xref: /freebsd/sys/kern/kern_thread.c (revision a3b4dcfd682d2f0dcad7e9e15dc00df2d7a283f2)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
5  *  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice(s), this list of conditions and the following disclaimer as
12  *    the first lines of this file unmodified other than the possible
13  *    addition of one or more copyright notices.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice(s), this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
22  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
28  * DAMAGE.
29  */
30 
31 #include "opt_witness.h"
32 #include "opt_hwpmc_hooks.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/bitstring.h>
44 #include <sys/epoch.h>
45 #include <sys/rangelock.h>
46 #include <sys/resourcevar.h>
47 #include <sys/sdt.h>
48 #include <sys/smp.h>
49 #include <sys/sched.h>
50 #include <sys/sleepqueue.h>
51 #include <sys/selinfo.h>
52 #include <sys/syscallsubr.h>
53 #include <sys/dtrace_bsd.h>
54 #include <sys/sysent.h>
55 #include <sys/turnstile.h>
56 #include <sys/taskqueue.h>
57 #include <sys/ktr.h>
58 #include <sys/rwlock.h>
59 #include <sys/umtx.h>
60 #include <sys/vmmeter.h>
61 #include <sys/cpuset.h>
62 #ifdef	HWPMC_HOOKS
63 #include <sys/pmckern.h>
64 #endif
65 #include <sys/priv.h>
66 
67 #include <security/audit/audit.h>
68 
69 #include <vm/pmap.h>
70 #include <vm/vm.h>
71 #include <vm/vm_extern.h>
72 #include <vm/uma.h>
73 #include <vm/vm_phys.h>
74 #include <sys/eventhandler.h>
75 
76 /*
77  * Asserts below verify the stability of struct thread and struct proc
78  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
79  * to drift, change to the structures must be accompanied by the
80  * assert update.
81  *
82  * On the stable branches after KBI freeze, conditions must not be
83  * violated.  Typically new fields are moved to the end of the
84  * structures.
85  */
86 #ifdef __amd64__
87 _Static_assert(offsetof(struct thread, td_flags) == 0xfc,
88     "struct thread KBI td_flags");
89 _Static_assert(offsetof(struct thread, td_pflags) == 0x104,
90     "struct thread KBI td_pflags");
91 _Static_assert(offsetof(struct thread, td_frame) == 0x4a0,
92     "struct thread KBI td_frame");
93 _Static_assert(offsetof(struct thread, td_emuldata) == 0x6b0,
94     "struct thread KBI td_emuldata");
95 _Static_assert(offsetof(struct proc, p_flag) == 0xb8,
96     "struct proc KBI p_flag");
97 _Static_assert(offsetof(struct proc, p_pid) == 0xc4,
98     "struct proc KBI p_pid");
99 _Static_assert(offsetof(struct proc, p_filemon) == 0x3c0,
100     "struct proc KBI p_filemon");
101 _Static_assert(offsetof(struct proc, p_comm) == 0x3d8,
102     "struct proc KBI p_comm");
103 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4b8,
104     "struct proc KBI p_emuldata");
105 #endif
106 #ifdef __i386__
107 _Static_assert(offsetof(struct thread, td_flags) == 0x98,
108     "struct thread KBI td_flags");
109 _Static_assert(offsetof(struct thread, td_pflags) == 0xa0,
110     "struct thread KBI td_pflags");
111 _Static_assert(offsetof(struct thread, td_frame) == 0x300,
112     "struct thread KBI td_frame");
113 _Static_assert(offsetof(struct thread, td_emuldata) == 0x344,
114     "struct thread KBI td_emuldata");
115 _Static_assert(offsetof(struct proc, p_flag) == 0x6c,
116     "struct proc KBI p_flag");
117 _Static_assert(offsetof(struct proc, p_pid) == 0x78,
118     "struct proc KBI p_pid");
119 _Static_assert(offsetof(struct proc, p_filemon) == 0x26c,
120     "struct proc KBI p_filemon");
121 _Static_assert(offsetof(struct proc, p_comm) == 0x280,
122     "struct proc KBI p_comm");
123 _Static_assert(offsetof(struct proc, p_emuldata) == 0x30c,
124     "struct proc KBI p_emuldata");
125 #endif
126 
127 SDT_PROVIDER_DECLARE(proc);
128 SDT_PROBE_DEFINE(proc, , , lwp__exit);
129 
130 /*
131  * thread related storage.
132  */
133 static uma_zone_t thread_zone;
134 
135 struct thread_domain_data {
136 	struct thread	*tdd_zombies;
137 	int		tdd_reapticks;
138 } __aligned(CACHE_LINE_SIZE);
139 
140 static struct thread_domain_data thread_domain_data[MAXMEMDOM];
141 
142 static struct task	thread_reap_task;
143 static struct callout  	thread_reap_callout;
144 
145 static void thread_zombie(struct thread *);
146 static void thread_reap_all(void);
147 static void thread_reap_task_cb(void *, int);
148 static void thread_reap_callout_cb(void *);
149 static int thread_unsuspend_one(struct thread *td, struct proc *p,
150     bool boundary);
151 static void thread_free_batched(struct thread *td);
152 
153 static __exclusive_cache_line struct mtx tid_lock;
154 static bitstr_t *tid_bitmap;
155 
156 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
157 
158 static int maxthread;
159 SYSCTL_INT(_kern, OID_AUTO, maxthread, CTLFLAG_RDTUN,
160     &maxthread, 0, "Maximum number of threads");
161 
162 static __exclusive_cache_line int nthreads;
163 
164 static LIST_HEAD(tidhashhead, thread) *tidhashtbl;
165 static u_long	tidhash;
166 static u_long	tidhashlock;
167 static struct	rwlock *tidhashtbl_lock;
168 #define	TIDHASH(tid)		(&tidhashtbl[(tid) & tidhash])
169 #define	TIDHASHLOCK(tid)	(&tidhashtbl_lock[(tid) & tidhashlock])
170 
171 EVENTHANDLER_LIST_DEFINE(thread_ctor);
172 EVENTHANDLER_LIST_DEFINE(thread_dtor);
173 EVENTHANDLER_LIST_DEFINE(thread_init);
174 EVENTHANDLER_LIST_DEFINE(thread_fini);
175 
176 static bool
177 thread_count_inc_try(void)
178 {
179 	int nthreads_new;
180 
181 	nthreads_new = atomic_fetchadd_int(&nthreads, 1) + 1;
182 	if (nthreads_new >= maxthread - 100) {
183 		if (priv_check_cred(curthread->td_ucred, PRIV_MAXPROC) != 0 ||
184 		    nthreads_new >= maxthread) {
185 			atomic_subtract_int(&nthreads, 1);
186 			return (false);
187 		}
188 	}
189 	return (true);
190 }
191 
192 static bool
193 thread_count_inc(void)
194 {
195 	static struct timeval lastfail;
196 	static int curfail;
197 
198 	thread_reap();
199 	if (thread_count_inc_try()) {
200 		return (true);
201 	}
202 
203 	thread_reap_all();
204 	if (thread_count_inc_try()) {
205 		return (true);
206 	}
207 
208 	if (ppsratecheck(&lastfail, &curfail, 1)) {
209 		printf("maxthread limit exceeded by uid %u "
210 		    "(pid %d); consider increasing kern.maxthread\n",
211 		    curthread->td_ucred->cr_ruid, curproc->p_pid);
212 	}
213 	return (false);
214 }
215 
216 static void
217 thread_count_sub(int n)
218 {
219 
220 	atomic_subtract_int(&nthreads, n);
221 }
222 
223 static void
224 thread_count_dec(void)
225 {
226 
227 	thread_count_sub(1);
228 }
229 
230 static lwpid_t
231 tid_alloc(void)
232 {
233 	static lwpid_t trytid;
234 	lwpid_t tid;
235 
236 	mtx_lock(&tid_lock);
237 	/*
238 	 * It is an invariant that the bitmap is big enough to hold maxthread
239 	 * IDs. If we got to this point there has to be at least one free.
240 	 */
241 	if (trytid >= maxthread)
242 		trytid = 0;
243 	bit_ffc_at(tid_bitmap, trytid, maxthread, &tid);
244 	if (tid == -1) {
245 		KASSERT(trytid != 0, ("unexpectedly ran out of IDs"));
246 		trytid = 0;
247 		bit_ffc_at(tid_bitmap, trytid, maxthread, &tid);
248 		KASSERT(tid != -1, ("unexpectedly ran out of IDs"));
249 	}
250 	bit_set(tid_bitmap, tid);
251 	trytid = tid + 1;
252 	mtx_unlock(&tid_lock);
253 	return (tid + NO_PID);
254 }
255 
256 static void
257 tid_free_locked(lwpid_t rtid)
258 {
259 	lwpid_t tid;
260 
261 	mtx_assert(&tid_lock, MA_OWNED);
262 	KASSERT(rtid >= NO_PID,
263 	    ("%s: invalid tid %d\n", __func__, rtid));
264 	tid = rtid - NO_PID;
265 	KASSERT(bit_test(tid_bitmap, tid) != 0,
266 	    ("thread ID %d not allocated\n", rtid));
267 	bit_clear(tid_bitmap, tid);
268 }
269 
270 static void
271 tid_free(lwpid_t rtid)
272 {
273 
274 	mtx_lock(&tid_lock);
275 	tid_free_locked(rtid);
276 	mtx_unlock(&tid_lock);
277 }
278 
279 static void
280 tid_free_batch(lwpid_t *batch, int n)
281 {
282 	int i;
283 
284 	mtx_lock(&tid_lock);
285 	for (i = 0; i < n; i++) {
286 		tid_free_locked(batch[i]);
287 	}
288 	mtx_unlock(&tid_lock);
289 }
290 
291 /*
292  * Batching for thread reapping.
293  */
294 struct tidbatch {
295 	lwpid_t tab[16];
296 	int n;
297 };
298 
299 static void
300 tidbatch_prep(struct tidbatch *tb)
301 {
302 
303 	tb->n = 0;
304 }
305 
306 static void
307 tidbatch_add(struct tidbatch *tb, struct thread *td)
308 {
309 
310 	KASSERT(tb->n < nitems(tb->tab),
311 	    ("%s: count too high %d", __func__, tb->n));
312 	tb->tab[tb->n] = td->td_tid;
313 	tb->n++;
314 }
315 
316 static void
317 tidbatch_process(struct tidbatch *tb)
318 {
319 
320 	KASSERT(tb->n <= nitems(tb->tab),
321 	    ("%s: count too high %d", __func__, tb->n));
322 	if (tb->n == nitems(tb->tab)) {
323 		tid_free_batch(tb->tab, tb->n);
324 		tb->n = 0;
325 	}
326 }
327 
328 static void
329 tidbatch_final(struct tidbatch *tb)
330 {
331 
332 	KASSERT(tb->n <= nitems(tb->tab),
333 	    ("%s: count too high %d", __func__, tb->n));
334 	if (tb->n != 0) {
335 		tid_free_batch(tb->tab, tb->n);
336 	}
337 }
338 
339 /*
340  * Prepare a thread for use.
341  */
342 static int
343 thread_ctor(void *mem, int size, void *arg, int flags)
344 {
345 	struct thread	*td;
346 
347 	td = (struct thread *)mem;
348 	td->td_state = TDS_INACTIVE;
349 	td->td_lastcpu = td->td_oncpu = NOCPU;
350 	td->td_allocdomain = vm_phys_domain(vtophys(td));
351 
352 	/*
353 	 * Note that td_critnest begins life as 1 because the thread is not
354 	 * running and is thereby implicitly waiting to be on the receiving
355 	 * end of a context switch.
356 	 */
357 	td->td_critnest = 1;
358 	td->td_lend_user_pri = PRI_MAX;
359 #ifdef AUDIT
360 	audit_thread_alloc(td);
361 #endif
362 #ifdef KDTRACE_HOOKS
363 	kdtrace_thread_ctor(td);
364 #endif
365 	umtx_thread_alloc(td);
366 	MPASS(td->td_sel == NULL);
367 	return (0);
368 }
369 
370 /*
371  * Reclaim a thread after use.
372  */
373 static void
374 thread_dtor(void *mem, int size, void *arg)
375 {
376 	struct thread *td;
377 
378 	td = (struct thread *)mem;
379 
380 #ifdef INVARIANTS
381 	/* Verify that this thread is in a safe state to free. */
382 	switch (td->td_state) {
383 	case TDS_INHIBITED:
384 	case TDS_RUNNING:
385 	case TDS_CAN_RUN:
386 	case TDS_RUNQ:
387 		/*
388 		 * We must never unlink a thread that is in one of
389 		 * these states, because it is currently active.
390 		 */
391 		panic("bad state for thread unlinking");
392 		/* NOTREACHED */
393 	case TDS_INACTIVE:
394 		break;
395 	default:
396 		panic("bad thread state");
397 		/* NOTREACHED */
398 	}
399 #endif
400 #ifdef AUDIT
401 	audit_thread_free(td);
402 #endif
403 #ifdef KDTRACE_HOOKS
404 	kdtrace_thread_dtor(td);
405 #endif
406 	/* Free all OSD associated to this thread. */
407 	osd_thread_exit(td);
408 	td_softdep_cleanup(td);
409 	MPASS(td->td_su == NULL);
410 	seltdfini(td);
411 }
412 
413 /*
414  * Initialize type-stable parts of a thread (when newly created).
415  */
416 static int
417 thread_init(void *mem, int size, int flags)
418 {
419 	struct thread *td;
420 
421 	td = (struct thread *)mem;
422 
423 	td->td_sleepqueue = sleepq_alloc();
424 	td->td_turnstile = turnstile_alloc();
425 	td->td_rlqe = NULL;
426 	EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
427 	umtx_thread_init(td);
428 	td->td_kstack = 0;
429 	td->td_sel = NULL;
430 	return (0);
431 }
432 
433 /*
434  * Tear down type-stable parts of a thread (just before being discarded).
435  */
436 static void
437 thread_fini(void *mem, int size)
438 {
439 	struct thread *td;
440 
441 	td = (struct thread *)mem;
442 	EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
443 	rlqentry_free(td->td_rlqe);
444 	turnstile_free(td->td_turnstile);
445 	sleepq_free(td->td_sleepqueue);
446 	umtx_thread_fini(td);
447 	MPASS(td->td_sel == NULL);
448 }
449 
450 /*
451  * For a newly created process,
452  * link up all the structures and its initial threads etc.
453  * called from:
454  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
455  * proc_dtor() (should go away)
456  * proc_init()
457  */
458 void
459 proc_linkup0(struct proc *p, struct thread *td)
460 {
461 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
462 	proc_linkup(p, td);
463 }
464 
465 void
466 proc_linkup(struct proc *p, struct thread *td)
467 {
468 
469 	sigqueue_init(&p->p_sigqueue, p);
470 	p->p_ksi = ksiginfo_alloc(1);
471 	if (p->p_ksi != NULL) {
472 		/* XXX p_ksi may be null if ksiginfo zone is not ready */
473 		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
474 	}
475 	LIST_INIT(&p->p_mqnotifier);
476 	p->p_numthreads = 0;
477 	thread_link(td, p);
478 }
479 
480 extern int max_threads_per_proc;
481 
482 /*
483  * Initialize global thread allocation resources.
484  */
485 void
486 threadinit(void)
487 {
488 	u_long i;
489 	lwpid_t tid0;
490 	uint32_t flags;
491 
492 	/*
493 	 * Place an upper limit on threads which can be allocated.
494 	 *
495 	 * Note that other factors may make the de facto limit much lower.
496 	 *
497 	 * Platform limits are somewhat arbitrary but deemed "more than good
498 	 * enough" for the foreseable future.
499 	 */
500 	if (maxthread == 0) {
501 #ifdef _LP64
502 		maxthread = MIN(maxproc * max_threads_per_proc, 1000000);
503 #else
504 		maxthread = MIN(maxproc * max_threads_per_proc, 100000);
505 #endif
506 	}
507 
508 	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
509 	tid_bitmap = bit_alloc(maxthread, M_TIDHASH, M_WAITOK);
510 	/*
511 	 * Handle thread0.
512 	 */
513 	thread_count_inc();
514 	tid0 = tid_alloc();
515 	if (tid0 != THREAD0_TID)
516 		panic("tid0 %d != %d\n", tid0, THREAD0_TID);
517 
518 	flags = UMA_ZONE_NOFREE;
519 #ifdef __aarch64__
520 	/*
521 	 * Force thread structures to be allocated from the direct map.
522 	 * Otherwise, superpage promotions and demotions may temporarily
523 	 * invalidate thread structure mappings.  For most dynamically allocated
524 	 * structures this is not a problem, but translation faults cannot be
525 	 * handled without accessing curthread.
526 	 */
527 	flags |= UMA_ZONE_CONTIG;
528 #endif
529 	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
530 	    thread_ctor, thread_dtor, thread_init, thread_fini,
531 	    32 - 1, flags);
532 	tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
533 	tidhashlock = (tidhash + 1) / 64;
534 	if (tidhashlock > 0)
535 		tidhashlock--;
536 	tidhashtbl_lock = malloc(sizeof(*tidhashtbl_lock) * (tidhashlock + 1),
537 	    M_TIDHASH, M_WAITOK | M_ZERO);
538 	for (i = 0; i < tidhashlock + 1; i++)
539 		rw_init(&tidhashtbl_lock[i], "tidhash");
540 
541 	TASK_INIT(&thread_reap_task, 0, thread_reap_task_cb, NULL);
542 	callout_init(&thread_reap_callout, 1);
543 	callout_reset(&thread_reap_callout, 5 * hz, thread_reap_callout_cb, NULL);
544 }
545 
546 /*
547  * Place an unused thread on the zombie list.
548  */
549 void
550 thread_zombie(struct thread *td)
551 {
552 	struct thread_domain_data *tdd;
553 	struct thread *ztd;
554 
555 	tdd = &thread_domain_data[td->td_allocdomain];
556 	ztd = atomic_load_ptr(&tdd->tdd_zombies);
557 	for (;;) {
558 		td->td_zombie = ztd;
559 		if (atomic_fcmpset_rel_ptr((uintptr_t *)&tdd->tdd_zombies,
560 		    (uintptr_t *)&ztd, (uintptr_t)td))
561 			break;
562 		continue;
563 	}
564 }
565 
566 /*
567  * Release a thread that has exited after cpu_throw().
568  */
569 void
570 thread_stash(struct thread *td)
571 {
572 	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
573 	thread_zombie(td);
574 }
575 
576 /*
577  * Reap zombies from passed domain.
578  */
579 static void
580 thread_reap_domain(struct thread_domain_data *tdd)
581 {
582 	struct thread *itd, *ntd;
583 	struct tidbatch tidbatch;
584 	struct credbatch credbatch;
585 	int tdcount;
586 	struct plimit *lim;
587 	int limcount;
588 
589 	/*
590 	 * Reading upfront is pessimal if followed by concurrent atomic_swap,
591 	 * but most of the time the list is empty.
592 	 */
593 	if (tdd->tdd_zombies == NULL)
594 		return;
595 
596 	itd = (struct thread *)atomic_swap_ptr((uintptr_t *)&tdd->tdd_zombies,
597 	    (uintptr_t)NULL);
598 	if (itd == NULL)
599 		return;
600 
601 	/*
602 	 * Multiple CPUs can get here, the race is fine as ticks is only
603 	 * advisory.
604 	 */
605 	tdd->tdd_reapticks = ticks;
606 
607 	tidbatch_prep(&tidbatch);
608 	credbatch_prep(&credbatch);
609 	tdcount = 0;
610 	lim = NULL;
611 	limcount = 0;
612 
613 	while (itd != NULL) {
614 		ntd = itd->td_zombie;
615 		EVENTHANDLER_DIRECT_INVOKE(thread_dtor, itd);
616 		tidbatch_add(&tidbatch, itd);
617 		credbatch_add(&credbatch, itd);
618 		MPASS(itd->td_limit != NULL);
619 		if (lim != itd->td_limit) {
620 			if (limcount != 0) {
621 				lim_freen(lim, limcount);
622 				limcount = 0;
623 			}
624 		}
625 		lim = itd->td_limit;
626 		limcount++;
627 		thread_free_batched(itd);
628 		tidbatch_process(&tidbatch);
629 		credbatch_process(&credbatch);
630 		tdcount++;
631 		if (tdcount == 32) {
632 			thread_count_sub(tdcount);
633 			tdcount = 0;
634 		}
635 		itd = ntd;
636 	}
637 
638 	tidbatch_final(&tidbatch);
639 	credbatch_final(&credbatch);
640 	if (tdcount != 0) {
641 		thread_count_sub(tdcount);
642 	}
643 	MPASS(limcount != 0);
644 	lim_freen(lim, limcount);
645 }
646 
647 /*
648  * Reap zombies from all domains.
649  */
650 static void
651 thread_reap_all(void)
652 {
653 	struct thread_domain_data *tdd;
654 	int i, domain;
655 
656 	domain = PCPU_GET(domain);
657 	for (i = 0; i < vm_ndomains; i++) {
658 		tdd = &thread_domain_data[(i + domain) % vm_ndomains];
659 		thread_reap_domain(tdd);
660 	}
661 }
662 
663 /*
664  * Reap zombies from local domain.
665  */
666 void
667 thread_reap(void)
668 {
669 	struct thread_domain_data *tdd;
670 	int domain;
671 
672 	domain = PCPU_GET(domain);
673 	tdd = &thread_domain_data[domain];
674 
675 	thread_reap_domain(tdd);
676 }
677 
678 static void
679 thread_reap_task_cb(void *arg __unused, int pending __unused)
680 {
681 
682 	thread_reap_all();
683 }
684 
685 static void
686 thread_reap_callout_cb(void *arg __unused)
687 {
688 	struct thread_domain_data *tdd;
689 	int i, cticks, lticks;
690 	bool wantreap;
691 
692 	wantreap = false;
693 	cticks = atomic_load_int(&ticks);
694 	for (i = 0; i < vm_ndomains; i++) {
695 		tdd = &thread_domain_data[i];
696 		lticks = tdd->tdd_reapticks;
697 		if (tdd->tdd_zombies != NULL &&
698 		    (u_int)(cticks - lticks) > 5 * hz) {
699 			wantreap = true;
700 			break;
701 		}
702 	}
703 
704 	if (wantreap)
705 		taskqueue_enqueue(taskqueue_thread, &thread_reap_task);
706 	callout_reset(&thread_reap_callout, 5 * hz, thread_reap_callout_cb, NULL);
707 }
708 
709 /*
710  * Allocate a thread.
711  */
712 struct thread *
713 thread_alloc(int pages)
714 {
715 	struct thread *td;
716 	lwpid_t tid;
717 
718 	if (!thread_count_inc()) {
719 		return (NULL);
720 	}
721 
722 	tid = tid_alloc();
723 	td = uma_zalloc(thread_zone, M_WAITOK);
724 	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
725 	if (!vm_thread_new(td, pages)) {
726 		uma_zfree(thread_zone, td);
727 		tid_free(tid);
728 		thread_count_dec();
729 		return (NULL);
730 	}
731 	td->td_tid = tid;
732 	cpu_thread_alloc(td);
733 	EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
734 	return (td);
735 }
736 
737 int
738 thread_alloc_stack(struct thread *td, int pages)
739 {
740 
741 	KASSERT(td->td_kstack == 0,
742 	    ("thread_alloc_stack called on a thread with kstack"));
743 	if (!vm_thread_new(td, pages))
744 		return (0);
745 	cpu_thread_alloc(td);
746 	return (1);
747 }
748 
749 /*
750  * Deallocate a thread.
751  */
752 static void
753 thread_free_batched(struct thread *td)
754 {
755 
756 	lock_profile_thread_exit(td);
757 	if (td->td_cpuset)
758 		cpuset_rel(td->td_cpuset);
759 	td->td_cpuset = NULL;
760 	cpu_thread_free(td);
761 	if (td->td_kstack != 0)
762 		vm_thread_dispose(td);
763 	callout_drain(&td->td_slpcallout);
764 	/*
765 	 * Freeing handled by the caller.
766 	 */
767 	td->td_tid = -1;
768 	uma_zfree(thread_zone, td);
769 }
770 
771 void
772 thread_free(struct thread *td)
773 {
774 	lwpid_t tid;
775 
776 	EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
777 	tid = td->td_tid;
778 	thread_free_batched(td);
779 	tid_free(tid);
780 	thread_count_dec();
781 }
782 
783 void
784 thread_cow_get_proc(struct thread *newtd, struct proc *p)
785 {
786 
787 	PROC_LOCK_ASSERT(p, MA_OWNED);
788 	newtd->td_realucred = crcowget(p->p_ucred);
789 	newtd->td_ucred = newtd->td_realucred;
790 	newtd->td_limit = lim_hold(p->p_limit);
791 	newtd->td_cowgen = p->p_cowgen;
792 }
793 
794 void
795 thread_cow_get(struct thread *newtd, struct thread *td)
796 {
797 
798 	MPASS(td->td_realucred == td->td_ucred);
799 	newtd->td_realucred = crcowget(td->td_realucred);
800 	newtd->td_ucred = newtd->td_realucred;
801 	newtd->td_limit = lim_hold(td->td_limit);
802 	newtd->td_cowgen = td->td_cowgen;
803 }
804 
805 void
806 thread_cow_free(struct thread *td)
807 {
808 
809 	if (td->td_realucred != NULL)
810 		crcowfree(td);
811 	if (td->td_limit != NULL)
812 		lim_free(td->td_limit);
813 }
814 
815 void
816 thread_cow_update(struct thread *td)
817 {
818 	struct proc *p;
819 	struct ucred *oldcred;
820 	struct plimit *oldlimit;
821 
822 	p = td->td_proc;
823 	oldlimit = NULL;
824 	PROC_LOCK(p);
825 	oldcred = crcowsync();
826 	if (td->td_limit != p->p_limit) {
827 		oldlimit = td->td_limit;
828 		td->td_limit = lim_hold(p->p_limit);
829 	}
830 	td->td_cowgen = p->p_cowgen;
831 	PROC_UNLOCK(p);
832 	if (oldcred != NULL)
833 		crfree(oldcred);
834 	if (oldlimit != NULL)
835 		lim_free(oldlimit);
836 }
837 
838 /*
839  * Discard the current thread and exit from its context.
840  * Always called with scheduler locked.
841  *
842  * Because we can't free a thread while we're operating under its context,
843  * push the current thread into our CPU's deadthread holder. This means
844  * we needn't worry about someone else grabbing our context before we
845  * do a cpu_throw().
846  */
847 void
848 thread_exit(void)
849 {
850 	uint64_t runtime, new_switchtime;
851 	struct thread *td;
852 	struct thread *td2;
853 	struct proc *p;
854 	int wakeup_swapper;
855 
856 	td = curthread;
857 	p = td->td_proc;
858 
859 	PROC_SLOCK_ASSERT(p, MA_OWNED);
860 	mtx_assert(&Giant, MA_NOTOWNED);
861 
862 	PROC_LOCK_ASSERT(p, MA_OWNED);
863 	KASSERT(p != NULL, ("thread exiting without a process"));
864 	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
865 	    (long)p->p_pid, td->td_name);
866 	SDT_PROBE0(proc, , , lwp__exit);
867 	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
868 	MPASS(td->td_realucred == td->td_ucred);
869 
870 	/*
871 	 * drop FPU & debug register state storage, or any other
872 	 * architecture specific resources that
873 	 * would not be on a new untouched process.
874 	 */
875 	cpu_thread_exit(td);
876 
877 	/*
878 	 * The last thread is left attached to the process
879 	 * So that the whole bundle gets recycled. Skip
880 	 * all this stuff if we never had threads.
881 	 * EXIT clears all sign of other threads when
882 	 * it goes to single threading, so the last thread always
883 	 * takes the short path.
884 	 */
885 	if (p->p_flag & P_HADTHREADS) {
886 		if (p->p_numthreads > 1) {
887 			atomic_add_int(&td->td_proc->p_exitthreads, 1);
888 			thread_unlink(td);
889 			td2 = FIRST_THREAD_IN_PROC(p);
890 			sched_exit_thread(td2, td);
891 
892 			/*
893 			 * The test below is NOT true if we are the
894 			 * sole exiting thread. P_STOPPED_SINGLE is unset
895 			 * in exit1() after it is the only survivor.
896 			 */
897 			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
898 				if (p->p_numthreads == p->p_suspcount) {
899 					thread_lock(p->p_singlethread);
900 					wakeup_swapper = thread_unsuspend_one(
901 						p->p_singlethread, p, false);
902 					if (wakeup_swapper)
903 						kick_proc0();
904 				}
905 			}
906 
907 			PCPU_SET(deadthread, td);
908 		} else {
909 			/*
910 			 * The last thread is exiting.. but not through exit()
911 			 */
912 			panic ("thread_exit: Last thread exiting on its own");
913 		}
914 	}
915 #ifdef	HWPMC_HOOKS
916 	/*
917 	 * If this thread is part of a process that is being tracked by hwpmc(4),
918 	 * inform the module of the thread's impending exit.
919 	 */
920 	if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
921 		PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
922 		PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
923 	} else if (PMC_SYSTEM_SAMPLING_ACTIVE())
924 		PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL);
925 #endif
926 	PROC_UNLOCK(p);
927 	PROC_STATLOCK(p);
928 	thread_lock(td);
929 	PROC_SUNLOCK(p);
930 
931 	/* Do the same timestamp bookkeeping that mi_switch() would do. */
932 	new_switchtime = cpu_ticks();
933 	runtime = new_switchtime - PCPU_GET(switchtime);
934 	td->td_runtime += runtime;
935 	td->td_incruntime += runtime;
936 	PCPU_SET(switchtime, new_switchtime);
937 	PCPU_SET(switchticks, ticks);
938 	VM_CNT_INC(v_swtch);
939 
940 	/* Save our resource usage in our process. */
941 	td->td_ru.ru_nvcsw++;
942 	ruxagg_locked(p, td);
943 	rucollect(&p->p_ru, &td->td_ru);
944 	PROC_STATUNLOCK(p);
945 
946 	td->td_state = TDS_INACTIVE;
947 #ifdef WITNESS
948 	witness_thread_exit(td);
949 #endif
950 	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
951 	sched_throw(td);
952 	panic("I'm a teapot!");
953 	/* NOTREACHED */
954 }
955 
956 /*
957  * Do any thread specific cleanups that may be needed in wait()
958  * called with Giant, proc and schedlock not held.
959  */
960 void
961 thread_wait(struct proc *p)
962 {
963 	struct thread *td;
964 
965 	mtx_assert(&Giant, MA_NOTOWNED);
966 	KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
967 	KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
968 	td = FIRST_THREAD_IN_PROC(p);
969 	/* Lock the last thread so we spin until it exits cpu_throw(). */
970 	thread_lock(td);
971 	thread_unlock(td);
972 	lock_profile_thread_exit(td);
973 	cpuset_rel(td->td_cpuset);
974 	td->td_cpuset = NULL;
975 	cpu_thread_clean(td);
976 	thread_cow_free(td);
977 	callout_drain(&td->td_slpcallout);
978 	thread_reap();	/* check for zombie threads etc. */
979 }
980 
981 /*
982  * Link a thread to a process.
983  * set up anything that needs to be initialized for it to
984  * be used by the process.
985  */
986 void
987 thread_link(struct thread *td, struct proc *p)
988 {
989 
990 	/*
991 	 * XXX This can't be enabled because it's called for proc0 before
992 	 * its lock has been created.
993 	 * PROC_LOCK_ASSERT(p, MA_OWNED);
994 	 */
995 	td->td_state    = TDS_INACTIVE;
996 	td->td_proc     = p;
997 	td->td_flags    = TDF_INMEM;
998 
999 	LIST_INIT(&td->td_contested);
1000 	LIST_INIT(&td->td_lprof[0]);
1001 	LIST_INIT(&td->td_lprof[1]);
1002 #ifdef EPOCH_TRACE
1003 	SLIST_INIT(&td->td_epochs);
1004 #endif
1005 	sigqueue_init(&td->td_sigqueue, p);
1006 	callout_init(&td->td_slpcallout, 1);
1007 	TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
1008 	p->p_numthreads++;
1009 }
1010 
1011 /*
1012  * Called from:
1013  *  thread_exit()
1014  */
1015 void
1016 thread_unlink(struct thread *td)
1017 {
1018 	struct proc *p = td->td_proc;
1019 
1020 	PROC_LOCK_ASSERT(p, MA_OWNED);
1021 #ifdef EPOCH_TRACE
1022 	MPASS(SLIST_EMPTY(&td->td_epochs));
1023 #endif
1024 
1025 	TAILQ_REMOVE(&p->p_threads, td, td_plist);
1026 	p->p_numthreads--;
1027 	/* could clear a few other things here */
1028 	/* Must  NOT clear links to proc! */
1029 }
1030 
1031 static int
1032 calc_remaining(struct proc *p, int mode)
1033 {
1034 	int remaining;
1035 
1036 	PROC_LOCK_ASSERT(p, MA_OWNED);
1037 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1038 	if (mode == SINGLE_EXIT)
1039 		remaining = p->p_numthreads;
1040 	else if (mode == SINGLE_BOUNDARY)
1041 		remaining = p->p_numthreads - p->p_boundary_count;
1042 	else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
1043 		remaining = p->p_numthreads - p->p_suspcount;
1044 	else
1045 		panic("calc_remaining: wrong mode %d", mode);
1046 	return (remaining);
1047 }
1048 
1049 static int
1050 remain_for_mode(int mode)
1051 {
1052 
1053 	return (mode == SINGLE_ALLPROC ? 0 : 1);
1054 }
1055 
1056 static int
1057 weed_inhib(int mode, struct thread *td2, struct proc *p)
1058 {
1059 	int wakeup_swapper;
1060 
1061 	PROC_LOCK_ASSERT(p, MA_OWNED);
1062 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1063 	THREAD_LOCK_ASSERT(td2, MA_OWNED);
1064 
1065 	wakeup_swapper = 0;
1066 
1067 	/*
1068 	 * Since the thread lock is dropped by the scheduler we have
1069 	 * to retry to check for races.
1070 	 */
1071 restart:
1072 	switch (mode) {
1073 	case SINGLE_EXIT:
1074 		if (TD_IS_SUSPENDED(td2)) {
1075 			wakeup_swapper |= thread_unsuspend_one(td2, p, true);
1076 			thread_lock(td2);
1077 			goto restart;
1078 		}
1079 		if (TD_CAN_ABORT(td2)) {
1080 			wakeup_swapper |= sleepq_abort(td2, EINTR);
1081 			return (wakeup_swapper);
1082 		}
1083 		break;
1084 	case SINGLE_BOUNDARY:
1085 	case SINGLE_NO_EXIT:
1086 		if (TD_IS_SUSPENDED(td2) &&
1087 		    (td2->td_flags & TDF_BOUNDARY) == 0) {
1088 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
1089 			thread_lock(td2);
1090 			goto restart;
1091 		}
1092 		if (TD_CAN_ABORT(td2)) {
1093 			wakeup_swapper |= sleepq_abort(td2, ERESTART);
1094 			return (wakeup_swapper);
1095 		}
1096 		break;
1097 	case SINGLE_ALLPROC:
1098 		/*
1099 		 * ALLPROC suspend tries to avoid spurious EINTR for
1100 		 * threads sleeping interruptable, by suspending the
1101 		 * thread directly, similarly to sig_suspend_threads().
1102 		 * Since such sleep is not performed at the user
1103 		 * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
1104 		 * is used to avoid immediate un-suspend.
1105 		 */
1106 		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
1107 		    TDF_ALLPROCSUSP)) == 0) {
1108 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
1109 			thread_lock(td2);
1110 			goto restart;
1111 		}
1112 		if (TD_CAN_ABORT(td2)) {
1113 			if ((td2->td_flags & TDF_SBDRY) == 0) {
1114 				thread_suspend_one(td2);
1115 				td2->td_flags |= TDF_ALLPROCSUSP;
1116 			} else {
1117 				wakeup_swapper |= sleepq_abort(td2, ERESTART);
1118 				return (wakeup_swapper);
1119 			}
1120 		}
1121 		break;
1122 	default:
1123 		break;
1124 	}
1125 	thread_unlock(td2);
1126 	return (wakeup_swapper);
1127 }
1128 
1129 /*
1130  * Enforce single-threading.
1131  *
1132  * Returns 1 if the caller must abort (another thread is waiting to
1133  * exit the process or similar). Process is locked!
1134  * Returns 0 when you are successfully the only thread running.
1135  * A process has successfully single threaded in the suspend mode when
1136  * There are no threads in user mode. Threads in the kernel must be
1137  * allowed to continue until they get to the user boundary. They may even
1138  * copy out their return values and data before suspending. They may however be
1139  * accelerated in reaching the user boundary as we will wake up
1140  * any sleeping threads that are interruptable. (PCATCH).
1141  */
1142 int
1143 thread_single(struct proc *p, int mode)
1144 {
1145 	struct thread *td;
1146 	struct thread *td2;
1147 	int remaining, wakeup_swapper;
1148 
1149 	td = curthread;
1150 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1151 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1152 	    ("invalid mode %d", mode));
1153 	/*
1154 	 * If allowing non-ALLPROC singlethreading for non-curproc
1155 	 * callers, calc_remaining() and remain_for_mode() should be
1156 	 * adjusted to also account for td->td_proc != p.  For now
1157 	 * this is not implemented because it is not used.
1158 	 */
1159 	KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
1160 	    (mode != SINGLE_ALLPROC && td->td_proc == p),
1161 	    ("mode %d proc %p curproc %p", mode, p, td->td_proc));
1162 	mtx_assert(&Giant, MA_NOTOWNED);
1163 	PROC_LOCK_ASSERT(p, MA_OWNED);
1164 
1165 	if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
1166 		return (0);
1167 
1168 	/* Is someone already single threading? */
1169 	if (p->p_singlethread != NULL && p->p_singlethread != td)
1170 		return (1);
1171 
1172 	if (mode == SINGLE_EXIT) {
1173 		p->p_flag |= P_SINGLE_EXIT;
1174 		p->p_flag &= ~P_SINGLE_BOUNDARY;
1175 	} else {
1176 		p->p_flag &= ~P_SINGLE_EXIT;
1177 		if (mode == SINGLE_BOUNDARY)
1178 			p->p_flag |= P_SINGLE_BOUNDARY;
1179 		else
1180 			p->p_flag &= ~P_SINGLE_BOUNDARY;
1181 	}
1182 	if (mode == SINGLE_ALLPROC)
1183 		p->p_flag |= P_TOTAL_STOP;
1184 	p->p_flag |= P_STOPPED_SINGLE;
1185 	PROC_SLOCK(p);
1186 	p->p_singlethread = td;
1187 	remaining = calc_remaining(p, mode);
1188 	while (remaining != remain_for_mode(mode)) {
1189 		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
1190 			goto stopme;
1191 		wakeup_swapper = 0;
1192 		FOREACH_THREAD_IN_PROC(p, td2) {
1193 			if (td2 == td)
1194 				continue;
1195 			thread_lock(td2);
1196 			td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
1197 			if (TD_IS_INHIBITED(td2)) {
1198 				wakeup_swapper |= weed_inhib(mode, td2, p);
1199 #ifdef SMP
1200 			} else if (TD_IS_RUNNING(td2) && td != td2) {
1201 				forward_signal(td2);
1202 				thread_unlock(td2);
1203 #endif
1204 			} else
1205 				thread_unlock(td2);
1206 		}
1207 		if (wakeup_swapper)
1208 			kick_proc0();
1209 		remaining = calc_remaining(p, mode);
1210 
1211 		/*
1212 		 * Maybe we suspended some threads.. was it enough?
1213 		 */
1214 		if (remaining == remain_for_mode(mode))
1215 			break;
1216 
1217 stopme:
1218 		/*
1219 		 * Wake us up when everyone else has suspended.
1220 		 * In the mean time we suspend as well.
1221 		 */
1222 		thread_suspend_switch(td, p);
1223 		remaining = calc_remaining(p, mode);
1224 	}
1225 	if (mode == SINGLE_EXIT) {
1226 		/*
1227 		 * Convert the process to an unthreaded process.  The
1228 		 * SINGLE_EXIT is called by exit1() or execve(), in
1229 		 * both cases other threads must be retired.
1230 		 */
1231 		KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
1232 		p->p_singlethread = NULL;
1233 		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
1234 
1235 		/*
1236 		 * Wait for any remaining threads to exit cpu_throw().
1237 		 */
1238 		while (p->p_exitthreads != 0) {
1239 			PROC_SUNLOCK(p);
1240 			PROC_UNLOCK(p);
1241 			sched_relinquish(td);
1242 			PROC_LOCK(p);
1243 			PROC_SLOCK(p);
1244 		}
1245 	} else if (mode == SINGLE_BOUNDARY) {
1246 		/*
1247 		 * Wait until all suspended threads are removed from
1248 		 * the processors.  The thread_suspend_check()
1249 		 * increments p_boundary_count while it is still
1250 		 * running, which makes it possible for the execve()
1251 		 * to destroy vmspace while our other threads are
1252 		 * still using the address space.
1253 		 *
1254 		 * We lock the thread, which is only allowed to
1255 		 * succeed after context switch code finished using
1256 		 * the address space.
1257 		 */
1258 		FOREACH_THREAD_IN_PROC(p, td2) {
1259 			if (td2 == td)
1260 				continue;
1261 			thread_lock(td2);
1262 			KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
1263 			    ("td %p not on boundary", td2));
1264 			KASSERT(TD_IS_SUSPENDED(td2),
1265 			    ("td %p is not suspended", td2));
1266 			thread_unlock(td2);
1267 		}
1268 	}
1269 	PROC_SUNLOCK(p);
1270 	return (0);
1271 }
1272 
1273 bool
1274 thread_suspend_check_needed(void)
1275 {
1276 	struct proc *p;
1277 	struct thread *td;
1278 
1279 	td = curthread;
1280 	p = td->td_proc;
1281 	PROC_LOCK_ASSERT(p, MA_OWNED);
1282 	return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
1283 	    (td->td_dbgflags & TDB_SUSPEND) != 0));
1284 }
1285 
1286 /*
1287  * Called in from locations that can safely check to see
1288  * whether we have to suspend or at least throttle for a
1289  * single-thread event (e.g. fork).
1290  *
1291  * Such locations include userret().
1292  * If the "return_instead" argument is non zero, the thread must be able to
1293  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
1294  *
1295  * The 'return_instead' argument tells the function if it may do a
1296  * thread_exit() or suspend, or whether the caller must abort and back
1297  * out instead.
1298  *
1299  * If the thread that set the single_threading request has set the
1300  * P_SINGLE_EXIT bit in the process flags then this call will never return
1301  * if 'return_instead' is false, but will exit.
1302  *
1303  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
1304  *---------------+--------------------+---------------------
1305  *       0       | returns 0          |   returns 0 or 1
1306  *               | when ST ends       |   immediately
1307  *---------------+--------------------+---------------------
1308  *       1       | thread exits       |   returns 1
1309  *               |                    |  immediately
1310  * 0 = thread_exit() or suspension ok,
1311  * other = return error instead of stopping the thread.
1312  *
1313  * While a full suspension is under effect, even a single threading
1314  * thread would be suspended if it made this call (but it shouldn't).
1315  * This call should only be made from places where
1316  * thread_exit() would be safe as that may be the outcome unless
1317  * return_instead is set.
1318  */
1319 int
1320 thread_suspend_check(int return_instead)
1321 {
1322 	struct thread *td;
1323 	struct proc *p;
1324 	int wakeup_swapper;
1325 
1326 	td = curthread;
1327 	p = td->td_proc;
1328 	mtx_assert(&Giant, MA_NOTOWNED);
1329 	PROC_LOCK_ASSERT(p, MA_OWNED);
1330 	while (thread_suspend_check_needed()) {
1331 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1332 			KASSERT(p->p_singlethread != NULL,
1333 			    ("singlethread not set"));
1334 			/*
1335 			 * The only suspension in action is a
1336 			 * single-threading. Single threader need not stop.
1337 			 * It is safe to access p->p_singlethread unlocked
1338 			 * because it can only be set to our address by us.
1339 			 */
1340 			if (p->p_singlethread == td)
1341 				return (0);	/* Exempt from stopping. */
1342 		}
1343 		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
1344 			return (EINTR);
1345 
1346 		/* Should we goto user boundary if we didn't come from there? */
1347 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1348 		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
1349 			return (ERESTART);
1350 
1351 		/*
1352 		 * Ignore suspend requests if they are deferred.
1353 		 */
1354 		if ((td->td_flags & TDF_SBDRY) != 0) {
1355 			KASSERT(return_instead,
1356 			    ("TDF_SBDRY set for unsafe thread_suspend_check"));
1357 			KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
1358 			    (TDF_SEINTR | TDF_SERESTART),
1359 			    ("both TDF_SEINTR and TDF_SERESTART"));
1360 			return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
1361 		}
1362 
1363 		/*
1364 		 * If the process is waiting for us to exit,
1365 		 * this thread should just suicide.
1366 		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1367 		 */
1368 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1369 			PROC_UNLOCK(p);
1370 
1371 			/*
1372 			 * Allow Linux emulation layer to do some work
1373 			 * before thread suicide.
1374 			 */
1375 			if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1376 				(p->p_sysent->sv_thread_detach)(td);
1377 			umtx_thread_exit(td);
1378 			kern_thr_exit(td);
1379 			panic("stopped thread did not exit");
1380 		}
1381 
1382 		PROC_SLOCK(p);
1383 		thread_stopped(p);
1384 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1385 			if (p->p_numthreads == p->p_suspcount + 1) {
1386 				thread_lock(p->p_singlethread);
1387 				wakeup_swapper = thread_unsuspend_one(
1388 				    p->p_singlethread, p, false);
1389 				if (wakeup_swapper)
1390 					kick_proc0();
1391 			}
1392 		}
1393 		PROC_UNLOCK(p);
1394 		thread_lock(td);
1395 		/*
1396 		 * When a thread suspends, it just
1397 		 * gets taken off all queues.
1398 		 */
1399 		thread_suspend_one(td);
1400 		if (return_instead == 0) {
1401 			p->p_boundary_count++;
1402 			td->td_flags |= TDF_BOUNDARY;
1403 		}
1404 		PROC_SUNLOCK(p);
1405 		mi_switch(SW_INVOL | SWT_SUSPEND);
1406 		PROC_LOCK(p);
1407 	}
1408 	return (0);
1409 }
1410 
1411 /*
1412  * Check for possible stops and suspensions while executing a
1413  * casueword or similar transiently failing operation.
1414  *
1415  * The sleep argument controls whether the function can handle a stop
1416  * request itself or it should return ERESTART and the request is
1417  * proceed at the kernel/user boundary in ast.
1418  *
1419  * Typically, when retrying due to casueword(9) failure (rv == 1), we
1420  * should handle the stop requests there, with exception of cases when
1421  * the thread owns a kernel resource, for instance busied the umtx
1422  * key, or when functions return immediately if thread_check_susp()
1423  * returned non-zero.  On the other hand, retrying the whole lock
1424  * operation, we better not stop there but delegate the handling to
1425  * ast.
1426  *
1427  * If the request is for thread termination P_SINGLE_EXIT, we cannot
1428  * handle it at all, and simply return EINTR.
1429  */
1430 int
1431 thread_check_susp(struct thread *td, bool sleep)
1432 {
1433 	struct proc *p;
1434 	int error;
1435 
1436 	/*
1437 	 * The check for TDF_NEEDSUSPCHK is racy, but it is enough to
1438 	 * eventually break the lockstep loop.
1439 	 */
1440 	if ((td->td_flags & TDF_NEEDSUSPCHK) == 0)
1441 		return (0);
1442 	error = 0;
1443 	p = td->td_proc;
1444 	PROC_LOCK(p);
1445 	if (p->p_flag & P_SINGLE_EXIT)
1446 		error = EINTR;
1447 	else if (P_SHOULDSTOP(p) ||
1448 	    ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND)))
1449 		error = sleep ? thread_suspend_check(0) : ERESTART;
1450 	PROC_UNLOCK(p);
1451 	return (error);
1452 }
1453 
1454 void
1455 thread_suspend_switch(struct thread *td, struct proc *p)
1456 {
1457 
1458 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1459 	PROC_LOCK_ASSERT(p, MA_OWNED);
1460 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1461 	/*
1462 	 * We implement thread_suspend_one in stages here to avoid
1463 	 * dropping the proc lock while the thread lock is owned.
1464 	 */
1465 	if (p == td->td_proc) {
1466 		thread_stopped(p);
1467 		p->p_suspcount++;
1468 	}
1469 	PROC_UNLOCK(p);
1470 	thread_lock(td);
1471 	td->td_flags &= ~TDF_NEEDSUSPCHK;
1472 	TD_SET_SUSPENDED(td);
1473 	sched_sleep(td, 0);
1474 	PROC_SUNLOCK(p);
1475 	DROP_GIANT();
1476 	mi_switch(SW_VOL | SWT_SUSPEND);
1477 	PICKUP_GIANT();
1478 	PROC_LOCK(p);
1479 	PROC_SLOCK(p);
1480 }
1481 
1482 void
1483 thread_suspend_one(struct thread *td)
1484 {
1485 	struct proc *p;
1486 
1487 	p = td->td_proc;
1488 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1489 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1490 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1491 	p->p_suspcount++;
1492 	td->td_flags &= ~TDF_NEEDSUSPCHK;
1493 	TD_SET_SUSPENDED(td);
1494 	sched_sleep(td, 0);
1495 }
1496 
1497 static int
1498 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1499 {
1500 
1501 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1502 	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1503 	TD_CLR_SUSPENDED(td);
1504 	td->td_flags &= ~TDF_ALLPROCSUSP;
1505 	if (td->td_proc == p) {
1506 		PROC_SLOCK_ASSERT(p, MA_OWNED);
1507 		p->p_suspcount--;
1508 		if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1509 			td->td_flags &= ~TDF_BOUNDARY;
1510 			p->p_boundary_count--;
1511 		}
1512 	}
1513 	return (setrunnable(td, 0));
1514 }
1515 
1516 /*
1517  * Allow all threads blocked by single threading to continue running.
1518  */
1519 void
1520 thread_unsuspend(struct proc *p)
1521 {
1522 	struct thread *td;
1523 	int wakeup_swapper;
1524 
1525 	PROC_LOCK_ASSERT(p, MA_OWNED);
1526 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1527 	wakeup_swapper = 0;
1528 	if (!P_SHOULDSTOP(p)) {
1529                 FOREACH_THREAD_IN_PROC(p, td) {
1530 			thread_lock(td);
1531 			if (TD_IS_SUSPENDED(td)) {
1532 				wakeup_swapper |= thread_unsuspend_one(td, p,
1533 				    true);
1534 			} else
1535 				thread_unlock(td);
1536 		}
1537 	} else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1538 	    p->p_numthreads == p->p_suspcount) {
1539 		/*
1540 		 * Stopping everything also did the job for the single
1541 		 * threading request. Now we've downgraded to single-threaded,
1542 		 * let it continue.
1543 		 */
1544 		if (p->p_singlethread->td_proc == p) {
1545 			thread_lock(p->p_singlethread);
1546 			wakeup_swapper = thread_unsuspend_one(
1547 			    p->p_singlethread, p, false);
1548 		}
1549 	}
1550 	if (wakeup_swapper)
1551 		kick_proc0();
1552 }
1553 
1554 /*
1555  * End the single threading mode..
1556  */
1557 void
1558 thread_single_end(struct proc *p, int mode)
1559 {
1560 	struct thread *td;
1561 	int wakeup_swapper;
1562 
1563 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1564 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1565 	    ("invalid mode %d", mode));
1566 	PROC_LOCK_ASSERT(p, MA_OWNED);
1567 	KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1568 	    (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1569 	    ("mode %d does not match P_TOTAL_STOP", mode));
1570 	KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1571 	    ("thread_single_end from other thread %p %p",
1572 	    curthread, p->p_singlethread));
1573 	KASSERT(mode != SINGLE_BOUNDARY ||
1574 	    (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1575 	    ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1576 	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1577 	    P_TOTAL_STOP);
1578 	PROC_SLOCK(p);
1579 	p->p_singlethread = NULL;
1580 	wakeup_swapper = 0;
1581 	/*
1582 	 * If there are other threads they may now run,
1583 	 * unless of course there is a blanket 'stop order'
1584 	 * on the process. The single threader must be allowed
1585 	 * to continue however as this is a bad place to stop.
1586 	 */
1587 	if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1588                 FOREACH_THREAD_IN_PROC(p, td) {
1589 			thread_lock(td);
1590 			if (TD_IS_SUSPENDED(td)) {
1591 				wakeup_swapper |= thread_unsuspend_one(td, p,
1592 				    mode == SINGLE_BOUNDARY);
1593 			} else
1594 				thread_unlock(td);
1595 		}
1596 	}
1597 	KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1598 	    ("inconsistent boundary count %d", p->p_boundary_count));
1599 	PROC_SUNLOCK(p);
1600 	if (wakeup_swapper)
1601 		kick_proc0();
1602 }
1603 
1604 /*
1605  * Locate a thread by number and return with proc lock held.
1606  *
1607  * thread exit establishes proc -> tidhash lock ordering, but lookup
1608  * takes tidhash first and needs to return locked proc.
1609  *
1610  * The problem is worked around by relying on type-safety of both
1611  * structures and doing the work in 2 steps:
1612  * - tidhash-locked lookup which saves both thread and proc pointers
1613  * - proc-locked verification that the found thread still matches
1614  */
1615 static bool
1616 tdfind_hash(lwpid_t tid, pid_t pid, struct proc **pp, struct thread **tdp)
1617 {
1618 #define RUN_THRESH	16
1619 	struct proc *p;
1620 	struct thread *td;
1621 	int run;
1622 	bool locked;
1623 
1624 	run = 0;
1625 	rw_rlock(TIDHASHLOCK(tid));
1626 	locked = true;
1627 	LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1628 		if (td->td_tid != tid) {
1629 			run++;
1630 			continue;
1631 		}
1632 		p = td->td_proc;
1633 		if (pid != -1 && p->p_pid != pid) {
1634 			td = NULL;
1635 			break;
1636 		}
1637 		if (run > RUN_THRESH) {
1638 			if (rw_try_upgrade(TIDHASHLOCK(tid))) {
1639 				LIST_REMOVE(td, td_hash);
1640 				LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1641 					td, td_hash);
1642 				rw_wunlock(TIDHASHLOCK(tid));
1643 				locked = false;
1644 				break;
1645 			}
1646 		}
1647 		break;
1648 	}
1649 	if (locked)
1650 		rw_runlock(TIDHASHLOCK(tid));
1651 	if (td == NULL)
1652 		return (false);
1653 	*pp = p;
1654 	*tdp = td;
1655 	return (true);
1656 }
1657 
1658 struct thread *
1659 tdfind(lwpid_t tid, pid_t pid)
1660 {
1661 	struct proc *p;
1662 	struct thread *td;
1663 
1664 	td = curthread;
1665 	if (td->td_tid == tid) {
1666 		if (pid != -1 && td->td_proc->p_pid != pid)
1667 			return (NULL);
1668 		PROC_LOCK(td->td_proc);
1669 		return (td);
1670 	}
1671 
1672 	for (;;) {
1673 		if (!tdfind_hash(tid, pid, &p, &td))
1674 			return (NULL);
1675 		PROC_LOCK(p);
1676 		if (td->td_tid != tid) {
1677 			PROC_UNLOCK(p);
1678 			continue;
1679 		}
1680 		if (td->td_proc != p) {
1681 			PROC_UNLOCK(p);
1682 			continue;
1683 		}
1684 		if (p->p_state == PRS_NEW) {
1685 			PROC_UNLOCK(p);
1686 			return (NULL);
1687 		}
1688 		return (td);
1689 	}
1690 }
1691 
1692 void
1693 tidhash_add(struct thread *td)
1694 {
1695 	rw_wlock(TIDHASHLOCK(td->td_tid));
1696 	LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1697 	rw_wunlock(TIDHASHLOCK(td->td_tid));
1698 }
1699 
1700 void
1701 tidhash_remove(struct thread *td)
1702 {
1703 
1704 	rw_wlock(TIDHASHLOCK(td->td_tid));
1705 	LIST_REMOVE(td, td_hash);
1706 	rw_wunlock(TIDHASHLOCK(td->td_tid));
1707 }
1708