1 /*- 2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice(s), this list of conditions and the following disclaimer as 10 * the first lines of this file unmodified other than the possible 11 * addition of one or more copyright notices. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice(s), this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY 17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 19 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY 20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 26 * DAMAGE. 27 */ 28 29 #include "opt_witness.h" 30 31 #include <sys/cdefs.h> 32 __FBSDID("$FreeBSD$"); 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/lock.h> 38 #include <sys/mutex.h> 39 #include <sys/proc.h> 40 #include <sys/resourcevar.h> 41 #include <sys/smp.h> 42 #include <sys/sysctl.h> 43 #include <sys/sched.h> 44 #include <sys/sleepqueue.h> 45 #include <sys/selinfo.h> 46 #include <sys/turnstile.h> 47 #include <sys/ktr.h> 48 #include <sys/umtx.h> 49 #include <sys/cpuset.h> 50 51 #include <security/audit/audit.h> 52 53 #include <vm/vm.h> 54 #include <vm/vm_extern.h> 55 #include <vm/uma.h> 56 #include <sys/eventhandler.h> 57 58 /* 59 * thread related storage. 60 */ 61 static uma_zone_t thread_zone; 62 63 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation"); 64 65 int max_threads_per_proc = 1500; 66 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW, 67 &max_threads_per_proc, 0, "Limit on threads per proc"); 68 69 int max_threads_hits; 70 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD, 71 &max_threads_hits, 0, ""); 72 73 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads); 74 static struct mtx zombie_lock; 75 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN); 76 77 static void thread_zombie(struct thread *); 78 79 struct mtx tid_lock; 80 static struct unrhdr *tid_unrhdr; 81 82 /* 83 * Prepare a thread for use. 84 */ 85 static int 86 thread_ctor(void *mem, int size, void *arg, int flags) 87 { 88 struct thread *td; 89 90 td = (struct thread *)mem; 91 td->td_state = TDS_INACTIVE; 92 td->td_oncpu = NOCPU; 93 94 td->td_tid = alloc_unr(tid_unrhdr); 95 td->td_syscalls = 0; 96 97 /* 98 * Note that td_critnest begins life as 1 because the thread is not 99 * running and is thereby implicitly waiting to be on the receiving 100 * end of a context switch. 101 */ 102 td->td_critnest = 1; 103 EVENTHANDLER_INVOKE(thread_ctor, td); 104 #ifdef AUDIT 105 audit_thread_alloc(td); 106 #endif 107 umtx_thread_alloc(td); 108 return (0); 109 } 110 111 /* 112 * Reclaim a thread after use. 113 */ 114 static void 115 thread_dtor(void *mem, int size, void *arg) 116 { 117 struct thread *td; 118 119 td = (struct thread *)mem; 120 121 #ifdef INVARIANTS 122 /* Verify that this thread is in a safe state to free. */ 123 switch (td->td_state) { 124 case TDS_INHIBITED: 125 case TDS_RUNNING: 126 case TDS_CAN_RUN: 127 case TDS_RUNQ: 128 /* 129 * We must never unlink a thread that is in one of 130 * these states, because it is currently active. 131 */ 132 panic("bad state for thread unlinking"); 133 /* NOTREACHED */ 134 case TDS_INACTIVE: 135 break; 136 default: 137 panic("bad thread state"); 138 /* NOTREACHED */ 139 } 140 #endif 141 #ifdef AUDIT 142 audit_thread_free(td); 143 #endif 144 EVENTHANDLER_INVOKE(thread_dtor, td); 145 free_unr(tid_unrhdr, td->td_tid); 146 } 147 148 /* 149 * Initialize type-stable parts of a thread (when newly created). 150 */ 151 static int 152 thread_init(void *mem, int size, int flags) 153 { 154 struct thread *td; 155 156 td = (struct thread *)mem; 157 158 td->td_sleepqueue = sleepq_alloc(); 159 td->td_turnstile = turnstile_alloc(); 160 EVENTHANDLER_INVOKE(thread_init, td); 161 td->td_sched = (struct td_sched *)&td[1]; 162 umtx_thread_init(td); 163 td->td_kstack = 0; 164 return (0); 165 } 166 167 /* 168 * Tear down type-stable parts of a thread (just before being discarded). 169 */ 170 static void 171 thread_fini(void *mem, int size) 172 { 173 struct thread *td; 174 175 td = (struct thread *)mem; 176 EVENTHANDLER_INVOKE(thread_fini, td); 177 turnstile_free(td->td_turnstile); 178 sleepq_free(td->td_sleepqueue); 179 umtx_thread_fini(td); 180 seltdfini(td); 181 } 182 183 /* 184 * For a newly created process, 185 * link up all the structures and its initial threads etc. 186 * called from: 187 * {arch}/{arch}/machdep.c ia64_init(), init386() etc. 188 * proc_dtor() (should go away) 189 * proc_init() 190 */ 191 void 192 proc_linkup0(struct proc *p, struct thread *td) 193 { 194 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 195 proc_linkup(p, td); 196 } 197 198 void 199 proc_linkup(struct proc *p, struct thread *td) 200 { 201 202 sigqueue_init(&p->p_sigqueue, p); 203 p->p_ksi = ksiginfo_alloc(1); 204 if (p->p_ksi != NULL) { 205 /* XXX p_ksi may be null if ksiginfo zone is not ready */ 206 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS; 207 } 208 LIST_INIT(&p->p_mqnotifier); 209 p->p_numthreads = 0; 210 thread_link(td, p); 211 } 212 213 /* 214 * Initialize global thread allocation resources. 215 */ 216 void 217 threadinit(void) 218 { 219 220 mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF); 221 /* leave one number for thread0 */ 222 tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock); 223 224 thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(), 225 thread_ctor, thread_dtor, thread_init, thread_fini, 226 16 - 1, 0); 227 } 228 229 /* 230 * Place an unused thread on the zombie list. 231 * Use the slpq as that must be unused by now. 232 */ 233 void 234 thread_zombie(struct thread *td) 235 { 236 mtx_lock_spin(&zombie_lock); 237 TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq); 238 mtx_unlock_spin(&zombie_lock); 239 } 240 241 /* 242 * Release a thread that has exited after cpu_throw(). 243 */ 244 void 245 thread_stash(struct thread *td) 246 { 247 atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1); 248 thread_zombie(td); 249 } 250 251 /* 252 * Reap zombie resources. 253 */ 254 void 255 thread_reap(void) 256 { 257 struct thread *td_first, *td_next; 258 259 /* 260 * Don't even bother to lock if none at this instant, 261 * we really don't care about the next instant.. 262 */ 263 if (!TAILQ_EMPTY(&zombie_threads)) { 264 mtx_lock_spin(&zombie_lock); 265 td_first = TAILQ_FIRST(&zombie_threads); 266 if (td_first) 267 TAILQ_INIT(&zombie_threads); 268 mtx_unlock_spin(&zombie_lock); 269 while (td_first) { 270 td_next = TAILQ_NEXT(td_first, td_slpq); 271 if (td_first->td_ucred) 272 crfree(td_first->td_ucred); 273 thread_free(td_first); 274 td_first = td_next; 275 } 276 } 277 } 278 279 /* 280 * Allocate a thread. 281 */ 282 struct thread * 283 thread_alloc(void) 284 { 285 struct thread *td; 286 287 thread_reap(); /* check if any zombies to get */ 288 289 td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK); 290 KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack")); 291 if (!vm_thread_new(td, 0)) { 292 uma_zfree(thread_zone, td); 293 return (NULL); 294 } 295 cpu_thread_alloc(td); 296 return (td); 297 } 298 299 300 /* 301 * Deallocate a thread. 302 */ 303 void 304 thread_free(struct thread *td) 305 { 306 if (td->td_cpuset) 307 cpuset_rel(td->td_cpuset); 308 td->td_cpuset = NULL; 309 cpu_thread_free(td); 310 if (td->td_altkstack != 0) 311 vm_thread_dispose_altkstack(td); 312 if (td->td_kstack != 0) 313 vm_thread_dispose(td); 314 uma_zfree(thread_zone, td); 315 } 316 317 /* 318 * Discard the current thread and exit from its context. 319 * Always called with scheduler locked. 320 * 321 * Because we can't free a thread while we're operating under its context, 322 * push the current thread into our CPU's deadthread holder. This means 323 * we needn't worry about someone else grabbing our context before we 324 * do a cpu_throw(). 325 */ 326 void 327 thread_exit(void) 328 { 329 uint64_t new_switchtime; 330 struct thread *td; 331 struct thread *td2; 332 struct proc *p; 333 int wakeup_swapper; 334 335 td = curthread; 336 p = td->td_proc; 337 338 PROC_SLOCK_ASSERT(p, MA_OWNED); 339 mtx_assert(&Giant, MA_NOTOWNED); 340 341 PROC_LOCK_ASSERT(p, MA_OWNED); 342 KASSERT(p != NULL, ("thread exiting without a process")); 343 CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td, 344 (long)p->p_pid, td->td_name); 345 KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending")); 346 347 #ifdef AUDIT 348 AUDIT_SYSCALL_EXIT(0, td); 349 #endif 350 umtx_thread_exit(td); 351 /* 352 * drop FPU & debug register state storage, or any other 353 * architecture specific resources that 354 * would not be on a new untouched process. 355 */ 356 cpu_thread_exit(td); /* XXXSMP */ 357 358 /* Do the same timestamp bookkeeping that mi_switch() would do. */ 359 new_switchtime = cpu_ticks(); 360 p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime)); 361 PCPU_SET(switchtime, new_switchtime); 362 PCPU_SET(switchticks, ticks); 363 PCPU_INC(cnt.v_swtch); 364 /* Save our resource usage in our process. */ 365 td->td_ru.ru_nvcsw++; 366 rucollect(&p->p_ru, &td->td_ru); 367 /* 368 * The last thread is left attached to the process 369 * So that the whole bundle gets recycled. Skip 370 * all this stuff if we never had threads. 371 * EXIT clears all sign of other threads when 372 * it goes to single threading, so the last thread always 373 * takes the short path. 374 */ 375 if (p->p_flag & P_HADTHREADS) { 376 if (p->p_numthreads > 1) { 377 thread_unlink(td); 378 td2 = FIRST_THREAD_IN_PROC(p); 379 sched_exit_thread(td2, td); 380 381 /* 382 * The test below is NOT true if we are the 383 * sole exiting thread. P_STOPPED_SNGL is unset 384 * in exit1() after it is the only survivor. 385 */ 386 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 387 if (p->p_numthreads == p->p_suspcount) { 388 thread_lock(p->p_singlethread); 389 wakeup_swapper = thread_unsuspend_one( 390 p->p_singlethread); 391 thread_unlock(p->p_singlethread); 392 if (wakeup_swapper) 393 kick_proc0(); 394 } 395 } 396 397 atomic_add_int(&td->td_proc->p_exitthreads, 1); 398 PCPU_SET(deadthread, td); 399 } else { 400 /* 401 * The last thread is exiting.. but not through exit() 402 */ 403 panic ("thread_exit: Last thread exiting on its own"); 404 } 405 } 406 PROC_UNLOCK(p); 407 thread_lock(td); 408 /* Save our tick information with both the thread and proc locked */ 409 ruxagg(&p->p_rux, td); 410 PROC_SUNLOCK(p); 411 td->td_state = TDS_INACTIVE; 412 #ifdef WITNESS 413 witness_thread_exit(td); 414 #endif 415 CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td); 416 sched_throw(td); 417 panic("I'm a teapot!"); 418 /* NOTREACHED */ 419 } 420 421 /* 422 * Do any thread specific cleanups that may be needed in wait() 423 * called with Giant, proc and schedlock not held. 424 */ 425 void 426 thread_wait(struct proc *p) 427 { 428 struct thread *td; 429 430 mtx_assert(&Giant, MA_NOTOWNED); 431 KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()")); 432 td = FIRST_THREAD_IN_PROC(p); 433 /* Lock the last thread so we spin until it exits cpu_throw(). */ 434 thread_lock(td); 435 thread_unlock(td); 436 /* Wait for any remaining threads to exit cpu_throw(). */ 437 while (p->p_exitthreads) 438 sched_relinquish(curthread); 439 cpuset_rel(td->td_cpuset); 440 td->td_cpuset = NULL; 441 cpu_thread_clean(td); 442 crfree(td->td_ucred); 443 thread_reap(); /* check for zombie threads etc. */ 444 } 445 446 /* 447 * Link a thread to a process. 448 * set up anything that needs to be initialized for it to 449 * be used by the process. 450 */ 451 void 452 thread_link(struct thread *td, struct proc *p) 453 { 454 455 /* 456 * XXX This can't be enabled because it's called for proc0 before 457 * its lock has been created. 458 * PROC_LOCK_ASSERT(p, MA_OWNED); 459 */ 460 td->td_state = TDS_INACTIVE; 461 td->td_proc = p; 462 td->td_flags = TDF_INMEM; 463 464 LIST_INIT(&td->td_contested); 465 LIST_INIT(&td->td_lprof[0]); 466 LIST_INIT(&td->td_lprof[1]); 467 sigqueue_init(&td->td_sigqueue, p); 468 callout_init(&td->td_slpcallout, CALLOUT_MPSAFE); 469 TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist); 470 p->p_numthreads++; 471 } 472 473 /* 474 * Convert a process with one thread to an unthreaded process. 475 */ 476 void 477 thread_unthread(struct thread *td) 478 { 479 struct proc *p = td->td_proc; 480 481 KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads")); 482 p->p_flag &= ~P_HADTHREADS; 483 } 484 485 /* 486 * Called from: 487 * thread_exit() 488 */ 489 void 490 thread_unlink(struct thread *td) 491 { 492 struct proc *p = td->td_proc; 493 494 PROC_LOCK_ASSERT(p, MA_OWNED); 495 TAILQ_REMOVE(&p->p_threads, td, td_plist); 496 p->p_numthreads--; 497 /* could clear a few other things here */ 498 /* Must NOT clear links to proc! */ 499 } 500 501 /* 502 * Enforce single-threading. 503 * 504 * Returns 1 if the caller must abort (another thread is waiting to 505 * exit the process or similar). Process is locked! 506 * Returns 0 when you are successfully the only thread running. 507 * A process has successfully single threaded in the suspend mode when 508 * There are no threads in user mode. Threads in the kernel must be 509 * allowed to continue until they get to the user boundary. They may even 510 * copy out their return values and data before suspending. They may however be 511 * accelerated in reaching the user boundary as we will wake up 512 * any sleeping threads that are interruptable. (PCATCH). 513 */ 514 int 515 thread_single(int mode) 516 { 517 struct thread *td; 518 struct thread *td2; 519 struct proc *p; 520 int remaining, wakeup_swapper; 521 522 td = curthread; 523 p = td->td_proc; 524 mtx_assert(&Giant, MA_NOTOWNED); 525 PROC_LOCK_ASSERT(p, MA_OWNED); 526 KASSERT((td != NULL), ("curthread is NULL")); 527 528 if ((p->p_flag & P_HADTHREADS) == 0) 529 return (0); 530 531 /* Is someone already single threading? */ 532 if (p->p_singlethread != NULL && p->p_singlethread != td) 533 return (1); 534 535 if (mode == SINGLE_EXIT) { 536 p->p_flag |= P_SINGLE_EXIT; 537 p->p_flag &= ~P_SINGLE_BOUNDARY; 538 } else { 539 p->p_flag &= ~P_SINGLE_EXIT; 540 if (mode == SINGLE_BOUNDARY) 541 p->p_flag |= P_SINGLE_BOUNDARY; 542 else 543 p->p_flag &= ~P_SINGLE_BOUNDARY; 544 } 545 p->p_flag |= P_STOPPED_SINGLE; 546 p->p_singlethread = td; 547 if (mode == SINGLE_EXIT) 548 remaining = p->p_numthreads; 549 else if (mode == SINGLE_BOUNDARY) 550 remaining = p->p_numthreads - p->p_boundary_count; 551 else 552 remaining = p->p_numthreads - p->p_suspcount; 553 while (remaining != 1) { 554 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE) 555 goto stopme; 556 wakeup_swapper = 0; 557 FOREACH_THREAD_IN_PROC(p, td2) { 558 if (td2 == td) 559 continue; 560 thread_lock(td2); 561 td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK; 562 if (TD_IS_INHIBITED(td2)) { 563 switch (mode) { 564 case SINGLE_EXIT: 565 if (TD_IS_SUSPENDED(td2)) 566 wakeup_swapper |= 567 thread_unsuspend_one(td2); 568 if (TD_ON_SLEEPQ(td2) && 569 (td2->td_flags & TDF_SINTR)) 570 wakeup_swapper |= 571 sleepq_abort(td2, EINTR); 572 break; 573 case SINGLE_BOUNDARY: 574 if (TD_IS_SUSPENDED(td2) && 575 !(td2->td_flags & TDF_BOUNDARY)) 576 wakeup_swapper |= 577 thread_unsuspend_one(td2); 578 if (TD_ON_SLEEPQ(td2) && 579 (td2->td_flags & TDF_SINTR)) 580 wakeup_swapper |= 581 sleepq_abort(td2, ERESTART); 582 break; 583 default: 584 if (TD_IS_SUSPENDED(td2)) { 585 thread_unlock(td2); 586 continue; 587 } 588 /* 589 * maybe other inhibited states too? 590 */ 591 if ((td2->td_flags & TDF_SINTR) && 592 (td2->td_inhibitors & 593 (TDI_SLEEPING | TDI_SWAPPED))) 594 thread_suspend_one(td2); 595 break; 596 } 597 } 598 #ifdef SMP 599 else if (TD_IS_RUNNING(td2) && td != td2) { 600 forward_signal(td2); 601 } 602 #endif 603 thread_unlock(td2); 604 } 605 if (wakeup_swapper) 606 kick_proc0(); 607 if (mode == SINGLE_EXIT) 608 remaining = p->p_numthreads; 609 else if (mode == SINGLE_BOUNDARY) 610 remaining = p->p_numthreads - p->p_boundary_count; 611 else 612 remaining = p->p_numthreads - p->p_suspcount; 613 614 /* 615 * Maybe we suspended some threads.. was it enough? 616 */ 617 if (remaining == 1) 618 break; 619 620 stopme: 621 /* 622 * Wake us up when everyone else has suspended. 623 * In the mean time we suspend as well. 624 */ 625 thread_suspend_switch(td); 626 if (mode == SINGLE_EXIT) 627 remaining = p->p_numthreads; 628 else if (mode == SINGLE_BOUNDARY) 629 remaining = p->p_numthreads - p->p_boundary_count; 630 else 631 remaining = p->p_numthreads - p->p_suspcount; 632 } 633 if (mode == SINGLE_EXIT) { 634 /* 635 * We have gotten rid of all the other threads and we 636 * are about to either exit or exec. In either case, 637 * we try our utmost to revert to being a non-threaded 638 * process. 639 */ 640 p->p_singlethread = NULL; 641 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT); 642 thread_unthread(td); 643 } 644 return (0); 645 } 646 647 /* 648 * Called in from locations that can safely check to see 649 * whether we have to suspend or at least throttle for a 650 * single-thread event (e.g. fork). 651 * 652 * Such locations include userret(). 653 * If the "return_instead" argument is non zero, the thread must be able to 654 * accept 0 (caller may continue), or 1 (caller must abort) as a result. 655 * 656 * The 'return_instead' argument tells the function if it may do a 657 * thread_exit() or suspend, or whether the caller must abort and back 658 * out instead. 659 * 660 * If the thread that set the single_threading request has set the 661 * P_SINGLE_EXIT bit in the process flags then this call will never return 662 * if 'return_instead' is false, but will exit. 663 * 664 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0 665 *---------------+--------------------+--------------------- 666 * 0 | returns 0 | returns 0 or 1 667 * | when ST ends | immediatly 668 *---------------+--------------------+--------------------- 669 * 1 | thread exits | returns 1 670 * | | immediatly 671 * 0 = thread_exit() or suspension ok, 672 * other = return error instead of stopping the thread. 673 * 674 * While a full suspension is under effect, even a single threading 675 * thread would be suspended if it made this call (but it shouldn't). 676 * This call should only be made from places where 677 * thread_exit() would be safe as that may be the outcome unless 678 * return_instead is set. 679 */ 680 int 681 thread_suspend_check(int return_instead) 682 { 683 struct thread *td; 684 struct proc *p; 685 int wakeup_swapper; 686 687 td = curthread; 688 p = td->td_proc; 689 mtx_assert(&Giant, MA_NOTOWNED); 690 PROC_LOCK_ASSERT(p, MA_OWNED); 691 while (P_SHOULDSTOP(p) || 692 ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) { 693 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 694 KASSERT(p->p_singlethread != NULL, 695 ("singlethread not set")); 696 /* 697 * The only suspension in action is a 698 * single-threading. Single threader need not stop. 699 * XXX Should be safe to access unlocked 700 * as it can only be set to be true by us. 701 */ 702 if (p->p_singlethread == td) 703 return (0); /* Exempt from stopping. */ 704 } 705 if ((p->p_flag & P_SINGLE_EXIT) && return_instead) 706 return (EINTR); 707 708 /* Should we goto user boundary if we didn't come from there? */ 709 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE && 710 (p->p_flag & P_SINGLE_BOUNDARY) && return_instead) 711 return (ERESTART); 712 713 /* If thread will exit, flush its pending signals */ 714 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) 715 sigqueue_flush(&td->td_sigqueue); 716 717 thread_stopped(p); 718 /* 719 * If the process is waiting for us to exit, 720 * this thread should just suicide. 721 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE. 722 */ 723 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) { 724 PROC_SLOCK(p); 725 thread_exit(); 726 } 727 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 728 if (p->p_numthreads == p->p_suspcount + 1) { 729 thread_lock(p->p_singlethread); 730 wakeup_swapper = 731 thread_unsuspend_one(p->p_singlethread); 732 thread_unlock(p->p_singlethread); 733 if (wakeup_swapper) 734 kick_proc0(); 735 } 736 } 737 thread_lock(td); 738 PROC_UNLOCK(p); 739 /* 740 * When a thread suspends, it just 741 * gets taken off all queues. 742 */ 743 thread_suspend_one(td); 744 if (return_instead == 0) { 745 p->p_boundary_count++; 746 td->td_flags |= TDF_BOUNDARY; 747 } 748 mi_switch(SW_INVOL | SWT_SUSPEND, NULL); 749 if (return_instead == 0) 750 td->td_flags &= ~TDF_BOUNDARY; 751 thread_unlock(td); 752 PROC_LOCK(p); 753 if (return_instead == 0) 754 p->p_boundary_count--; 755 } 756 return (0); 757 } 758 759 void 760 thread_suspend_switch(struct thread *td) 761 { 762 struct proc *p; 763 764 p = td->td_proc; 765 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 766 PROC_LOCK_ASSERT(p, MA_OWNED); 767 /* 768 * We implement thread_suspend_one in stages here to avoid 769 * dropping the proc lock while the thread lock is owned. 770 */ 771 thread_stopped(p); 772 p->p_suspcount++; 773 thread_lock(td); 774 PROC_UNLOCK(p); 775 td->td_flags &= ~TDF_NEEDSUSPCHK; 776 TD_SET_SUSPENDED(td); 777 sched_sleep(td, 0); 778 DROP_GIANT(); 779 mi_switch(SW_VOL | SWT_SUSPEND, NULL); 780 thread_unlock(td); 781 PICKUP_GIANT(); 782 PROC_LOCK(p); 783 } 784 785 void 786 thread_suspend_one(struct thread *td) 787 { 788 struct proc *p = td->td_proc; 789 790 THREAD_LOCK_ASSERT(td, MA_OWNED); 791 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 792 p->p_suspcount++; 793 td->td_flags &= ~TDF_NEEDSUSPCHK; 794 TD_SET_SUSPENDED(td); 795 sched_sleep(td, 0); 796 } 797 798 int 799 thread_unsuspend_one(struct thread *td) 800 { 801 struct proc *p = td->td_proc; 802 803 THREAD_LOCK_ASSERT(td, MA_OWNED); 804 KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended")); 805 TD_CLR_SUSPENDED(td); 806 p->p_suspcount--; 807 return (setrunnable(td)); 808 } 809 810 /* 811 * Allow all threads blocked by single threading to continue running. 812 */ 813 void 814 thread_unsuspend(struct proc *p) 815 { 816 struct thread *td; 817 int wakeup_swapper; 818 819 PROC_LOCK_ASSERT(p, MA_OWNED); 820 wakeup_swapper = 0; 821 if (!P_SHOULDSTOP(p)) { 822 FOREACH_THREAD_IN_PROC(p, td) { 823 thread_lock(td); 824 if (TD_IS_SUSPENDED(td)) { 825 wakeup_swapper |= thread_unsuspend_one(td); 826 } 827 thread_unlock(td); 828 } 829 } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) && 830 (p->p_numthreads == p->p_suspcount)) { 831 /* 832 * Stopping everything also did the job for the single 833 * threading request. Now we've downgraded to single-threaded, 834 * let it continue. 835 */ 836 thread_lock(p->p_singlethread); 837 wakeup_swapper = thread_unsuspend_one(p->p_singlethread); 838 thread_unlock(p->p_singlethread); 839 } 840 if (wakeup_swapper) 841 kick_proc0(); 842 } 843 844 /* 845 * End the single threading mode.. 846 */ 847 void 848 thread_single_end(void) 849 { 850 struct thread *td; 851 struct proc *p; 852 int wakeup_swapper; 853 854 td = curthread; 855 p = td->td_proc; 856 PROC_LOCK_ASSERT(p, MA_OWNED); 857 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY); 858 p->p_singlethread = NULL; 859 wakeup_swapper = 0; 860 /* 861 * If there are other threads they may now run, 862 * unless of course there is a blanket 'stop order' 863 * on the process. The single threader must be allowed 864 * to continue however as this is a bad place to stop. 865 */ 866 if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) { 867 FOREACH_THREAD_IN_PROC(p, td) { 868 thread_lock(td); 869 if (TD_IS_SUSPENDED(td)) { 870 wakeup_swapper |= thread_unsuspend_one(td); 871 } 872 thread_unlock(td); 873 } 874 } 875 if (wakeup_swapper) 876 kick_proc0(); 877 } 878 879 struct thread * 880 thread_find(struct proc *p, lwpid_t tid) 881 { 882 struct thread *td; 883 884 PROC_LOCK_ASSERT(p, MA_OWNED); 885 FOREACH_THREAD_IN_PROC(p, td) { 886 if (td->td_tid == tid) 887 break; 888 } 889 return (td); 890 } 891