1 /*- 2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice(s), this list of conditions and the following disclaimer as 10 * the first lines of this file unmodified other than the possible 11 * addition of one or more copyright notices. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice(s), this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY 17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 19 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY 20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 26 * DAMAGE. 27 */ 28 29 #include "opt_witness.h" 30 #include "opt_hwpmc_hooks.h" 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/lock.h> 39 #include <sys/mutex.h> 40 #include <sys/proc.h> 41 #include <sys/resourcevar.h> 42 #include <sys/smp.h> 43 #include <sys/sysctl.h> 44 #include <sys/sched.h> 45 #include <sys/sleepqueue.h> 46 #include <sys/selinfo.h> 47 #include <sys/turnstile.h> 48 #include <sys/ktr.h> 49 #include <sys/rwlock.h> 50 #include <sys/umtx.h> 51 #include <sys/cpuset.h> 52 #ifdef HWPMC_HOOKS 53 #include <sys/pmckern.h> 54 #endif 55 56 #include <security/audit/audit.h> 57 58 #include <vm/vm.h> 59 #include <vm/vm_extern.h> 60 #include <vm/uma.h> 61 #include <sys/eventhandler.h> 62 63 /* 64 * thread related storage. 65 */ 66 static uma_zone_t thread_zone; 67 68 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation"); 69 70 int max_threads_per_proc = 1500; 71 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW, 72 &max_threads_per_proc, 0, "Limit on threads per proc"); 73 74 int max_threads_hits; 75 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD, 76 &max_threads_hits, 0, ""); 77 78 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads); 79 static struct mtx zombie_lock; 80 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN); 81 82 static void thread_zombie(struct thread *); 83 84 struct mtx tid_lock; 85 static struct unrhdr *tid_unrhdr; 86 87 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash"); 88 89 struct tidhashhead *tidhashtbl; 90 u_long tidhash; 91 struct rwlock tidhash_lock; 92 93 /* 94 * Prepare a thread for use. 95 */ 96 static int 97 thread_ctor(void *mem, int size, void *arg, int flags) 98 { 99 struct thread *td; 100 101 td = (struct thread *)mem; 102 td->td_state = TDS_INACTIVE; 103 td->td_oncpu = NOCPU; 104 105 td->td_tid = alloc_unr(tid_unrhdr); 106 107 /* 108 * Note that td_critnest begins life as 1 because the thread is not 109 * running and is thereby implicitly waiting to be on the receiving 110 * end of a context switch. 111 */ 112 td->td_critnest = 1; 113 EVENTHANDLER_INVOKE(thread_ctor, td); 114 #ifdef AUDIT 115 audit_thread_alloc(td); 116 #endif 117 umtx_thread_alloc(td); 118 return (0); 119 } 120 121 /* 122 * Reclaim a thread after use. 123 */ 124 static void 125 thread_dtor(void *mem, int size, void *arg) 126 { 127 struct thread *td; 128 129 td = (struct thread *)mem; 130 131 #ifdef INVARIANTS 132 /* Verify that this thread is in a safe state to free. */ 133 switch (td->td_state) { 134 case TDS_INHIBITED: 135 case TDS_RUNNING: 136 case TDS_CAN_RUN: 137 case TDS_RUNQ: 138 /* 139 * We must never unlink a thread that is in one of 140 * these states, because it is currently active. 141 */ 142 panic("bad state for thread unlinking"); 143 /* NOTREACHED */ 144 case TDS_INACTIVE: 145 break; 146 default: 147 panic("bad thread state"); 148 /* NOTREACHED */ 149 } 150 #endif 151 #ifdef AUDIT 152 audit_thread_free(td); 153 #endif 154 /* Free all OSD associated to this thread. */ 155 osd_thread_exit(td); 156 157 EVENTHANDLER_INVOKE(thread_dtor, td); 158 free_unr(tid_unrhdr, td->td_tid); 159 } 160 161 /* 162 * Initialize type-stable parts of a thread (when newly created). 163 */ 164 static int 165 thread_init(void *mem, int size, int flags) 166 { 167 struct thread *td; 168 169 td = (struct thread *)mem; 170 171 td->td_sleepqueue = sleepq_alloc(); 172 td->td_turnstile = turnstile_alloc(); 173 EVENTHANDLER_INVOKE(thread_init, td); 174 td->td_sched = (struct td_sched *)&td[1]; 175 umtx_thread_init(td); 176 td->td_kstack = 0; 177 return (0); 178 } 179 180 /* 181 * Tear down type-stable parts of a thread (just before being discarded). 182 */ 183 static void 184 thread_fini(void *mem, int size) 185 { 186 struct thread *td; 187 188 td = (struct thread *)mem; 189 EVENTHANDLER_INVOKE(thread_fini, td); 190 turnstile_free(td->td_turnstile); 191 sleepq_free(td->td_sleepqueue); 192 umtx_thread_fini(td); 193 seltdfini(td); 194 } 195 196 /* 197 * For a newly created process, 198 * link up all the structures and its initial threads etc. 199 * called from: 200 * {arch}/{arch}/machdep.c ia64_init(), init386() etc. 201 * proc_dtor() (should go away) 202 * proc_init() 203 */ 204 void 205 proc_linkup0(struct proc *p, struct thread *td) 206 { 207 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 208 proc_linkup(p, td); 209 } 210 211 void 212 proc_linkup(struct proc *p, struct thread *td) 213 { 214 215 sigqueue_init(&p->p_sigqueue, p); 216 p->p_ksi = ksiginfo_alloc(1); 217 if (p->p_ksi != NULL) { 218 /* XXX p_ksi may be null if ksiginfo zone is not ready */ 219 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS; 220 } 221 LIST_INIT(&p->p_mqnotifier); 222 p->p_numthreads = 0; 223 thread_link(td, p); 224 } 225 226 /* 227 * Initialize global thread allocation resources. 228 */ 229 void 230 threadinit(void) 231 { 232 233 mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF); 234 /* leave one number for thread0 */ 235 tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock); 236 237 thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(), 238 thread_ctor, thread_dtor, thread_init, thread_fini, 239 16 - 1, 0); 240 tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash); 241 rw_init(&tidhash_lock, "tidhash"); 242 } 243 244 /* 245 * Place an unused thread on the zombie list. 246 * Use the slpq as that must be unused by now. 247 */ 248 void 249 thread_zombie(struct thread *td) 250 { 251 mtx_lock_spin(&zombie_lock); 252 TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq); 253 mtx_unlock_spin(&zombie_lock); 254 } 255 256 /* 257 * Release a thread that has exited after cpu_throw(). 258 */ 259 void 260 thread_stash(struct thread *td) 261 { 262 atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1); 263 thread_zombie(td); 264 } 265 266 /* 267 * Reap zombie resources. 268 */ 269 void 270 thread_reap(void) 271 { 272 struct thread *td_first, *td_next; 273 274 /* 275 * Don't even bother to lock if none at this instant, 276 * we really don't care about the next instant.. 277 */ 278 if (!TAILQ_EMPTY(&zombie_threads)) { 279 mtx_lock_spin(&zombie_lock); 280 td_first = TAILQ_FIRST(&zombie_threads); 281 if (td_first) 282 TAILQ_INIT(&zombie_threads); 283 mtx_unlock_spin(&zombie_lock); 284 while (td_first) { 285 td_next = TAILQ_NEXT(td_first, td_slpq); 286 if (td_first->td_ucred) 287 crfree(td_first->td_ucred); 288 thread_free(td_first); 289 td_first = td_next; 290 } 291 } 292 } 293 294 /* 295 * Allocate a thread. 296 */ 297 struct thread * 298 thread_alloc(int pages) 299 { 300 struct thread *td; 301 302 thread_reap(); /* check if any zombies to get */ 303 304 td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK); 305 KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack")); 306 if (!vm_thread_new(td, pages)) { 307 uma_zfree(thread_zone, td); 308 return (NULL); 309 } 310 cpu_thread_alloc(td); 311 return (td); 312 } 313 314 int 315 thread_alloc_stack(struct thread *td, int pages) 316 { 317 318 KASSERT(td->td_kstack == 0, 319 ("thread_alloc_stack called on a thread with kstack")); 320 if (!vm_thread_new(td, pages)) 321 return (0); 322 cpu_thread_alloc(td); 323 return (1); 324 } 325 326 /* 327 * Deallocate a thread. 328 */ 329 void 330 thread_free(struct thread *td) 331 { 332 333 lock_profile_thread_exit(td); 334 if (td->td_cpuset) 335 cpuset_rel(td->td_cpuset); 336 td->td_cpuset = NULL; 337 cpu_thread_free(td); 338 if (td->td_kstack != 0) 339 vm_thread_dispose(td); 340 uma_zfree(thread_zone, td); 341 } 342 343 /* 344 * Discard the current thread and exit from its context. 345 * Always called with scheduler locked. 346 * 347 * Because we can't free a thread while we're operating under its context, 348 * push the current thread into our CPU's deadthread holder. This means 349 * we needn't worry about someone else grabbing our context before we 350 * do a cpu_throw(). 351 */ 352 void 353 thread_exit(void) 354 { 355 uint64_t new_switchtime; 356 struct thread *td; 357 struct thread *td2; 358 struct proc *p; 359 int wakeup_swapper; 360 361 td = curthread; 362 p = td->td_proc; 363 364 PROC_SLOCK_ASSERT(p, MA_OWNED); 365 mtx_assert(&Giant, MA_NOTOWNED); 366 367 PROC_LOCK_ASSERT(p, MA_OWNED); 368 KASSERT(p != NULL, ("thread exiting without a process")); 369 CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td, 370 (long)p->p_pid, td->td_name); 371 KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending")); 372 373 #ifdef AUDIT 374 AUDIT_SYSCALL_EXIT(0, td); 375 #endif 376 umtx_thread_exit(td); 377 /* 378 * drop FPU & debug register state storage, or any other 379 * architecture specific resources that 380 * would not be on a new untouched process. 381 */ 382 cpu_thread_exit(td); /* XXXSMP */ 383 384 /* Do the same timestamp bookkeeping that mi_switch() would do. */ 385 new_switchtime = cpu_ticks(); 386 p->p_rux.rux_runtime += (new_switchtime - PCPU_GET(switchtime)); 387 PCPU_SET(switchtime, new_switchtime); 388 PCPU_SET(switchticks, ticks); 389 PCPU_INC(cnt.v_swtch); 390 /* Save our resource usage in our process. */ 391 td->td_ru.ru_nvcsw++; 392 rucollect(&p->p_ru, &td->td_ru); 393 /* 394 * The last thread is left attached to the process 395 * So that the whole bundle gets recycled. Skip 396 * all this stuff if we never had threads. 397 * EXIT clears all sign of other threads when 398 * it goes to single threading, so the last thread always 399 * takes the short path. 400 */ 401 if (p->p_flag & P_HADTHREADS) { 402 if (p->p_numthreads > 1) { 403 thread_unlink(td); 404 td2 = FIRST_THREAD_IN_PROC(p); 405 sched_exit_thread(td2, td); 406 407 /* 408 * The test below is NOT true if we are the 409 * sole exiting thread. P_STOPPED_SINGLE is unset 410 * in exit1() after it is the only survivor. 411 */ 412 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 413 if (p->p_numthreads == p->p_suspcount) { 414 thread_lock(p->p_singlethread); 415 wakeup_swapper = thread_unsuspend_one( 416 p->p_singlethread); 417 thread_unlock(p->p_singlethread); 418 if (wakeup_swapper) 419 kick_proc0(); 420 } 421 } 422 423 atomic_add_int(&td->td_proc->p_exitthreads, 1); 424 PCPU_SET(deadthread, td); 425 } else { 426 /* 427 * The last thread is exiting.. but not through exit() 428 */ 429 panic ("thread_exit: Last thread exiting on its own"); 430 } 431 } 432 #ifdef HWPMC_HOOKS 433 /* 434 * If this thread is part of a process that is being tracked by hwpmc(4), 435 * inform the module of the thread's impending exit. 436 */ 437 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 438 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT); 439 #endif 440 PROC_UNLOCK(p); 441 ruxagg(p, td); 442 thread_lock(td); 443 PROC_SUNLOCK(p); 444 td->td_state = TDS_INACTIVE; 445 #ifdef WITNESS 446 witness_thread_exit(td); 447 #endif 448 CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td); 449 sched_throw(td); 450 panic("I'm a teapot!"); 451 /* NOTREACHED */ 452 } 453 454 /* 455 * Do any thread specific cleanups that may be needed in wait() 456 * called with Giant, proc and schedlock not held. 457 */ 458 void 459 thread_wait(struct proc *p) 460 { 461 struct thread *td; 462 463 mtx_assert(&Giant, MA_NOTOWNED); 464 KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()")); 465 td = FIRST_THREAD_IN_PROC(p); 466 /* Lock the last thread so we spin until it exits cpu_throw(). */ 467 thread_lock(td); 468 thread_unlock(td); 469 /* Wait for any remaining threads to exit cpu_throw(). */ 470 while (p->p_exitthreads) 471 sched_relinquish(curthread); 472 lock_profile_thread_exit(td); 473 cpuset_rel(td->td_cpuset); 474 td->td_cpuset = NULL; 475 cpu_thread_clean(td); 476 crfree(td->td_ucred); 477 thread_reap(); /* check for zombie threads etc. */ 478 } 479 480 /* 481 * Link a thread to a process. 482 * set up anything that needs to be initialized for it to 483 * be used by the process. 484 */ 485 void 486 thread_link(struct thread *td, struct proc *p) 487 { 488 489 /* 490 * XXX This can't be enabled because it's called for proc0 before 491 * its lock has been created. 492 * PROC_LOCK_ASSERT(p, MA_OWNED); 493 */ 494 td->td_state = TDS_INACTIVE; 495 td->td_proc = p; 496 td->td_flags = TDF_INMEM; 497 498 LIST_INIT(&td->td_contested); 499 LIST_INIT(&td->td_lprof[0]); 500 LIST_INIT(&td->td_lprof[1]); 501 sigqueue_init(&td->td_sigqueue, p); 502 callout_init(&td->td_slpcallout, CALLOUT_MPSAFE); 503 TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist); 504 p->p_numthreads++; 505 } 506 507 /* 508 * Convert a process with one thread to an unthreaded process. 509 */ 510 void 511 thread_unthread(struct thread *td) 512 { 513 struct proc *p = td->td_proc; 514 515 KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads")); 516 p->p_flag &= ~P_HADTHREADS; 517 } 518 519 /* 520 * Called from: 521 * thread_exit() 522 */ 523 void 524 thread_unlink(struct thread *td) 525 { 526 struct proc *p = td->td_proc; 527 528 PROC_LOCK_ASSERT(p, MA_OWNED); 529 TAILQ_REMOVE(&p->p_threads, td, td_plist); 530 p->p_numthreads--; 531 /* could clear a few other things here */ 532 /* Must NOT clear links to proc! */ 533 } 534 535 static int 536 calc_remaining(struct proc *p, int mode) 537 { 538 int remaining; 539 540 if (mode == SINGLE_EXIT) 541 remaining = p->p_numthreads; 542 else if (mode == SINGLE_BOUNDARY) 543 remaining = p->p_numthreads - p->p_boundary_count; 544 else if (mode == SINGLE_NO_EXIT) 545 remaining = p->p_numthreads - p->p_suspcount; 546 else 547 panic("calc_remaining: wrong mode %d", mode); 548 return (remaining); 549 } 550 551 /* 552 * Enforce single-threading. 553 * 554 * Returns 1 if the caller must abort (another thread is waiting to 555 * exit the process or similar). Process is locked! 556 * Returns 0 when you are successfully the only thread running. 557 * A process has successfully single threaded in the suspend mode when 558 * There are no threads in user mode. Threads in the kernel must be 559 * allowed to continue until they get to the user boundary. They may even 560 * copy out their return values and data before suspending. They may however be 561 * accelerated in reaching the user boundary as we will wake up 562 * any sleeping threads that are interruptable. (PCATCH). 563 */ 564 int 565 thread_single(int mode) 566 { 567 struct thread *td; 568 struct thread *td2; 569 struct proc *p; 570 int remaining, wakeup_swapper; 571 572 td = curthread; 573 p = td->td_proc; 574 mtx_assert(&Giant, MA_NOTOWNED); 575 PROC_LOCK_ASSERT(p, MA_OWNED); 576 KASSERT((td != NULL), ("curthread is NULL")); 577 578 if ((p->p_flag & P_HADTHREADS) == 0) 579 return (0); 580 581 /* Is someone already single threading? */ 582 if (p->p_singlethread != NULL && p->p_singlethread != td) 583 return (1); 584 585 if (mode == SINGLE_EXIT) { 586 p->p_flag |= P_SINGLE_EXIT; 587 p->p_flag &= ~P_SINGLE_BOUNDARY; 588 } else { 589 p->p_flag &= ~P_SINGLE_EXIT; 590 if (mode == SINGLE_BOUNDARY) 591 p->p_flag |= P_SINGLE_BOUNDARY; 592 else 593 p->p_flag &= ~P_SINGLE_BOUNDARY; 594 } 595 p->p_flag |= P_STOPPED_SINGLE; 596 PROC_SLOCK(p); 597 p->p_singlethread = td; 598 remaining = calc_remaining(p, mode); 599 while (remaining != 1) { 600 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE) 601 goto stopme; 602 wakeup_swapper = 0; 603 FOREACH_THREAD_IN_PROC(p, td2) { 604 if (td2 == td) 605 continue; 606 thread_lock(td2); 607 td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK; 608 if (TD_IS_INHIBITED(td2)) { 609 switch (mode) { 610 case SINGLE_EXIT: 611 if (TD_IS_SUSPENDED(td2)) 612 wakeup_swapper |= 613 thread_unsuspend_one(td2); 614 if (TD_ON_SLEEPQ(td2) && 615 (td2->td_flags & TDF_SINTR)) 616 wakeup_swapper |= 617 sleepq_abort(td2, EINTR); 618 break; 619 case SINGLE_BOUNDARY: 620 if (TD_IS_SUSPENDED(td2) && 621 !(td2->td_flags & TDF_BOUNDARY)) 622 wakeup_swapper |= 623 thread_unsuspend_one(td2); 624 if (TD_ON_SLEEPQ(td2) && 625 (td2->td_flags & TDF_SINTR)) 626 wakeup_swapper |= 627 sleepq_abort(td2, ERESTART); 628 break; 629 case SINGLE_NO_EXIT: 630 if (TD_IS_SUSPENDED(td2) && 631 !(td2->td_flags & TDF_BOUNDARY)) 632 wakeup_swapper |= 633 thread_unsuspend_one(td2); 634 if (TD_ON_SLEEPQ(td2) && 635 (td2->td_flags & TDF_SINTR)) 636 wakeup_swapper |= 637 sleepq_abort(td2, ERESTART); 638 break; 639 default: 640 break; 641 } 642 } 643 #ifdef SMP 644 else if (TD_IS_RUNNING(td2) && td != td2) { 645 forward_signal(td2); 646 } 647 #endif 648 thread_unlock(td2); 649 } 650 if (wakeup_swapper) 651 kick_proc0(); 652 remaining = calc_remaining(p, mode); 653 654 /* 655 * Maybe we suspended some threads.. was it enough? 656 */ 657 if (remaining == 1) 658 break; 659 660 stopme: 661 /* 662 * Wake us up when everyone else has suspended. 663 * In the mean time we suspend as well. 664 */ 665 thread_suspend_switch(td); 666 remaining = calc_remaining(p, mode); 667 } 668 if (mode == SINGLE_EXIT) { 669 /* 670 * We have gotten rid of all the other threads and we 671 * are about to either exit or exec. In either case, 672 * we try our utmost to revert to being a non-threaded 673 * process. 674 */ 675 p->p_singlethread = NULL; 676 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT); 677 thread_unthread(td); 678 } 679 PROC_SUNLOCK(p); 680 return (0); 681 } 682 683 /* 684 * Called in from locations that can safely check to see 685 * whether we have to suspend or at least throttle for a 686 * single-thread event (e.g. fork). 687 * 688 * Such locations include userret(). 689 * If the "return_instead" argument is non zero, the thread must be able to 690 * accept 0 (caller may continue), or 1 (caller must abort) as a result. 691 * 692 * The 'return_instead' argument tells the function if it may do a 693 * thread_exit() or suspend, or whether the caller must abort and back 694 * out instead. 695 * 696 * If the thread that set the single_threading request has set the 697 * P_SINGLE_EXIT bit in the process flags then this call will never return 698 * if 'return_instead' is false, but will exit. 699 * 700 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0 701 *---------------+--------------------+--------------------- 702 * 0 | returns 0 | returns 0 or 1 703 * | when ST ends | immediatly 704 *---------------+--------------------+--------------------- 705 * 1 | thread exits | returns 1 706 * | | immediatly 707 * 0 = thread_exit() or suspension ok, 708 * other = return error instead of stopping the thread. 709 * 710 * While a full suspension is under effect, even a single threading 711 * thread would be suspended if it made this call (but it shouldn't). 712 * This call should only be made from places where 713 * thread_exit() would be safe as that may be the outcome unless 714 * return_instead is set. 715 */ 716 int 717 thread_suspend_check(int return_instead) 718 { 719 struct thread *td; 720 struct proc *p; 721 int wakeup_swapper; 722 723 td = curthread; 724 p = td->td_proc; 725 mtx_assert(&Giant, MA_NOTOWNED); 726 PROC_LOCK_ASSERT(p, MA_OWNED); 727 while (P_SHOULDSTOP(p) || 728 ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) { 729 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 730 KASSERT(p->p_singlethread != NULL, 731 ("singlethread not set")); 732 /* 733 * The only suspension in action is a 734 * single-threading. Single threader need not stop. 735 * XXX Should be safe to access unlocked 736 * as it can only be set to be true by us. 737 */ 738 if (p->p_singlethread == td) 739 return (0); /* Exempt from stopping. */ 740 } 741 if ((p->p_flag & P_SINGLE_EXIT) && return_instead) 742 return (EINTR); 743 744 /* Should we goto user boundary if we didn't come from there? */ 745 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE && 746 (p->p_flag & P_SINGLE_BOUNDARY) && return_instead) 747 return (ERESTART); 748 749 /* 750 * If the process is waiting for us to exit, 751 * this thread should just suicide. 752 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE. 753 */ 754 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) { 755 PROC_UNLOCK(p); 756 tidhash_remove(td); 757 PROC_LOCK(p); 758 tdsigcleanup(td); 759 PROC_SLOCK(p); 760 thread_stopped(p); 761 thread_exit(); 762 } 763 764 PROC_SLOCK(p); 765 thread_stopped(p); 766 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 767 if (p->p_numthreads == p->p_suspcount + 1) { 768 thread_lock(p->p_singlethread); 769 wakeup_swapper = 770 thread_unsuspend_one(p->p_singlethread); 771 thread_unlock(p->p_singlethread); 772 if (wakeup_swapper) 773 kick_proc0(); 774 } 775 } 776 PROC_UNLOCK(p); 777 thread_lock(td); 778 /* 779 * When a thread suspends, it just 780 * gets taken off all queues. 781 */ 782 thread_suspend_one(td); 783 if (return_instead == 0) { 784 p->p_boundary_count++; 785 td->td_flags |= TDF_BOUNDARY; 786 } 787 PROC_SUNLOCK(p); 788 mi_switch(SW_INVOL | SWT_SUSPEND, NULL); 789 if (return_instead == 0) 790 td->td_flags &= ~TDF_BOUNDARY; 791 thread_unlock(td); 792 PROC_LOCK(p); 793 if (return_instead == 0) 794 p->p_boundary_count--; 795 } 796 return (0); 797 } 798 799 void 800 thread_suspend_switch(struct thread *td) 801 { 802 struct proc *p; 803 804 p = td->td_proc; 805 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 806 PROC_LOCK_ASSERT(p, MA_OWNED); 807 PROC_SLOCK_ASSERT(p, MA_OWNED); 808 /* 809 * We implement thread_suspend_one in stages here to avoid 810 * dropping the proc lock while the thread lock is owned. 811 */ 812 thread_stopped(p); 813 p->p_suspcount++; 814 PROC_UNLOCK(p); 815 thread_lock(td); 816 td->td_flags &= ~TDF_NEEDSUSPCHK; 817 TD_SET_SUSPENDED(td); 818 sched_sleep(td, 0); 819 PROC_SUNLOCK(p); 820 DROP_GIANT(); 821 mi_switch(SW_VOL | SWT_SUSPEND, NULL); 822 thread_unlock(td); 823 PICKUP_GIANT(); 824 PROC_LOCK(p); 825 PROC_SLOCK(p); 826 } 827 828 void 829 thread_suspend_one(struct thread *td) 830 { 831 struct proc *p = td->td_proc; 832 833 PROC_SLOCK_ASSERT(p, MA_OWNED); 834 THREAD_LOCK_ASSERT(td, MA_OWNED); 835 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 836 p->p_suspcount++; 837 td->td_flags &= ~TDF_NEEDSUSPCHK; 838 TD_SET_SUSPENDED(td); 839 sched_sleep(td, 0); 840 } 841 842 int 843 thread_unsuspend_one(struct thread *td) 844 { 845 struct proc *p = td->td_proc; 846 847 PROC_SLOCK_ASSERT(p, MA_OWNED); 848 THREAD_LOCK_ASSERT(td, MA_OWNED); 849 KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended")); 850 TD_CLR_SUSPENDED(td); 851 p->p_suspcount--; 852 return (setrunnable(td)); 853 } 854 855 /* 856 * Allow all threads blocked by single threading to continue running. 857 */ 858 void 859 thread_unsuspend(struct proc *p) 860 { 861 struct thread *td; 862 int wakeup_swapper; 863 864 PROC_LOCK_ASSERT(p, MA_OWNED); 865 PROC_SLOCK_ASSERT(p, MA_OWNED); 866 wakeup_swapper = 0; 867 if (!P_SHOULDSTOP(p)) { 868 FOREACH_THREAD_IN_PROC(p, td) { 869 thread_lock(td); 870 if (TD_IS_SUSPENDED(td)) { 871 wakeup_swapper |= thread_unsuspend_one(td); 872 } 873 thread_unlock(td); 874 } 875 } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) && 876 (p->p_numthreads == p->p_suspcount)) { 877 /* 878 * Stopping everything also did the job for the single 879 * threading request. Now we've downgraded to single-threaded, 880 * let it continue. 881 */ 882 thread_lock(p->p_singlethread); 883 wakeup_swapper = thread_unsuspend_one(p->p_singlethread); 884 thread_unlock(p->p_singlethread); 885 } 886 if (wakeup_swapper) 887 kick_proc0(); 888 } 889 890 /* 891 * End the single threading mode.. 892 */ 893 void 894 thread_single_end(void) 895 { 896 struct thread *td; 897 struct proc *p; 898 int wakeup_swapper; 899 900 td = curthread; 901 p = td->td_proc; 902 PROC_LOCK_ASSERT(p, MA_OWNED); 903 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY); 904 PROC_SLOCK(p); 905 p->p_singlethread = NULL; 906 wakeup_swapper = 0; 907 /* 908 * If there are other threads they may now run, 909 * unless of course there is a blanket 'stop order' 910 * on the process. The single threader must be allowed 911 * to continue however as this is a bad place to stop. 912 */ 913 if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) { 914 FOREACH_THREAD_IN_PROC(p, td) { 915 thread_lock(td); 916 if (TD_IS_SUSPENDED(td)) { 917 wakeup_swapper |= thread_unsuspend_one(td); 918 } 919 thread_unlock(td); 920 } 921 } 922 PROC_SUNLOCK(p); 923 if (wakeup_swapper) 924 kick_proc0(); 925 } 926 927 struct thread * 928 thread_find(struct proc *p, lwpid_t tid) 929 { 930 struct thread *td; 931 932 PROC_LOCK_ASSERT(p, MA_OWNED); 933 FOREACH_THREAD_IN_PROC(p, td) { 934 if (td->td_tid == tid) 935 break; 936 } 937 return (td); 938 } 939 940 /* Locate a thread by number; return with proc lock held. */ 941 struct thread * 942 tdfind(lwpid_t tid, pid_t pid) 943 { 944 #define RUN_THRESH 16 945 struct thread *td; 946 int run = 0; 947 948 rw_rlock(&tidhash_lock); 949 LIST_FOREACH(td, TIDHASH(tid), td_hash) { 950 if (td->td_tid == tid) { 951 if (pid != -1 && td->td_proc->p_pid != pid) { 952 td = NULL; 953 break; 954 } 955 if (td->td_proc->p_state == PRS_NEW) { 956 td = NULL; 957 break; 958 } 959 if (run > RUN_THRESH) { 960 if (rw_try_upgrade(&tidhash_lock)) { 961 LIST_REMOVE(td, td_hash); 962 LIST_INSERT_HEAD(TIDHASH(td->td_tid), 963 td, td_hash); 964 PROC_LOCK(td->td_proc); 965 rw_wunlock(&tidhash_lock); 966 return (td); 967 } 968 } 969 PROC_LOCK(td->td_proc); 970 break; 971 } 972 run++; 973 } 974 rw_runlock(&tidhash_lock); 975 return (td); 976 } 977 978 void 979 tidhash_add(struct thread *td) 980 { 981 rw_wlock(&tidhash_lock); 982 LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash); 983 rw_wunlock(&tidhash_lock); 984 } 985 986 void 987 tidhash_remove(struct thread *td) 988 { 989 rw_wlock(&tidhash_lock); 990 LIST_REMOVE(td, td_hash); 991 rw_wunlock(&tidhash_lock); 992 } 993