called from: 619 * thread_exit() 620 */ 621 void 622 thread_unlink(struct thread *td) 623 { 624 struct proc *p = td->td_proc; 625 626 PROC_LOCK_ASSERT(p, MA_OWNED); 627 TAILQ_REMOVE(&p->p_threads, td, td_plist); 628 p->p_numthreads--; 629 /* could clear a few other things here */ 630 /* Must NOT clear links to proc! */ 631 } 632 633 static int 634 calc_remaining(struct proc *p, int mode) 635 { 636 int remaining; 637 638 PROC_LOCK_ASSERT(p, MA_OWNED); 639 PROC_SLOCK_ASSERT(p, MA_OWNED); 640 if (mode == SINGLE_EXIT) 641 remaining = p->p_numthreads; 642 else if (mode == SINGLE_BOUNDARY) 643 remaining = p->p_numthreads - p->p_boundary_count; 644 else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC) 645 remaining = p->p_numthreads - p->p_suspcount; 646 else 647 panic("calc_remaining: wrong mode %d", mode); 648 return (remaining); 649 } 650 651 static int 652 remain_for_mode(int mode) 653 { 654 655 return (mode == SINGLE_ALLPROC ? 0 : 1); 656 } 657 658 static int 659 weed_inhib(int mode, struct thread *td2, struct proc *p) 660 { 661 int wakeup_swapper; 662 663 PROC_LOCK_ASSERT(p, MA_OWNED); 664 PROC_SLOCK_ASSERT(p, MA_OWNED); 665 THREAD_LOCK_ASSERT(td2, MA_OWNED); 666 667 wakeup_swapper = 0; 668 switch (mode) { 669 case SINGLE_EXIT: 670 if (TD_IS_SUSPENDED(td2)) 671 wakeup_swapper |= thread_unsuspend_one(td2, p, true); 672 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) 673 wakeup_swapper |= sleepq_abort(td2, EINTR); 674 break; 675 case SINGLE_BOUNDARY: 676 case SINGLE_NO_EXIT: 677 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0) 678 wakeup_swapper |= thread_unsuspend_one(td2, p, false); 679 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) 680 wakeup_swapper |= sleepq_abort(td2, ERESTART); 681 break; 682 case SINGLE_ALLPROC: 683 /* 684 * ALLPROC suspend tries to avoid spurious EINTR for 685 * threads sleeping interruptable, by suspending the 686 * thread directly, similarly to sig_suspend_threads(). 687 * Since such sleep is not performed at the user 688 * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP 689 * is used to avoid immediate un-suspend. 690 */ 691 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY | 692 TDF_ALLPROCSUSP)) == 0) 693 wakeup_swapper |= thread_unsuspend_one(td2, p, false); 694 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) { 695 if ((td2->td_flags & TDF_SBDRY) == 0) { 696 thread_suspend_one(td2); 697 td2->td_flags |= TDF_ALLPROCSUSP; 698 } else { 699 wakeup_swapper |= sleepq_abort(td2, ERESTART); 700 } 701 } 702 break; 703 } 704 return (wakeup_swapper); 705 } 706 707 /* 708 * Enforce single-threading. 709 * 710 * Returns 1 if the caller must abort (another thread is waiting to 711 * exit the process or similar). Process is locked! 712 * Returns 0 when you are successfully the only thread running. 713 * A process has successfully single threaded in the suspend mode when 714 * There are no threads in user mode. Threads in the kernel must be 715 * allowed to continue until they get to the user boundary. They may even 716 * copy out their return values and data before suspending. They may however be 717 * accelerated in reaching the user boundary as we will wake up 718 * any sleeping threads that are interruptable. (PCATCH). 719 */ 720 int 721 thread_single(struct proc *p, int mode) 722 { 723 struct thread *td; 724 struct thread *td2; 725 int remaining, wakeup_swapper; 726 727 td = curthread; 728 KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY || 729 mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT, 730 ("invalid mode %d", mode)); 731 /* 732 * If allowing non-ALLPROC singlethreading for non-curproc 733 * callers, calc_remaining() and remain_for_mode() should be 734 * adjusted to also account for td->td_proc != p. For now 735 * this is not implemented because it is not used. 736 */ 737 KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) || 738 (mode != SINGLE_ALLPROC && td->td_proc == p), 739 ("mode %d proc %p curproc %p", mode, p, td->td_proc)); 740 mtx_assert(&Giant, MA_NOTOWNED); 741 PROC_LOCK_ASSERT(p, MA_OWNED); 742 743 if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC) 744 return (0); 745 746 /* Is someone already single threading? */ 747 if (p->p_singlethread != NULL && p->p_singlethread != td) 748 return (1); 749 750 if (mode == SINGLE_EXIT) { 751 p->p_flag |= P_SINGLE_EXIT; 752 p->p_flag &= ~P_SINGLE_BOUNDARY; 753 } else { 754 p->p_flag &= ~P_SINGLE_EXIT; 755 if (mode == SINGLE_BOUNDARY) 756 p->p_flag |= P_SINGLE_BOUNDARY; 757 else 758 p->p_flag &= ~P_SINGLE_BOUNDARY; 759 } 760 if (mode == SINGLE_ALLPROC) 761 p->p_flag |= P_TOTAL_STOP; 762 p->p_flag |= P_STOPPED_SINGLE; 763 PROC_SLOCK(p); 764 p->p_singlethread = td; 765 remaining = calc_remaining(p, mode); 766 while (remaining != remain_for_mode(mode)) { 767 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE) 768 goto stopme; 769 wakeup_swapper = 0; 770 FOREACH_THREAD_IN_PROC(p, td2) { 771 if (td2 == td) 772 continue; 773 thread_lock(td2); 774 td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK; 775 if (TD_IS_INHIBITED(td2)) { 776 wakeup_swapper |= weed_inhib(mode, td2, p); 777 #ifdef SMP 778 } else if (TD_IS_RUNNING(td2) && td != td2) { 779 forward_signal(td2); 780 #endif 781 } 782 thread_unlock(td2); 783 } 784 if (wakeup_swapper) 785 kick_proc0(); 786 remaining = calc_remaining(p, mode); 787 788 /* 789 * Maybe we suspended some threads.. was it enough? 790 */ 791 if (remaining == remain_for_mode(mode)) 792 break; 793 794 stopme: 795 /* 796 * Wake us up when everyone else has suspended. 797 * In the mean time we suspend as well. 798 */ 799 thread_suspend_switch(td, p); 800 remaining = calc_remaining(p, mode); 801 } 802 if (mode == SINGLE_EXIT) { 803 /* 804 * Convert the process to an unthreaded process. The 805 * SINGLE_EXIT is called by exit1() or execve(), in 806 * both cases other threads must be retired. 807 */ 808 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads")); 809 p->p_singlethread = NULL; 810 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS); 811 812 /* 813 * Wait for any remaining threads to exit cpu_throw(). 814 */ 815 while (p->p_exitthreads != 0) { 816 PROC_SUNLOCK(p); 817 PROC_UNLOCK(p); 818 sched_relinquish(td); 819 PROC_LOCK(p); 820 PROC_SLOCK(p); 821 } 822 } else if (mode == SINGLE_BOUNDARY) { 823 /* 824 * Wait until all suspended threads are removed from 825 * the processors. The thread_suspend_check() 826 * increments p_boundary_count while it is still 827 * running, which makes it possible for the execve() 828 * to destroy vmspace while our other threads are 829 * still using the address space. 830 * 831 * We lock the thread, which is only allowed to 832 * succeed after context switch code finished using 833 * the address space. 834 */ 835 FOREACH_THREAD_IN_PROC(p, td2) { 836 if (td2 == td) 837 continue; 838 thread_lock(td2); 839 KASSERT((td2->td_flags & TDF_BOUNDARY) != 0, 840 ("td %p not on boundary", td2)); 841 KASSERT(TD_IS_SUSPENDED(td2), 842 ("td %p is not suspended", td2)); 843 thread_unlock(td2); 844 } 845 } 846 PROC_SUNLOCK(p); 847 return (0); 848 } 849 850 bool 851 thread_suspend_check_needed(void) 852 { 853 struct proc *p; 854 struct thread *td; 855 856 td = curthread; 857 p = td->td_proc; 858 PROC_LOCK_ASSERT(p, MA_OWNED); 859 return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 && 860 (td->td_dbgflags & TDB_SUSPEND) != 0)); 861 } 862 863 /* 864 * Called in from locations that can safely check to see 865 * whether we have to suspend or at least throttle for a 866 * single-thread event (e.g. fork). 867 * 868 * Such locations include userret(). 869 * If the "return_instead" argument is non zero, the thread must be able to 870 * accept 0 (caller may continue), or 1 (caller must abort) as a result. 871 * 872 * The 'return_instead' argument tells the function if it may do a 873 * thread_exit() or suspend, or whether the caller must abort and back 874 * out instead. 875 * 876 * If the thread that set the single_threading request has set the 877 * P_SINGLE_EXIT bit in the process flags then this call will never return 878 * if 'return_instead' is false, but will exit. 879 * 880 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0 881 *---------------+--------------------+--------------------- 882 * 0 | returns 0 | returns 0 or 1 883 * | when ST ends | immediately 884 *---------------+--------------------+--------------------- 885 * 1 | thread exits | returns 1 886 * | | immediately 887 * 0 = thread_exit() or suspension ok, 888 * other = return error instead of stopping the thread. 889 * 890 * While a full suspension is under effect, even a single threading 891 * thread would be suspended if it made this call (but it shouldn't). 892 * This call should only be made from places where 893 * thread_exit() would be safe as that may be the outcome unless 894 * return_instead is set. 895 */ 896 int 897 thread_suspend_check(int return_instead) 898 { 899 struct thread *td; 900 struct proc *p; 901 int wakeup_swapper; 902 903 td = curthread; 904 p = td->td_proc; 905 mtx_assert(&Giant, MA_NOTOWNED); 906 PROC_LOCK_ASSERT(p, MA_OWNED); 907 while (thread_suspend_check_needed()) { 908 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 909 KASSERT(p->p_singlethread != NULL, 910 ("singlethread not set")); 911 /* 912 * The only suspension in action is a 913 * single-threading. Single threader need not stop. 914 * It is safe to access p->p_singlethread unlocked 915 * because it can only be set to our address by us. 916 */ 917 if (p->p_singlethread == td) 918 return (0); /* Exempt from stopping. */ 919 } 920 if ((p->p_flag & P_SINGLE_EXIT) && return_instead) 921 return (EINTR); 922 923 /* Should we goto user boundary if we didn't come from there? */ 924 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE && 925 (p->p_flag & P_SINGLE_BOUNDARY) && return_instead) 926 return (ERESTART); 927 928 /* 929 * Ignore suspend requests if they are deferred. 930 */ 931 if ((td->td_flags & TDF_SBDRY) != 0) { 932 KASSERT(return_instead, 933 ("TDF_SBDRY set for unsafe thread_suspend_check")); 934 KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) != 935 (TDF_SEINTR | TDF_SERESTART), 936 ("both TDF_SEINTR and TDF_SERESTART")); 937 return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0); 938 } 939 940 /* 941 * If the process is waiting for us to exit, 942 * this thread should just suicide. 943 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE. 944 */ 945 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) { 946 PROC_UNLOCK(p); 947 948 /* 949 * Allow Linux emulation layer to do some work 950 * before thread suicide. 951 */ 952 if (__predict_false(p->p_sysent->sv_thread_detach != NULL)) 953 (p->p_sysent->sv_thread_detach)(td); 954 umtx_thread_exit(td); 955 kern_thr_exit(td); 956 panic("stopped thread did not exit"); 957 } 958 959 PROC_SLOCK(p); 960 thread_stopped(p); 961 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 962 if (p->p_numthreads == p->p_suspcount + 1) { 963 thread_lock(p->p_singlethread); 964 wakeup_swapper = thread_unsuspend_one( 965 p->p_singlethread, p, false); 966 thread_unlock(p->p_singlethread); 967 if (wakeup_swapper) 968 kick_proc0(); 969 } 970 } 971 PROC_UNLOCK(p); 972 thread_lock(td); 973 /* 974 * When a thread suspends, it just 975 * gets taken off all queues. 976 */ 977 thread_suspend_one(td); 978 if (return_instead == 0) { 979 p->p_boundary_count++; 980 td->td_flags |= TDF_BOUNDARY; 981 } 982 PROC_SUNLOCK(p); 983 mi_switch(SW_INVOL | SWT_SUSPEND, NULL); 984 thread_unlock(td); 985 PROC_LOCK(p); 986 } 987 return (0); 988 } 989 990 void 991 thread_suspend_switch(struct thread *td, struct proc *p) 992 { 993 994 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 995 PROC_LOCK_ASSERT(p, MA_OWNED); 996 PROC_SLOCK_ASSERT(p, MA_OWNED); 997 /* 998 * We implement thread_suspend_one in stages here to avoid 999 * dropping the proc lock while the thread lock is owned. 1000 */ 1001 if (p == td->td_proc) { 1002 thread_stopped(p); 1003 p->p_suspcount++; 1004 } 1005 PROC_UNLOCK(p); 1006 thread_lock(td); 1007 td->td_flags &= ~TDF_NEEDSUSPCHK; 1008 TD_SET_SUSPENDED(td); 1009 sched_sleep(td, 0); 1010 PROC_SUNLOCK(p); 1011 DROP_GIANT(); 1012 mi_switch(SW_VOL | SWT_SUSPEND, NULL); 1013 thread_unlock(td); 1014 PICKUP_GIANT(); 1015 PROC_LOCK(p); 1016 PROC_SLOCK(p); 1017 } 1018 1019 void 1020 thread_suspend_one(struct thread *td) 1021 { 1022 struct proc *p; 1023 1024 p = td->td_proc; 1025 PROC_SLOCK_ASSERT(p, MA_OWNED); 1026 THREAD_LOCK_ASSERT(td, MA_OWNED); 1027 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 1028 p->p_suspcount++; 1029 td->td_flags &= ~TDF_NEEDSUSPCHK; 1030 TD_SET_SUSPENDED(td); 1031 sched_sleep(td, 0); 1032 } 1033 1034 static int 1035 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary) 1036 { 1037 1038 THREAD_LOCK_ASSERT(td, MA_OWNED); 1039 KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended")); 1040 TD_CLR_SUSPENDED(td); 1041 td->td_flags &= ~TDF_ALLPROCSUSP; 1042 if (td->td_proc == p) { 1043 PROC_SLOCK_ASSERT(p, MA_OWNED); 1044 p->p_suspcount--; 1045 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) { 1046 td->td_flags &= ~TDF_BOUNDARY; 1047 p->p_boundary_count--; 1048 } 1049 } 1050 return (setrunnable(td)); 1051 } 1052 1053 /* 1054 * Allow all threads blocked by single threading to continue running. 1055 */ 1056 void 1057 thread_unsuspend(struct proc *p) 1058 { 1059 struct thread *td; 1060 int wakeup_swapper; 1061 1062 PROC_LOCK_ASSERT(p, MA_OWNED); 1063 PROC_SLOCK_ASSERT(p, MA_OWNED); 1064 wakeup_swapper = 0; 1065 if (!P_SHOULDSTOP(p)) { 1066 FOREACH_THREAD_IN_PROC(p, td) { 1067 thread_lock(td); 1068 if (TD_IS_SUSPENDED(td)) { 1069 wakeup_swapper |= thread_unsuspend_one(td, p, 1070 true); 1071 } 1072 thread_unlock(td); 1073 } 1074 } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE && 1075 p->p_numthreads == p->p_suspcount) { 1076 /* 1077 * Stopping everything also did the job for the single 1078 * threading request. Now we've downgraded to single-threaded, 1079 * let it continue. 1080 */ 1081 if (p->p_singlethread->td_proc == p) { 1082 thread_lock(p->p_singlethread); 1083 wakeup_swapper = thread_unsuspend_one( 1084 p->p_singlethread, p, false); 1085 thread_unlock(p->p_singlethread); 1086 } 1087 } 1088 if (wakeup_swapper) 1089 kick_proc0(); 1090 } 1091 1092 /* 1093 * End the single threading mode.. 1094 */ 1095 void 1096 thread_single_end(struct proc *p, int mode) 1097 { 1098 struct thread *td; 1099 int wakeup_swapper; 1100 1101 KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY || 1102 mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT, 1103 ("invalid mode %d", mode)); 1104 PROC_LOCK_ASSERT(p, MA_OWNED); 1105 KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) || 1106 (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0), 1107 ("mode %d does not match P_TOTAL_STOP", mode)); 1108 KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread, 1109 ("thread_single_end from other thread %p %p", 1110 curthread, p->p_singlethread)); 1111 KASSERT(mode != SINGLE_BOUNDARY || 1112 (p->p_flag & P_SINGLE_BOUNDARY) != 0, 1113 ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag)); 1114 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY | 1115 P_TOTAL_STOP); 1116 PROC_SLOCK(p); 1117 p->p_singlethread = NULL; 1118 wakeup_swapper = 0; 1119 /* 1120 * If there are other threads they may now run, 1121 * unless of course there is a blanket 'stop order' 1122 * on the process. The single threader must be allowed 1123 * to continue however as this is a bad place to stop. 1124 */ 1125 if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) { 1126 FOREACH_THREAD_IN_PROC(p, td) { 1127 thread_lock(td); 1128 if (TD_IS_SUSPENDED(td)) { 1129 wakeup_swapper |= thread_unsuspend_one(td, p, 1130 mode == SINGLE_BOUNDARY); 1131 } 1132 thread_unlock(td); 1133 } 1134 } 1135 KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0, 1136 ("inconsistent boundary count %d", p->p_boundary_count)); 1137 PROC_SUNLOCK(p); 1138 if (wakeup_swapper) 1139 kick_proc0(); 1140 } 1141 1142 struct thread * 1143 thread_find(struct proc *p, lwpid_t tid) 1144 { 1145 struct thread *td; 1146 1147 PROC_LOCK_ASSERT(p, MA_OWNED); 1148 FOREACH_THREAD_IN_PROC(p, td) { 1149 if (td->td_tid == tid) 1150 break; 1151 } 1152 return (td); 1153 } 1154 1155 /* Locate a thread by number; return with proc lock held. */ 1156 struct thread * 1157 tdfind(lwpid_t tid, pid_t pid) 1158 { 1159 #define RUN_THRESH 16 1160 struct thread *td; 1161 int run = 0; 1162 1163 rw_rlock(&tidhash_lock); 1164 LIST_FOREACH(td, TIDHASH(tid), td_hash) { 1165 if (td->td_tid == tid) { 1166 if (pid != -1 && td->td_proc->p_pid != pid) { 1167 td = NULL; 1168 break; 1169 } 1170 PROC_LOCK(td->td_proc); 1171 if (td->td_proc->p_state == PRS_NEW) { 1172 PROC_UNLOCK(td->td_proc); 1173 td = NULL; 1174 break; 1175 } 1176 if (run > RUN_THRESH) { 1177 if (rw_try_upgrade(&tidhash_lock)) { 1178 LIST_REMOVE(td, td_hash); 1179 LIST_INSERT_HEAD(TIDHASH(td->td_tid), 1180 td, td_hash); 1181 rw_wunlock(&tidhash_lock); 1182 return (td); 1183 } 1184 } 1185 break; 1186 } 1187 run++; 1188 } 1189 rw_runlock(&tidhash_lock); 1190 return (td); 1191 } 1192 1193 void 1194 tidhash_add(struct thread *td) 1195 { 1196 rw_wlock(&tidhash_lock); 1197 LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash); 1198 rw_wunlock(&tidhash_lock); 1199 } 1200 1201 void 1202 tidhash_remove(struct thread *td) 1203 { 1204 rw_wlock(&tidhash_lock); 1205 LIST_REMOVE(td, td_hash); 1206 rw_wunlock(&tidhash_lock); 1207 } 1208