xref: /freebsd/sys/kern/kern_thread.c (revision b08fc26cbdd00df6852e71e1be58fa9cc92019f0)
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28 
29 #include "opt_witness.h"
30 #include "opt_hwpmc_hooks.h"
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mutex.h>
40 #include <sys/proc.h>
41 #include <sys/rangelock.h>
42 #include <sys/resourcevar.h>
43 #include <sys/sdt.h>
44 #include <sys/smp.h>
45 #include <sys/sched.h>
46 #include <sys/sleepqueue.h>
47 #include <sys/selinfo.h>
48 #include <sys/syscallsubr.h>
49 #include <sys/sysent.h>
50 #include <sys/turnstile.h>
51 #include <sys/ktr.h>
52 #include <sys/rwlock.h>
53 #include <sys/umtx.h>
54 #include <sys/cpuset.h>
55 #ifdef	HWPMC_HOOKS
56 #include <sys/pmckern.h>
57 #endif
58 
59 #include <security/audit/audit.h>
60 
61 #include <vm/vm.h>
62 #include <vm/vm_extern.h>
63 #include <vm/uma.h>
64 #include <vm/vm_domain.h>
65 #include <sys/eventhandler.h>
66 
67 SDT_PROVIDER_DECLARE(proc);
68 SDT_PROBE_DEFINE(proc, , , lwp__exit);
69 
70 /*
71  * thread related storage.
72  */
73 static uma_zone_t thread_zone;
74 
75 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
76 static struct mtx zombie_lock;
77 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
78 
79 static void thread_zombie(struct thread *);
80 static int thread_unsuspend_one(struct thread *td, struct proc *p,
81     bool boundary);
82 
83 #define TID_BUFFER_SIZE	1024
84 
85 struct mtx tid_lock;
86 static struct unrhdr *tid_unrhdr;
87 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
88 static int tid_head, tid_tail;
89 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
90 
91 struct	tidhashhead *tidhashtbl;
92 u_long	tidhash;
93 struct	rwlock tidhash_lock;
94 
95 static lwpid_t
96 tid_alloc(void)
97 {
98 	lwpid_t	tid;
99 
100 	tid = alloc_unr(tid_unrhdr);
101 	if (tid != -1)
102 		return (tid);
103 	mtx_lock(&tid_lock);
104 	if (tid_head == tid_tail) {
105 		mtx_unlock(&tid_lock);
106 		return (-1);
107 	}
108 	tid = tid_buffer[tid_head];
109 	tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
110 	mtx_unlock(&tid_lock);
111 	return (tid);
112 }
113 
114 static void
115 tid_free(lwpid_t tid)
116 {
117 	lwpid_t tmp_tid = -1;
118 
119 	mtx_lock(&tid_lock);
120 	if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
121 		tmp_tid = tid_buffer[tid_head];
122 		tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
123 	}
124 	tid_buffer[tid_tail] = tid;
125 	tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
126 	mtx_unlock(&tid_lock);
127 	if (tmp_tid != -1)
128 		free_unr(tid_unrhdr, tmp_tid);
129 }
130 
131 /*
132  * Prepare a thread for use.
133  */
134 static int
135 thread_ctor(void *mem, int size, void *arg, int flags)
136 {
137 	struct thread	*td;
138 
139 	td = (struct thread *)mem;
140 	td->td_state = TDS_INACTIVE;
141 	td->td_oncpu = NOCPU;
142 
143 	td->td_tid = tid_alloc();
144 
145 	/*
146 	 * Note that td_critnest begins life as 1 because the thread is not
147 	 * running and is thereby implicitly waiting to be on the receiving
148 	 * end of a context switch.
149 	 */
150 	td->td_critnest = 1;
151 	td->td_lend_user_pri = PRI_MAX;
152 	EVENTHANDLER_INVOKE(thread_ctor, td);
153 #ifdef AUDIT
154 	audit_thread_alloc(td);
155 #endif
156 	umtx_thread_alloc(td);
157 	return (0);
158 }
159 
160 /*
161  * Reclaim a thread after use.
162  */
163 static void
164 thread_dtor(void *mem, int size, void *arg)
165 {
166 	struct thread *td;
167 
168 	td = (struct thread *)mem;
169 
170 #ifdef INVARIANTS
171 	/* Verify that this thread is in a safe state to free. */
172 	switch (td->td_state) {
173 	case TDS_INHIBITED:
174 	case TDS_RUNNING:
175 	case TDS_CAN_RUN:
176 	case TDS_RUNQ:
177 		/*
178 		 * We must never unlink a thread that is in one of
179 		 * these states, because it is currently active.
180 		 */
181 		panic("bad state for thread unlinking");
182 		/* NOTREACHED */
183 	case TDS_INACTIVE:
184 		break;
185 	default:
186 		panic("bad thread state");
187 		/* NOTREACHED */
188 	}
189 #endif
190 #ifdef AUDIT
191 	audit_thread_free(td);
192 #endif
193 	/* Free all OSD associated to this thread. */
194 	osd_thread_exit(td);
195 	td_softdep_cleanup(td);
196 	MPASS(td->td_su == NULL);
197 
198 	EVENTHANDLER_INVOKE(thread_dtor, td);
199 	tid_free(td->td_tid);
200 }
201 
202 /*
203  * Initialize type-stable parts of a thread (when newly created).
204  */
205 static int
206 thread_init(void *mem, int size, int flags)
207 {
208 	struct thread *td;
209 
210 	td = (struct thread *)mem;
211 
212 	td->td_sleepqueue = sleepq_alloc();
213 	td->td_turnstile = turnstile_alloc();
214 	td->td_rlqe = NULL;
215 	EVENTHANDLER_INVOKE(thread_init, td);
216 	umtx_thread_init(td);
217 	td->td_kstack = 0;
218 	td->td_sel = NULL;
219 	return (0);
220 }
221 
222 /*
223  * Tear down type-stable parts of a thread (just before being discarded).
224  */
225 static void
226 thread_fini(void *mem, int size)
227 {
228 	struct thread *td;
229 
230 	td = (struct thread *)mem;
231 	EVENTHANDLER_INVOKE(thread_fini, td);
232 	rlqentry_free(td->td_rlqe);
233 	turnstile_free(td->td_turnstile);
234 	sleepq_free(td->td_sleepqueue);
235 	umtx_thread_fini(td);
236 	seltdfini(td);
237 }
238 
239 /*
240  * For a newly created process,
241  * link up all the structures and its initial threads etc.
242  * called from:
243  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
244  * proc_dtor() (should go away)
245  * proc_init()
246  */
247 void
248 proc_linkup0(struct proc *p, struct thread *td)
249 {
250 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
251 	proc_linkup(p, td);
252 }
253 
254 void
255 proc_linkup(struct proc *p, struct thread *td)
256 {
257 
258 	sigqueue_init(&p->p_sigqueue, p);
259 	p->p_ksi = ksiginfo_alloc(1);
260 	if (p->p_ksi != NULL) {
261 		/* XXX p_ksi may be null if ksiginfo zone is not ready */
262 		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
263 	}
264 	LIST_INIT(&p->p_mqnotifier);
265 	p->p_numthreads = 0;
266 	thread_link(td, p);
267 }
268 
269 /*
270  * Initialize global thread allocation resources.
271  */
272 void
273 threadinit(void)
274 {
275 
276 	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
277 
278 	/*
279 	 * pid_max cannot be greater than PID_MAX.
280 	 * leave one number for thread0.
281 	 */
282 	tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
283 
284 	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
285 	    thread_ctor, thread_dtor, thread_init, thread_fini,
286 	    32 - 1, UMA_ZONE_NOFREE);
287 	tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
288 	rw_init(&tidhash_lock, "tidhash");
289 }
290 
291 /*
292  * Place an unused thread on the zombie list.
293  * Use the slpq as that must be unused by now.
294  */
295 void
296 thread_zombie(struct thread *td)
297 {
298 	mtx_lock_spin(&zombie_lock);
299 	TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
300 	mtx_unlock_spin(&zombie_lock);
301 }
302 
303 /*
304  * Release a thread that has exited after cpu_throw().
305  */
306 void
307 thread_stash(struct thread *td)
308 {
309 	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
310 	thread_zombie(td);
311 }
312 
313 /*
314  * Reap zombie resources.
315  */
316 void
317 thread_reap(void)
318 {
319 	struct thread *td_first, *td_next;
320 
321 	/*
322 	 * Don't even bother to lock if none at this instant,
323 	 * we really don't care about the next instant.
324 	 */
325 	if (!TAILQ_EMPTY(&zombie_threads)) {
326 		mtx_lock_spin(&zombie_lock);
327 		td_first = TAILQ_FIRST(&zombie_threads);
328 		if (td_first)
329 			TAILQ_INIT(&zombie_threads);
330 		mtx_unlock_spin(&zombie_lock);
331 		while (td_first) {
332 			td_next = TAILQ_NEXT(td_first, td_slpq);
333 			thread_cow_free(td_first);
334 			thread_free(td_first);
335 			td_first = td_next;
336 		}
337 	}
338 }
339 
340 /*
341  * Allocate a thread.
342  */
343 struct thread *
344 thread_alloc(int pages)
345 {
346 	struct thread *td;
347 
348 	thread_reap(); /* check if any zombies to get */
349 
350 	td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
351 	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
352 	if (!vm_thread_new(td, pages)) {
353 		uma_zfree(thread_zone, td);
354 		return (NULL);
355 	}
356 	cpu_thread_alloc(td);
357 	vm_domain_policy_init(&td->td_vm_dom_policy);
358 	return (td);
359 }
360 
361 int
362 thread_alloc_stack(struct thread *td, int pages)
363 {
364 
365 	KASSERT(td->td_kstack == 0,
366 	    ("thread_alloc_stack called on a thread with kstack"));
367 	if (!vm_thread_new(td, pages))
368 		return (0);
369 	cpu_thread_alloc(td);
370 	return (1);
371 }
372 
373 /*
374  * Deallocate a thread.
375  */
376 void
377 thread_free(struct thread *td)
378 {
379 
380 	lock_profile_thread_exit(td);
381 	if (td->td_cpuset)
382 		cpuset_rel(td->td_cpuset);
383 	td->td_cpuset = NULL;
384 	cpu_thread_free(td);
385 	if (td->td_kstack != 0)
386 		vm_thread_dispose(td);
387 	vm_domain_policy_cleanup(&td->td_vm_dom_policy);
388 	callout_drain(&td->td_slpcallout);
389 	uma_zfree(thread_zone, td);
390 }
391 
392 void
393 thread_cow_get_proc(struct thread *newtd, struct proc *p)
394 {
395 
396 	PROC_LOCK_ASSERT(p, MA_OWNED);
397 	newtd->td_ucred = crhold(p->p_ucred);
398 	newtd->td_limit = lim_hold(p->p_limit);
399 	newtd->td_cowgen = p->p_cowgen;
400 }
401 
402 void
403 thread_cow_get(struct thread *newtd, struct thread *td)
404 {
405 
406 	newtd->td_ucred = crhold(td->td_ucred);
407 	newtd->td_limit = lim_hold(td->td_limit);
408 	newtd->td_cowgen = td->td_cowgen;
409 }
410 
411 void
412 thread_cow_free(struct thread *td)
413 {
414 
415 	if (td->td_ucred != NULL)
416 		crfree(td->td_ucred);
417 	if (td->td_limit != NULL)
418 		lim_free(td->td_limit);
419 }
420 
421 void
422 thread_cow_update(struct thread *td)
423 {
424 	struct proc *p;
425 	struct ucred *oldcred;
426 	struct plimit *oldlimit;
427 
428 	p = td->td_proc;
429 	oldcred = NULL;
430 	oldlimit = NULL;
431 	PROC_LOCK(p);
432 	if (td->td_ucred != p->p_ucred) {
433 		oldcred = td->td_ucred;
434 		td->td_ucred = crhold(p->p_ucred);
435 	}
436 	if (td->td_limit != p->p_limit) {
437 		oldlimit = td->td_limit;
438 		td->td_limit = lim_hold(p->p_limit);
439 	}
440 	td->td_cowgen = p->p_cowgen;
441 	PROC_UNLOCK(p);
442 	if (oldcred != NULL)
443 		crfree(oldcred);
444 	if (oldlimit != NULL)
445 		lim_free(oldlimit);
446 }
447 
448 /*
449  * Discard the current thread and exit from its context.
450  * Always called with scheduler locked.
451  *
452  * Because we can't free a thread while we're operating under its context,
453  * push the current thread into our CPU's deadthread holder. This means
454  * we needn't worry about someone else grabbing our context before we
455  * do a cpu_throw().
456  */
457 void
458 thread_exit(void)
459 {
460 	uint64_t runtime, new_switchtime;
461 	struct thread *td;
462 	struct thread *td2;
463 	struct proc *p;
464 	int wakeup_swapper;
465 
466 	td = curthread;
467 	p = td->td_proc;
468 
469 	PROC_SLOCK_ASSERT(p, MA_OWNED);
470 	mtx_assert(&Giant, MA_NOTOWNED);
471 
472 	PROC_LOCK_ASSERT(p, MA_OWNED);
473 	KASSERT(p != NULL, ("thread exiting without a process"));
474 	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
475 	    (long)p->p_pid, td->td_name);
476 	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
477 
478 #ifdef AUDIT
479 	AUDIT_SYSCALL_EXIT(0, td);
480 #endif
481 	/*
482 	 * drop FPU & debug register state storage, or any other
483 	 * architecture specific resources that
484 	 * would not be on a new untouched process.
485 	 */
486 	cpu_thread_exit(td);
487 
488 	/*
489 	 * The last thread is left attached to the process
490 	 * So that the whole bundle gets recycled. Skip
491 	 * all this stuff if we never had threads.
492 	 * EXIT clears all sign of other threads when
493 	 * it goes to single threading, so the last thread always
494 	 * takes the short path.
495 	 */
496 	if (p->p_flag & P_HADTHREADS) {
497 		if (p->p_numthreads > 1) {
498 			atomic_add_int(&td->td_proc->p_exitthreads, 1);
499 			thread_unlink(td);
500 			td2 = FIRST_THREAD_IN_PROC(p);
501 			sched_exit_thread(td2, td);
502 
503 			/*
504 			 * The test below is NOT true if we are the
505 			 * sole exiting thread. P_STOPPED_SINGLE is unset
506 			 * in exit1() after it is the only survivor.
507 			 */
508 			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
509 				if (p->p_numthreads == p->p_suspcount) {
510 					thread_lock(p->p_singlethread);
511 					wakeup_swapper = thread_unsuspend_one(
512 						p->p_singlethread, p, false);
513 					thread_unlock(p->p_singlethread);
514 					if (wakeup_swapper)
515 						kick_proc0();
516 				}
517 			}
518 
519 			PCPU_SET(deadthread, td);
520 		} else {
521 			/*
522 			 * The last thread is exiting.. but not through exit()
523 			 */
524 			panic ("thread_exit: Last thread exiting on its own");
525 		}
526 	}
527 #ifdef	HWPMC_HOOKS
528 	/*
529 	 * If this thread is part of a process that is being tracked by hwpmc(4),
530 	 * inform the module of the thread's impending exit.
531 	 */
532 	if (PMC_PROC_IS_USING_PMCS(td->td_proc))
533 		PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
534 #endif
535 	PROC_UNLOCK(p);
536 	PROC_STATLOCK(p);
537 	thread_lock(td);
538 	PROC_SUNLOCK(p);
539 
540 	/* Do the same timestamp bookkeeping that mi_switch() would do. */
541 	new_switchtime = cpu_ticks();
542 	runtime = new_switchtime - PCPU_GET(switchtime);
543 	td->td_runtime += runtime;
544 	td->td_incruntime += runtime;
545 	PCPU_SET(switchtime, new_switchtime);
546 	PCPU_SET(switchticks, ticks);
547 	PCPU_INC(cnt.v_swtch);
548 
549 	/* Save our resource usage in our process. */
550 	td->td_ru.ru_nvcsw++;
551 	ruxagg(p, td);
552 	rucollect(&p->p_ru, &td->td_ru);
553 	PROC_STATUNLOCK(p);
554 
555 	td->td_state = TDS_INACTIVE;
556 #ifdef WITNESS
557 	witness_thread_exit(td);
558 #endif
559 	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
560 	sched_throw(td);
561 	panic("I'm a teapot!");
562 	/* NOTREACHED */
563 }
564 
565 /*
566  * Do any thread specific cleanups that may be needed in wait()
567  * called with Giant, proc and schedlock not held.
568  */
569 void
570 thread_wait(struct proc *p)
571 {
572 	struct thread *td;
573 
574 	mtx_assert(&Giant, MA_NOTOWNED);
575 	KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
576 	KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
577 	td = FIRST_THREAD_IN_PROC(p);
578 	/* Lock the last thread so we spin until it exits cpu_throw(). */
579 	thread_lock(td);
580 	thread_unlock(td);
581 	lock_profile_thread_exit(td);
582 	cpuset_rel(td->td_cpuset);
583 	td->td_cpuset = NULL;
584 	cpu_thread_clean(td);
585 	thread_cow_free(td);
586 	callout_drain(&td->td_slpcallout);
587 	thread_reap();	/* check for zombie threads etc. */
588 }
589 
590 /*
591  * Link a thread to a process.
592  * set up anything that needs to be initialized for it to
593  * be used by the process.
594  */
595 void
596 thread_link(struct thread *td, struct proc *p)
597 {
598 
599 	/*
600 	 * XXX This can't be enabled because it's called for proc0 before
601 	 * its lock has been created.
602 	 * PROC_LOCK_ASSERT(p, MA_OWNED);
603 	 */
604 	td->td_state    = TDS_INACTIVE;
605 	td->td_proc     = p;
606 	td->td_flags    = TDF_INMEM;
607 
608 	LIST_INIT(&td->td_contested);
609 	LIST_INIT(&td->td_lprof[0]);
610 	LIST_INIT(&td->td_lprof[1]);
611 	sigqueue_init(&td->td_sigqueue, p);
612 	callout_init(&td->td_slpcallout, 1);
613 	TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
614 	p->p_numthreads++;
615 }
616 
617 /*
618  * Called from:
619  *  thread_exit()
620  */
621 void
622 thread_unlink(struct thread *td)
623 {
624 	struct proc *p = td->td_proc;
625 
626 	PROC_LOCK_ASSERT(p, MA_OWNED);
627 	TAILQ_REMOVE(&p->p_threads, td, td_plist);
628 	p->p_numthreads--;
629 	/* could clear a few other things here */
630 	/* Must  NOT clear links to proc! */
631 }
632 
633 static int
634 calc_remaining(struct proc *p, int mode)
635 {
636 	int remaining;
637 
638 	PROC_LOCK_ASSERT(p, MA_OWNED);
639 	PROC_SLOCK_ASSERT(p, MA_OWNED);
640 	if (mode == SINGLE_EXIT)
641 		remaining = p->p_numthreads;
642 	else if (mode == SINGLE_BOUNDARY)
643 		remaining = p->p_numthreads - p->p_boundary_count;
644 	else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
645 		remaining = p->p_numthreads - p->p_suspcount;
646 	else
647 		panic("calc_remaining: wrong mode %d", mode);
648 	return (remaining);
649 }
650 
651 static int
652 remain_for_mode(int mode)
653 {
654 
655 	return (mode == SINGLE_ALLPROC ? 0 : 1);
656 }
657 
658 static int
659 weed_inhib(int mode, struct thread *td2, struct proc *p)
660 {
661 	int wakeup_swapper;
662 
663 	PROC_LOCK_ASSERT(p, MA_OWNED);
664 	PROC_SLOCK_ASSERT(p, MA_OWNED);
665 	THREAD_LOCK_ASSERT(td2, MA_OWNED);
666 
667 	wakeup_swapper = 0;
668 	switch (mode) {
669 	case SINGLE_EXIT:
670 		if (TD_IS_SUSPENDED(td2))
671 			wakeup_swapper |= thread_unsuspend_one(td2, p, true);
672 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
673 			wakeup_swapper |= sleepq_abort(td2, EINTR);
674 		break;
675 	case SINGLE_BOUNDARY:
676 	case SINGLE_NO_EXIT:
677 		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
678 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
679 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
680 			wakeup_swapper |= sleepq_abort(td2, ERESTART);
681 		break;
682 	case SINGLE_ALLPROC:
683 		/*
684 		 * ALLPROC suspend tries to avoid spurious EINTR for
685 		 * threads sleeping interruptable, by suspending the
686 		 * thread directly, similarly to sig_suspend_threads().
687 		 * Since such sleep is not performed at the user
688 		 * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
689 		 * is used to avoid immediate un-suspend.
690 		 */
691 		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
692 		    TDF_ALLPROCSUSP)) == 0)
693 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
694 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
695 			if ((td2->td_flags & TDF_SBDRY) == 0) {
696 				thread_suspend_one(td2);
697 				td2->td_flags |= TDF_ALLPROCSUSP;
698 			} else {
699 				wakeup_swapper |= sleepq_abort(td2, ERESTART);
700 			}
701 		}
702 		break;
703 	}
704 	return (wakeup_swapper);
705 }
706 
707 /*
708  * Enforce single-threading.
709  *
710  * Returns 1 if the caller must abort (another thread is waiting to
711  * exit the process or similar). Process is locked!
712  * Returns 0 when you are successfully the only thread running.
713  * A process has successfully single threaded in the suspend mode when
714  * There are no threads in user mode. Threads in the kernel must be
715  * allowed to continue until they get to the user boundary. They may even
716  * copy out their return values and data before suspending. They may however be
717  * accelerated in reaching the user boundary as we will wake up
718  * any sleeping threads that are interruptable. (PCATCH).
719  */
720 int
721 thread_single(struct proc *p, int mode)
722 {
723 	struct thread *td;
724 	struct thread *td2;
725 	int remaining, wakeup_swapper;
726 
727 	td = curthread;
728 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
729 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
730 	    ("invalid mode %d", mode));
731 	/*
732 	 * If allowing non-ALLPROC singlethreading for non-curproc
733 	 * callers, calc_remaining() and remain_for_mode() should be
734 	 * adjusted to also account for td->td_proc != p.  For now
735 	 * this is not implemented because it is not used.
736 	 */
737 	KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
738 	    (mode != SINGLE_ALLPROC && td->td_proc == p),
739 	    ("mode %d proc %p curproc %p", mode, p, td->td_proc));
740 	mtx_assert(&Giant, MA_NOTOWNED);
741 	PROC_LOCK_ASSERT(p, MA_OWNED);
742 
743 	if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
744 		return (0);
745 
746 	/* Is someone already single threading? */
747 	if (p->p_singlethread != NULL && p->p_singlethread != td)
748 		return (1);
749 
750 	if (mode == SINGLE_EXIT) {
751 		p->p_flag |= P_SINGLE_EXIT;
752 		p->p_flag &= ~P_SINGLE_BOUNDARY;
753 	} else {
754 		p->p_flag &= ~P_SINGLE_EXIT;
755 		if (mode == SINGLE_BOUNDARY)
756 			p->p_flag |= P_SINGLE_BOUNDARY;
757 		else
758 			p->p_flag &= ~P_SINGLE_BOUNDARY;
759 	}
760 	if (mode == SINGLE_ALLPROC)
761 		p->p_flag |= P_TOTAL_STOP;
762 	p->p_flag |= P_STOPPED_SINGLE;
763 	PROC_SLOCK(p);
764 	p->p_singlethread = td;
765 	remaining = calc_remaining(p, mode);
766 	while (remaining != remain_for_mode(mode)) {
767 		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
768 			goto stopme;
769 		wakeup_swapper = 0;
770 		FOREACH_THREAD_IN_PROC(p, td2) {
771 			if (td2 == td)
772 				continue;
773 			thread_lock(td2);
774 			td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
775 			if (TD_IS_INHIBITED(td2)) {
776 				wakeup_swapper |= weed_inhib(mode, td2, p);
777 #ifdef SMP
778 			} else if (TD_IS_RUNNING(td2) && td != td2) {
779 				forward_signal(td2);
780 #endif
781 			}
782 			thread_unlock(td2);
783 		}
784 		if (wakeup_swapper)
785 			kick_proc0();
786 		remaining = calc_remaining(p, mode);
787 
788 		/*
789 		 * Maybe we suspended some threads.. was it enough?
790 		 */
791 		if (remaining == remain_for_mode(mode))
792 			break;
793 
794 stopme:
795 		/*
796 		 * Wake us up when everyone else has suspended.
797 		 * In the mean time we suspend as well.
798 		 */
799 		thread_suspend_switch(td, p);
800 		remaining = calc_remaining(p, mode);
801 	}
802 	if (mode == SINGLE_EXIT) {
803 		/*
804 		 * Convert the process to an unthreaded process.  The
805 		 * SINGLE_EXIT is called by exit1() or execve(), in
806 		 * both cases other threads must be retired.
807 		 */
808 		KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
809 		p->p_singlethread = NULL;
810 		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
811 
812 		/*
813 		 * Wait for any remaining threads to exit cpu_throw().
814 		 */
815 		while (p->p_exitthreads != 0) {
816 			PROC_SUNLOCK(p);
817 			PROC_UNLOCK(p);
818 			sched_relinquish(td);
819 			PROC_LOCK(p);
820 			PROC_SLOCK(p);
821 		}
822 	} else if (mode == SINGLE_BOUNDARY) {
823 		/*
824 		 * Wait until all suspended threads are removed from
825 		 * the processors.  The thread_suspend_check()
826 		 * increments p_boundary_count while it is still
827 		 * running, which makes it possible for the execve()
828 		 * to destroy vmspace while our other threads are
829 		 * still using the address space.
830 		 *
831 		 * We lock the thread, which is only allowed to
832 		 * succeed after context switch code finished using
833 		 * the address space.
834 		 */
835 		FOREACH_THREAD_IN_PROC(p, td2) {
836 			if (td2 == td)
837 				continue;
838 			thread_lock(td2);
839 			KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
840 			    ("td %p not on boundary", td2));
841 			KASSERT(TD_IS_SUSPENDED(td2),
842 			    ("td %p is not suspended", td2));
843 			thread_unlock(td2);
844 		}
845 	}
846 	PROC_SUNLOCK(p);
847 	return (0);
848 }
849 
850 bool
851 thread_suspend_check_needed(void)
852 {
853 	struct proc *p;
854 	struct thread *td;
855 
856 	td = curthread;
857 	p = td->td_proc;
858 	PROC_LOCK_ASSERT(p, MA_OWNED);
859 	return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
860 	    (td->td_dbgflags & TDB_SUSPEND) != 0));
861 }
862 
863 /*
864  * Called in from locations that can safely check to see
865  * whether we have to suspend or at least throttle for a
866  * single-thread event (e.g. fork).
867  *
868  * Such locations include userret().
869  * If the "return_instead" argument is non zero, the thread must be able to
870  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
871  *
872  * The 'return_instead' argument tells the function if it may do a
873  * thread_exit() or suspend, or whether the caller must abort and back
874  * out instead.
875  *
876  * If the thread that set the single_threading request has set the
877  * P_SINGLE_EXIT bit in the process flags then this call will never return
878  * if 'return_instead' is false, but will exit.
879  *
880  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
881  *---------------+--------------------+---------------------
882  *       0       | returns 0          |   returns 0 or 1
883  *               | when ST ends       |   immediately
884  *---------------+--------------------+---------------------
885  *       1       | thread exits       |   returns 1
886  *               |                    |  immediately
887  * 0 = thread_exit() or suspension ok,
888  * other = return error instead of stopping the thread.
889  *
890  * While a full suspension is under effect, even a single threading
891  * thread would be suspended if it made this call (but it shouldn't).
892  * This call should only be made from places where
893  * thread_exit() would be safe as that may be the outcome unless
894  * return_instead is set.
895  */
896 int
897 thread_suspend_check(int return_instead)
898 {
899 	struct thread *td;
900 	struct proc *p;
901 	int wakeup_swapper;
902 
903 	td = curthread;
904 	p = td->td_proc;
905 	mtx_assert(&Giant, MA_NOTOWNED);
906 	PROC_LOCK_ASSERT(p, MA_OWNED);
907 	while (thread_suspend_check_needed()) {
908 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
909 			KASSERT(p->p_singlethread != NULL,
910 			    ("singlethread not set"));
911 			/*
912 			 * The only suspension in action is a
913 			 * single-threading. Single threader need not stop.
914 			 * It is safe to access p->p_singlethread unlocked
915 			 * because it can only be set to our address by us.
916 			 */
917 			if (p->p_singlethread == td)
918 				return (0);	/* Exempt from stopping. */
919 		}
920 		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
921 			return (EINTR);
922 
923 		/* Should we goto user boundary if we didn't come from there? */
924 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
925 		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
926 			return (ERESTART);
927 
928 		/*
929 		 * Ignore suspend requests if they are deferred.
930 		 */
931 		if ((td->td_flags & TDF_SBDRY) != 0) {
932 			KASSERT(return_instead,
933 			    ("TDF_SBDRY set for unsafe thread_suspend_check"));
934 			KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
935 			    (TDF_SEINTR | TDF_SERESTART),
936 			    ("both TDF_SEINTR and TDF_SERESTART"));
937 			return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
938 		}
939 
940 		/*
941 		 * If the process is waiting for us to exit,
942 		 * this thread should just suicide.
943 		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
944 		 */
945 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
946 			PROC_UNLOCK(p);
947 
948 			/*
949 			 * Allow Linux emulation layer to do some work
950 			 * before thread suicide.
951 			 */
952 			if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
953 				(p->p_sysent->sv_thread_detach)(td);
954 			umtx_thread_exit(td);
955 			kern_thr_exit(td);
956 			panic("stopped thread did not exit");
957 		}
958 
959 		PROC_SLOCK(p);
960 		thread_stopped(p);
961 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
962 			if (p->p_numthreads == p->p_suspcount + 1) {
963 				thread_lock(p->p_singlethread);
964 				wakeup_swapper = thread_unsuspend_one(
965 				    p->p_singlethread, p, false);
966 				thread_unlock(p->p_singlethread);
967 				if (wakeup_swapper)
968 					kick_proc0();
969 			}
970 		}
971 		PROC_UNLOCK(p);
972 		thread_lock(td);
973 		/*
974 		 * When a thread suspends, it just
975 		 * gets taken off all queues.
976 		 */
977 		thread_suspend_one(td);
978 		if (return_instead == 0) {
979 			p->p_boundary_count++;
980 			td->td_flags |= TDF_BOUNDARY;
981 		}
982 		PROC_SUNLOCK(p);
983 		mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
984 		thread_unlock(td);
985 		PROC_LOCK(p);
986 	}
987 	return (0);
988 }
989 
990 void
991 thread_suspend_switch(struct thread *td, struct proc *p)
992 {
993 
994 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
995 	PROC_LOCK_ASSERT(p, MA_OWNED);
996 	PROC_SLOCK_ASSERT(p, MA_OWNED);
997 	/*
998 	 * We implement thread_suspend_one in stages here to avoid
999 	 * dropping the proc lock while the thread lock is owned.
1000 	 */
1001 	if (p == td->td_proc) {
1002 		thread_stopped(p);
1003 		p->p_suspcount++;
1004 	}
1005 	PROC_UNLOCK(p);
1006 	thread_lock(td);
1007 	td->td_flags &= ~TDF_NEEDSUSPCHK;
1008 	TD_SET_SUSPENDED(td);
1009 	sched_sleep(td, 0);
1010 	PROC_SUNLOCK(p);
1011 	DROP_GIANT();
1012 	mi_switch(SW_VOL | SWT_SUSPEND, NULL);
1013 	thread_unlock(td);
1014 	PICKUP_GIANT();
1015 	PROC_LOCK(p);
1016 	PROC_SLOCK(p);
1017 }
1018 
1019 void
1020 thread_suspend_one(struct thread *td)
1021 {
1022 	struct proc *p;
1023 
1024 	p = td->td_proc;
1025 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1026 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1027 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1028 	p->p_suspcount++;
1029 	td->td_flags &= ~TDF_NEEDSUSPCHK;
1030 	TD_SET_SUSPENDED(td);
1031 	sched_sleep(td, 0);
1032 }
1033 
1034 static int
1035 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1036 {
1037 
1038 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1039 	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1040 	TD_CLR_SUSPENDED(td);
1041 	td->td_flags &= ~TDF_ALLPROCSUSP;
1042 	if (td->td_proc == p) {
1043 		PROC_SLOCK_ASSERT(p, MA_OWNED);
1044 		p->p_suspcount--;
1045 		if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1046 			td->td_flags &= ~TDF_BOUNDARY;
1047 			p->p_boundary_count--;
1048 		}
1049 	}
1050 	return (setrunnable(td));
1051 }
1052 
1053 /*
1054  * Allow all threads blocked by single threading to continue running.
1055  */
1056 void
1057 thread_unsuspend(struct proc *p)
1058 {
1059 	struct thread *td;
1060 	int wakeup_swapper;
1061 
1062 	PROC_LOCK_ASSERT(p, MA_OWNED);
1063 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1064 	wakeup_swapper = 0;
1065 	if (!P_SHOULDSTOP(p)) {
1066                 FOREACH_THREAD_IN_PROC(p, td) {
1067 			thread_lock(td);
1068 			if (TD_IS_SUSPENDED(td)) {
1069 				wakeup_swapper |= thread_unsuspend_one(td, p,
1070 				    true);
1071 			}
1072 			thread_unlock(td);
1073 		}
1074 	} else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1075 	    p->p_numthreads == p->p_suspcount) {
1076 		/*
1077 		 * Stopping everything also did the job for the single
1078 		 * threading request. Now we've downgraded to single-threaded,
1079 		 * let it continue.
1080 		 */
1081 		if (p->p_singlethread->td_proc == p) {
1082 			thread_lock(p->p_singlethread);
1083 			wakeup_swapper = thread_unsuspend_one(
1084 			    p->p_singlethread, p, false);
1085 			thread_unlock(p->p_singlethread);
1086 		}
1087 	}
1088 	if (wakeup_swapper)
1089 		kick_proc0();
1090 }
1091 
1092 /*
1093  * End the single threading mode..
1094  */
1095 void
1096 thread_single_end(struct proc *p, int mode)
1097 {
1098 	struct thread *td;
1099 	int wakeup_swapper;
1100 
1101 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1102 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1103 	    ("invalid mode %d", mode));
1104 	PROC_LOCK_ASSERT(p, MA_OWNED);
1105 	KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1106 	    (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1107 	    ("mode %d does not match P_TOTAL_STOP", mode));
1108 	KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1109 	    ("thread_single_end from other thread %p %p",
1110 	    curthread, p->p_singlethread));
1111 	KASSERT(mode != SINGLE_BOUNDARY ||
1112 	    (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1113 	    ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1114 	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1115 	    P_TOTAL_STOP);
1116 	PROC_SLOCK(p);
1117 	p->p_singlethread = NULL;
1118 	wakeup_swapper = 0;
1119 	/*
1120 	 * If there are other threads they may now run,
1121 	 * unless of course there is a blanket 'stop order'
1122 	 * on the process. The single threader must be allowed
1123 	 * to continue however as this is a bad place to stop.
1124 	 */
1125 	if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1126                 FOREACH_THREAD_IN_PROC(p, td) {
1127 			thread_lock(td);
1128 			if (TD_IS_SUSPENDED(td)) {
1129 				wakeup_swapper |= thread_unsuspend_one(td, p,
1130 				    mode == SINGLE_BOUNDARY);
1131 			}
1132 			thread_unlock(td);
1133 		}
1134 	}
1135 	KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1136 	    ("inconsistent boundary count %d", p->p_boundary_count));
1137 	PROC_SUNLOCK(p);
1138 	if (wakeup_swapper)
1139 		kick_proc0();
1140 }
1141 
1142 struct thread *
1143 thread_find(struct proc *p, lwpid_t tid)
1144 {
1145 	struct thread *td;
1146 
1147 	PROC_LOCK_ASSERT(p, MA_OWNED);
1148 	FOREACH_THREAD_IN_PROC(p, td) {
1149 		if (td->td_tid == tid)
1150 			break;
1151 	}
1152 	return (td);
1153 }
1154 
1155 /* Locate a thread by number; return with proc lock held. */
1156 struct thread *
1157 tdfind(lwpid_t tid, pid_t pid)
1158 {
1159 #define RUN_THRESH	16
1160 	struct thread *td;
1161 	int run = 0;
1162 
1163 	rw_rlock(&tidhash_lock);
1164 	LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1165 		if (td->td_tid == tid) {
1166 			if (pid != -1 && td->td_proc->p_pid != pid) {
1167 				td = NULL;
1168 				break;
1169 			}
1170 			PROC_LOCK(td->td_proc);
1171 			if (td->td_proc->p_state == PRS_NEW) {
1172 				PROC_UNLOCK(td->td_proc);
1173 				td = NULL;
1174 				break;
1175 			}
1176 			if (run > RUN_THRESH) {
1177 				if (rw_try_upgrade(&tidhash_lock)) {
1178 					LIST_REMOVE(td, td_hash);
1179 					LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1180 						td, td_hash);
1181 					rw_wunlock(&tidhash_lock);
1182 					return (td);
1183 				}
1184 			}
1185 			break;
1186 		}
1187 		run++;
1188 	}
1189 	rw_runlock(&tidhash_lock);
1190 	return (td);
1191 }
1192 
1193 void
1194 tidhash_add(struct thread *td)
1195 {
1196 	rw_wlock(&tidhash_lock);
1197 	LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1198 	rw_wunlock(&tidhash_lock);
1199 }
1200 
1201 void
1202 tidhash_remove(struct thread *td)
1203 {
1204 	rw_wlock(&tidhash_lock);
1205 	LIST_REMOVE(td, td_hash);
1206 	rw_wunlock(&tidhash_lock);
1207 }
1208