xref: /freebsd/sys/kern/kern_thread.c (revision a9148abd9da5db2f1c682fb17bed791845fc41c9)
1 /*-
2  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
3  *  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice(s), this list of conditions and the following disclaimer as
10  *    the first lines of this file unmodified other than the possible
11  *    addition of one or more copyright notices.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice(s), this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
17  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
20  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  */
28 
29 #include "opt_witness.h"
30 
31 #include <sys/cdefs.h>
32 __FBSDID("$FreeBSD$");
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/lock.h>
38 #include <sys/mutex.h>
39 #include <sys/proc.h>
40 #include <sys/resourcevar.h>
41 #include <sys/smp.h>
42 #include <sys/sysctl.h>
43 #include <sys/sched.h>
44 #include <sys/sleepqueue.h>
45 #include <sys/selinfo.h>
46 #include <sys/turnstile.h>
47 #include <sys/ktr.h>
48 #include <sys/umtx.h>
49 #include <sys/cpuset.h>
50 
51 #include <security/audit/audit.h>
52 
53 #include <vm/vm.h>
54 #include <vm/vm_extern.h>
55 #include <vm/uma.h>
56 #include <sys/eventhandler.h>
57 
58 /*
59  * thread related storage.
60  */
61 static uma_zone_t thread_zone;
62 
63 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation");
64 
65 int max_threads_per_proc = 1500;
66 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW,
67 	&max_threads_per_proc, 0, "Limit on threads per proc");
68 
69 int max_threads_hits;
70 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD,
71 	&max_threads_hits, 0, "");
72 
73 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
74 static struct mtx zombie_lock;
75 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
76 
77 static void thread_zombie(struct thread *);
78 
79 struct mtx tid_lock;
80 static struct unrhdr *tid_unrhdr;
81 
82 /*
83  * Prepare a thread for use.
84  */
85 static int
86 thread_ctor(void *mem, int size, void *arg, int flags)
87 {
88 	struct thread	*td;
89 
90 	td = (struct thread *)mem;
91 	td->td_state = TDS_INACTIVE;
92 	td->td_oncpu = NOCPU;
93 
94 	td->td_tid = alloc_unr(tid_unrhdr);
95 	td->td_syscalls = 0;
96 
97 	/*
98 	 * Note that td_critnest begins life as 1 because the thread is not
99 	 * running and is thereby implicitly waiting to be on the receiving
100 	 * end of a context switch.
101 	 */
102 	td->td_critnest = 1;
103 	EVENTHANDLER_INVOKE(thread_ctor, td);
104 #ifdef AUDIT
105 	audit_thread_alloc(td);
106 #endif
107 	umtx_thread_alloc(td);
108 	return (0);
109 }
110 
111 /*
112  * Reclaim a thread after use.
113  */
114 static void
115 thread_dtor(void *mem, int size, void *arg)
116 {
117 	struct thread *td;
118 
119 	td = (struct thread *)mem;
120 
121 #ifdef INVARIANTS
122 	/* Verify that this thread is in a safe state to free. */
123 	switch (td->td_state) {
124 	case TDS_INHIBITED:
125 	case TDS_RUNNING:
126 	case TDS_CAN_RUN:
127 	case TDS_RUNQ:
128 		/*
129 		 * We must never unlink a thread that is in one of
130 		 * these states, because it is currently active.
131 		 */
132 		panic("bad state for thread unlinking");
133 		/* NOTREACHED */
134 	case TDS_INACTIVE:
135 		break;
136 	default:
137 		panic("bad thread state");
138 		/* NOTREACHED */
139 	}
140 #endif
141 #ifdef AUDIT
142 	audit_thread_free(td);
143 #endif
144 	EVENTHANDLER_INVOKE(thread_dtor, td);
145 	free_unr(tid_unrhdr, td->td_tid);
146 }
147 
148 /*
149  * Initialize type-stable parts of a thread (when newly created).
150  */
151 static int
152 thread_init(void *mem, int size, int flags)
153 {
154 	struct thread *td;
155 
156 	td = (struct thread *)mem;
157 
158 	td->td_sleepqueue = sleepq_alloc();
159 	td->td_turnstile = turnstile_alloc();
160 	EVENTHANDLER_INVOKE(thread_init, td);
161 	td->td_sched = (struct td_sched *)&td[1];
162 	umtx_thread_init(td);
163 	td->td_kstack = 0;
164 	return (0);
165 }
166 
167 /*
168  * Tear down type-stable parts of a thread (just before being discarded).
169  */
170 static void
171 thread_fini(void *mem, int size)
172 {
173 	struct thread *td;
174 
175 	td = (struct thread *)mem;
176 	EVENTHANDLER_INVOKE(thread_fini, td);
177 	turnstile_free(td->td_turnstile);
178 	sleepq_free(td->td_sleepqueue);
179 	umtx_thread_fini(td);
180 	seltdfini(td);
181 }
182 
183 /*
184  * For a newly created process,
185  * link up all the structures and its initial threads etc.
186  * called from:
187  * {arch}/{arch}/machdep.c   ia64_init(), init386() etc.
188  * proc_dtor() (should go away)
189  * proc_init()
190  */
191 void
192 proc_linkup0(struct proc *p, struct thread *td)
193 {
194 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
195 	proc_linkup(p, td);
196 }
197 
198 void
199 proc_linkup(struct proc *p, struct thread *td)
200 {
201 
202 	sigqueue_init(&p->p_sigqueue, p);
203 	p->p_ksi = ksiginfo_alloc(1);
204 	if (p->p_ksi != NULL) {
205 		/* XXX p_ksi may be null if ksiginfo zone is not ready */
206 		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
207 	}
208 	LIST_INIT(&p->p_mqnotifier);
209 	p->p_numthreads = 0;
210 	thread_link(td, p);
211 }
212 
213 /*
214  * Initialize global thread allocation resources.
215  */
216 void
217 threadinit(void)
218 {
219 
220 	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
221 	/* leave one number for thread0 */
222 	tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
223 
224 	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
225 	    thread_ctor, thread_dtor, thread_init, thread_fini,
226 	    16 - 1, 0);
227 }
228 
229 /*
230  * Place an unused thread on the zombie list.
231  * Use the slpq as that must be unused by now.
232  */
233 void
234 thread_zombie(struct thread *td)
235 {
236 	mtx_lock_spin(&zombie_lock);
237 	TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
238 	mtx_unlock_spin(&zombie_lock);
239 }
240 
241 /*
242  * Release a thread that has exited after cpu_throw().
243  */
244 void
245 thread_stash(struct thread *td)
246 {
247 	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
248 	thread_zombie(td);
249 }
250 
251 /*
252  * Reap zombie resources.
253  */
254 void
255 thread_reap(void)
256 {
257 	struct thread *td_first, *td_next;
258 
259 	/*
260 	 * Don't even bother to lock if none at this instant,
261 	 * we really don't care about the next instant..
262 	 */
263 	if (!TAILQ_EMPTY(&zombie_threads)) {
264 		mtx_lock_spin(&zombie_lock);
265 		td_first = TAILQ_FIRST(&zombie_threads);
266 		if (td_first)
267 			TAILQ_INIT(&zombie_threads);
268 		mtx_unlock_spin(&zombie_lock);
269 		while (td_first) {
270 			td_next = TAILQ_NEXT(td_first, td_slpq);
271 			if (td_first->td_ucred)
272 				crfree(td_first->td_ucred);
273 			thread_free(td_first);
274 			td_first = td_next;
275 		}
276 	}
277 }
278 
279 /*
280  * Allocate a thread.
281  */
282 struct thread *
283 thread_alloc(void)
284 {
285 	struct thread *td;
286 
287 	thread_reap(); /* check if any zombies to get */
288 
289 	td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
290 	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
291 	if (!vm_thread_new(td, 0)) {
292 		uma_zfree(thread_zone, td);
293 		return (NULL);
294 	}
295 	cpu_thread_alloc(td);
296 	return (td);
297 }
298 
299 
300 /*
301  * Deallocate a thread.
302  */
303 void
304 thread_free(struct thread *td)
305 {
306 	if (td->td_cpuset)
307 		cpuset_rel(td->td_cpuset);
308 	td->td_cpuset = NULL;
309 	cpu_thread_free(td);
310 	if (td->td_altkstack != 0)
311 		vm_thread_dispose_altkstack(td);
312 	if (td->td_kstack != 0)
313 		vm_thread_dispose(td);
314 	uma_zfree(thread_zone, td);
315 }
316 
317 /*
318  * Discard the current thread and exit from its context.
319  * Always called with scheduler locked.
320  *
321  * Because we can't free a thread while we're operating under its context,
322  * push the current thread into our CPU's deadthread holder. This means
323  * we needn't worry about someone else grabbing our context before we
324  * do a cpu_throw().
325  */
326 void
327 thread_exit(void)
328 {
329 	uint64_t new_switchtime;
330 	struct thread *td;
331 	struct thread *td2;
332 	struct proc *p;
333 	int wakeup_swapper;
334 
335 	td = curthread;
336 	p = td->td_proc;
337 
338 	PROC_SLOCK_ASSERT(p, MA_OWNED);
339 	mtx_assert(&Giant, MA_NOTOWNED);
340 
341 	PROC_LOCK_ASSERT(p, MA_OWNED);
342 	KASSERT(p != NULL, ("thread exiting without a process"));
343 	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
344 	    (long)p->p_pid, td->td_name);
345 	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
346 
347 #ifdef AUDIT
348 	AUDIT_SYSCALL_EXIT(0, td);
349 #endif
350 	umtx_thread_exit(td);
351 	/*
352 	 * drop FPU & debug register state storage, or any other
353 	 * architecture specific resources that
354 	 * would not be on a new untouched process.
355 	 */
356 	cpu_thread_exit(td);	/* XXXSMP */
357 
358 	/* Do the same timestamp bookkeeping that mi_switch() would do. */
359 	new_switchtime = cpu_ticks();
360 	p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime));
361 	PCPU_SET(switchtime, new_switchtime);
362 	PCPU_SET(switchticks, ticks);
363 	PCPU_INC(cnt.v_swtch);
364 	/* Save our resource usage in our process. */
365 	td->td_ru.ru_nvcsw++;
366 	rucollect(&p->p_ru, &td->td_ru);
367 	/*
368 	 * The last thread is left attached to the process
369 	 * So that the whole bundle gets recycled. Skip
370 	 * all this stuff if we never had threads.
371 	 * EXIT clears all sign of other threads when
372 	 * it goes to single threading, so the last thread always
373 	 * takes the short path.
374 	 */
375 	if (p->p_flag & P_HADTHREADS) {
376 		if (p->p_numthreads > 1) {
377 			thread_unlink(td);
378 			td2 = FIRST_THREAD_IN_PROC(p);
379 			sched_exit_thread(td2, td);
380 
381 			/*
382 			 * The test below is NOT true if we are the
383 			 * sole exiting thread. P_STOPPED_SNGL is unset
384 			 * in exit1() after it is the only survivor.
385 			 */
386 			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
387 				if (p->p_numthreads == p->p_suspcount) {
388 					thread_lock(p->p_singlethread);
389 					wakeup_swapper = thread_unsuspend_one(
390 						p->p_singlethread);
391 					thread_unlock(p->p_singlethread);
392 					if (wakeup_swapper)
393 						kick_proc0();
394 				}
395 			}
396 
397 			atomic_add_int(&td->td_proc->p_exitthreads, 1);
398 			PCPU_SET(deadthread, td);
399 		} else {
400 			/*
401 			 * The last thread is exiting.. but not through exit()
402 			 */
403 			panic ("thread_exit: Last thread exiting on its own");
404 		}
405 	}
406 	PROC_UNLOCK(p);
407 	thread_lock(td);
408 	/* Save our tick information with both the thread and proc locked */
409 	ruxagg(&p->p_rux, td);
410 	PROC_SUNLOCK(p);
411 	td->td_state = TDS_INACTIVE;
412 #ifdef WITNESS
413 	witness_thread_exit(td);
414 #endif
415 	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
416 	sched_throw(td);
417 	panic("I'm a teapot!");
418 	/* NOTREACHED */
419 }
420 
421 /*
422  * Do any thread specific cleanups that may be needed in wait()
423  * called with Giant, proc and schedlock not held.
424  */
425 void
426 thread_wait(struct proc *p)
427 {
428 	struct thread *td;
429 
430 	mtx_assert(&Giant, MA_NOTOWNED);
431 	KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()"));
432 	td = FIRST_THREAD_IN_PROC(p);
433 	/* Lock the last thread so we spin until it exits cpu_throw(). */
434 	thread_lock(td);
435 	thread_unlock(td);
436 	/* Wait for any remaining threads to exit cpu_throw(). */
437 	while (p->p_exitthreads)
438 		sched_relinquish(curthread);
439 	cpuset_rel(td->td_cpuset);
440 	td->td_cpuset = NULL;
441 	cpu_thread_clean(td);
442 	crfree(td->td_ucred);
443 	thread_reap();	/* check for zombie threads etc. */
444 }
445 
446 /*
447  * Link a thread to a process.
448  * set up anything that needs to be initialized for it to
449  * be used by the process.
450  */
451 void
452 thread_link(struct thread *td, struct proc *p)
453 {
454 
455 	/*
456 	 * XXX This can't be enabled because it's called for proc0 before
457 	 * its lock has been created.
458 	 * PROC_LOCK_ASSERT(p, MA_OWNED);
459 	 */
460 	td->td_state    = TDS_INACTIVE;
461 	td->td_proc     = p;
462 	td->td_flags    = TDF_INMEM;
463 
464 	LIST_INIT(&td->td_contested);
465 	LIST_INIT(&td->td_lprof[0]);
466 	LIST_INIT(&td->td_lprof[1]);
467 	sigqueue_init(&td->td_sigqueue, p);
468 	callout_init(&td->td_slpcallout, CALLOUT_MPSAFE);
469 	TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist);
470 	p->p_numthreads++;
471 }
472 
473 /*
474  * Convert a process with one thread to an unthreaded process.
475  */
476 void
477 thread_unthread(struct thread *td)
478 {
479 	struct proc *p = td->td_proc;
480 
481 	KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads"));
482 	p->p_flag &= ~P_HADTHREADS;
483 }
484 
485 /*
486  * Called from:
487  *  thread_exit()
488  */
489 void
490 thread_unlink(struct thread *td)
491 {
492 	struct proc *p = td->td_proc;
493 
494 	PROC_LOCK_ASSERT(p, MA_OWNED);
495 	TAILQ_REMOVE(&p->p_threads, td, td_plist);
496 	p->p_numthreads--;
497 	/* could clear a few other things here */
498 	/* Must  NOT clear links to proc! */
499 }
500 
501 /*
502  * Enforce single-threading.
503  *
504  * Returns 1 if the caller must abort (another thread is waiting to
505  * exit the process or similar). Process is locked!
506  * Returns 0 when you are successfully the only thread running.
507  * A process has successfully single threaded in the suspend mode when
508  * There are no threads in user mode. Threads in the kernel must be
509  * allowed to continue until they get to the user boundary. They may even
510  * copy out their return values and data before suspending. They may however be
511  * accelerated in reaching the user boundary as we will wake up
512  * any sleeping threads that are interruptable. (PCATCH).
513  */
514 int
515 thread_single(int mode)
516 {
517 	struct thread *td;
518 	struct thread *td2;
519 	struct proc *p;
520 	int remaining, wakeup_swapper;
521 
522 	td = curthread;
523 	p = td->td_proc;
524 	mtx_assert(&Giant, MA_NOTOWNED);
525 	PROC_LOCK_ASSERT(p, MA_OWNED);
526 	KASSERT((td != NULL), ("curthread is NULL"));
527 
528 	if ((p->p_flag & P_HADTHREADS) == 0)
529 		return (0);
530 
531 	/* Is someone already single threading? */
532 	if (p->p_singlethread != NULL && p->p_singlethread != td)
533 		return (1);
534 
535 	if (mode == SINGLE_EXIT) {
536 		p->p_flag |= P_SINGLE_EXIT;
537 		p->p_flag &= ~P_SINGLE_BOUNDARY;
538 	} else {
539 		p->p_flag &= ~P_SINGLE_EXIT;
540 		if (mode == SINGLE_BOUNDARY)
541 			p->p_flag |= P_SINGLE_BOUNDARY;
542 		else
543 			p->p_flag &= ~P_SINGLE_BOUNDARY;
544 	}
545 	p->p_flag |= P_STOPPED_SINGLE;
546 	p->p_singlethread = td;
547 	if (mode == SINGLE_EXIT)
548 		remaining = p->p_numthreads;
549 	else if (mode == SINGLE_BOUNDARY)
550 		remaining = p->p_numthreads - p->p_boundary_count;
551 	else
552 		remaining = p->p_numthreads - p->p_suspcount;
553 	while (remaining != 1) {
554 		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
555 			goto stopme;
556 		wakeup_swapper = 0;
557 		FOREACH_THREAD_IN_PROC(p, td2) {
558 			if (td2 == td)
559 				continue;
560 			thread_lock(td2);
561 			td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
562 			if (TD_IS_INHIBITED(td2)) {
563 				switch (mode) {
564 				case SINGLE_EXIT:
565 					if (TD_IS_SUSPENDED(td2))
566 						wakeup_swapper |=
567 						    thread_unsuspend_one(td2);
568 					if (TD_ON_SLEEPQ(td2) &&
569 					    (td2->td_flags & TDF_SINTR))
570 						wakeup_swapper |=
571 						    sleepq_abort(td2, EINTR);
572 					break;
573 				case SINGLE_BOUNDARY:
574 					if (TD_IS_SUSPENDED(td2) &&
575 					    !(td2->td_flags & TDF_BOUNDARY))
576 						wakeup_swapper |=
577 						    thread_unsuspend_one(td2);
578 					if (TD_ON_SLEEPQ(td2) &&
579 					    (td2->td_flags & TDF_SINTR))
580 						wakeup_swapper |=
581 						    sleepq_abort(td2, ERESTART);
582 					break;
583 				default:
584 					if (TD_IS_SUSPENDED(td2)) {
585 						thread_unlock(td2);
586 						continue;
587 					}
588 					/*
589 					 * maybe other inhibited states too?
590 					 */
591 					if ((td2->td_flags & TDF_SINTR) &&
592 					    (td2->td_inhibitors &
593 					    (TDI_SLEEPING | TDI_SWAPPED)))
594 						thread_suspend_one(td2);
595 					break;
596 				}
597 			}
598 #ifdef SMP
599 			else if (TD_IS_RUNNING(td2) && td != td2) {
600 				forward_signal(td2);
601 			}
602 #endif
603 			thread_unlock(td2);
604 		}
605 		if (wakeup_swapper)
606 			kick_proc0();
607 		if (mode == SINGLE_EXIT)
608 			remaining = p->p_numthreads;
609 		else if (mode == SINGLE_BOUNDARY)
610 			remaining = p->p_numthreads - p->p_boundary_count;
611 		else
612 			remaining = p->p_numthreads - p->p_suspcount;
613 
614 		/*
615 		 * Maybe we suspended some threads.. was it enough?
616 		 */
617 		if (remaining == 1)
618 			break;
619 
620 stopme:
621 		/*
622 		 * Wake us up when everyone else has suspended.
623 		 * In the mean time we suspend as well.
624 		 */
625 		thread_suspend_switch(td);
626 		if (mode == SINGLE_EXIT)
627 			remaining = p->p_numthreads;
628 		else if (mode == SINGLE_BOUNDARY)
629 			remaining = p->p_numthreads - p->p_boundary_count;
630 		else
631 			remaining = p->p_numthreads - p->p_suspcount;
632 	}
633 	if (mode == SINGLE_EXIT) {
634 		/*
635 		 * We have gotten rid of all the other threads and we
636 		 * are about to either exit or exec. In either case,
637 		 * we try our utmost  to revert to being a non-threaded
638 		 * process.
639 		 */
640 		p->p_singlethread = NULL;
641 		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT);
642 		thread_unthread(td);
643 	}
644 	return (0);
645 }
646 
647 /*
648  * Called in from locations that can safely check to see
649  * whether we have to suspend or at least throttle for a
650  * single-thread event (e.g. fork).
651  *
652  * Such locations include userret().
653  * If the "return_instead" argument is non zero, the thread must be able to
654  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
655  *
656  * The 'return_instead' argument tells the function if it may do a
657  * thread_exit() or suspend, or whether the caller must abort and back
658  * out instead.
659  *
660  * If the thread that set the single_threading request has set the
661  * P_SINGLE_EXIT bit in the process flags then this call will never return
662  * if 'return_instead' is false, but will exit.
663  *
664  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
665  *---------------+--------------------+---------------------
666  *       0       | returns 0          |   returns 0 or 1
667  *               | when ST ends       |   immediatly
668  *---------------+--------------------+---------------------
669  *       1       | thread exits       |   returns 1
670  *               |                    |  immediatly
671  * 0 = thread_exit() or suspension ok,
672  * other = return error instead of stopping the thread.
673  *
674  * While a full suspension is under effect, even a single threading
675  * thread would be suspended if it made this call (but it shouldn't).
676  * This call should only be made from places where
677  * thread_exit() would be safe as that may be the outcome unless
678  * return_instead is set.
679  */
680 int
681 thread_suspend_check(int return_instead)
682 {
683 	struct thread *td;
684 	struct proc *p;
685 	int wakeup_swapper;
686 
687 	td = curthread;
688 	p = td->td_proc;
689 	mtx_assert(&Giant, MA_NOTOWNED);
690 	PROC_LOCK_ASSERT(p, MA_OWNED);
691 	while (P_SHOULDSTOP(p) ||
692 	      ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) {
693 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
694 			KASSERT(p->p_singlethread != NULL,
695 			    ("singlethread not set"));
696 			/*
697 			 * The only suspension in action is a
698 			 * single-threading. Single threader need not stop.
699 			 * XXX Should be safe to access unlocked
700 			 * as it can only be set to be true by us.
701 			 */
702 			if (p->p_singlethread == td)
703 				return (0);	/* Exempt from stopping. */
704 		}
705 		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
706 			return (EINTR);
707 
708 		/* Should we goto user boundary if we didn't come from there? */
709 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
710 		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
711 			return (ERESTART);
712 
713 		/* If thread will exit, flush its pending signals */
714 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td))
715 			sigqueue_flush(&td->td_sigqueue);
716 
717 		thread_stopped(p);
718 		/*
719 		 * If the process is waiting for us to exit,
720 		 * this thread should just suicide.
721 		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
722 		 */
723 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
724 			PROC_SLOCK(p);
725 			thread_exit();
726 		}
727 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
728 			if (p->p_numthreads == p->p_suspcount + 1) {
729 				thread_lock(p->p_singlethread);
730 				wakeup_swapper =
731 				    thread_unsuspend_one(p->p_singlethread);
732 				thread_unlock(p->p_singlethread);
733 				if (wakeup_swapper)
734 					kick_proc0();
735 			}
736 		}
737 		thread_lock(td);
738 		PROC_UNLOCK(p);
739 		/*
740 		 * When a thread suspends, it just
741 		 * gets taken off all queues.
742 		 */
743 		thread_suspend_one(td);
744 		if (return_instead == 0) {
745 			p->p_boundary_count++;
746 			td->td_flags |= TDF_BOUNDARY;
747 		}
748 		mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
749 		if (return_instead == 0)
750 			td->td_flags &= ~TDF_BOUNDARY;
751 		thread_unlock(td);
752 		PROC_LOCK(p);
753 		if (return_instead == 0)
754 			p->p_boundary_count--;
755 	}
756 	return (0);
757 }
758 
759 void
760 thread_suspend_switch(struct thread *td)
761 {
762 	struct proc *p;
763 
764 	p = td->td_proc;
765 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
766 	PROC_LOCK_ASSERT(p, MA_OWNED);
767 	/*
768 	 * We implement thread_suspend_one in stages here to avoid
769 	 * dropping the proc lock while the thread lock is owned.
770 	 */
771 	thread_stopped(p);
772 	p->p_suspcount++;
773 	thread_lock(td);
774 	PROC_UNLOCK(p);
775 	td->td_flags &= ~TDF_NEEDSUSPCHK;
776 	TD_SET_SUSPENDED(td);
777 	sched_sleep(td, 0);
778 	DROP_GIANT();
779 	mi_switch(SW_VOL | SWT_SUSPEND, NULL);
780 	thread_unlock(td);
781 	PICKUP_GIANT();
782 	PROC_LOCK(p);
783 }
784 
785 void
786 thread_suspend_one(struct thread *td)
787 {
788 	struct proc *p = td->td_proc;
789 
790 	THREAD_LOCK_ASSERT(td, MA_OWNED);
791 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
792 	p->p_suspcount++;
793 	td->td_flags &= ~TDF_NEEDSUSPCHK;
794 	TD_SET_SUSPENDED(td);
795 	sched_sleep(td, 0);
796 }
797 
798 int
799 thread_unsuspend_one(struct thread *td)
800 {
801 	struct proc *p = td->td_proc;
802 
803 	THREAD_LOCK_ASSERT(td, MA_OWNED);
804 	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
805 	TD_CLR_SUSPENDED(td);
806 	p->p_suspcount--;
807 	return (setrunnable(td));
808 }
809 
810 /*
811  * Allow all threads blocked by single threading to continue running.
812  */
813 void
814 thread_unsuspend(struct proc *p)
815 {
816 	struct thread *td;
817 	int wakeup_swapper;
818 
819 	PROC_LOCK_ASSERT(p, MA_OWNED);
820 	wakeup_swapper = 0;
821 	if (!P_SHOULDSTOP(p)) {
822                 FOREACH_THREAD_IN_PROC(p, td) {
823 			thread_lock(td);
824 			if (TD_IS_SUSPENDED(td)) {
825 				wakeup_swapper |= thread_unsuspend_one(td);
826 			}
827 			thread_unlock(td);
828 		}
829 	} else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) &&
830 	    (p->p_numthreads == p->p_suspcount)) {
831 		/*
832 		 * Stopping everything also did the job for the single
833 		 * threading request. Now we've downgraded to single-threaded,
834 		 * let it continue.
835 		 */
836 		thread_lock(p->p_singlethread);
837 		wakeup_swapper = thread_unsuspend_one(p->p_singlethread);
838 		thread_unlock(p->p_singlethread);
839 	}
840 	if (wakeup_swapper)
841 		kick_proc0();
842 }
843 
844 /*
845  * End the single threading mode..
846  */
847 void
848 thread_single_end(void)
849 {
850 	struct thread *td;
851 	struct proc *p;
852 	int wakeup_swapper;
853 
854 	td = curthread;
855 	p = td->td_proc;
856 	PROC_LOCK_ASSERT(p, MA_OWNED);
857 	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY);
858 	p->p_singlethread = NULL;
859 	wakeup_swapper = 0;
860 	/*
861 	 * If there are other threads they may now run,
862 	 * unless of course there is a blanket 'stop order'
863 	 * on the process. The single threader must be allowed
864 	 * to continue however as this is a bad place to stop.
865 	 */
866 	if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) {
867                 FOREACH_THREAD_IN_PROC(p, td) {
868 			thread_lock(td);
869 			if (TD_IS_SUSPENDED(td)) {
870 				wakeup_swapper |= thread_unsuspend_one(td);
871 			}
872 			thread_unlock(td);
873 		}
874 	}
875 	if (wakeup_swapper)
876 		kick_proc0();
877 }
878 
879 struct thread *
880 thread_find(struct proc *p, lwpid_t tid)
881 {
882 	struct thread *td;
883 
884 	PROC_LOCK_ASSERT(p, MA_OWNED);
885 	FOREACH_THREAD_IN_PROC(p, td) {
886 		if (td->td_tid == tid)
887 			break;
888 	}
889 	return (td);
890 }
891