1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice(s), this list of conditions and the following disclaimer as 12 * the first lines of this file unmodified other than the possible 13 * addition of one or more copyright notices. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice(s), this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY 19 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 20 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 21 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY 22 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 25 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 28 * DAMAGE. 29 */ 30 31 #include "opt_witness.h" 32 #include "opt_hwpmc_hooks.h" 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/lock.h> 41 #include <sys/mutex.h> 42 #include <sys/proc.h> 43 #include <sys/bitstring.h> 44 #include <sys/epoch.h> 45 #include <sys/rangelock.h> 46 #include <sys/resourcevar.h> 47 #include <sys/sdt.h> 48 #include <sys/smp.h> 49 #include <sys/sched.h> 50 #include <sys/sleepqueue.h> 51 #include <sys/selinfo.h> 52 #include <sys/syscallsubr.h> 53 #include <sys/dtrace_bsd.h> 54 #include <sys/sysent.h> 55 #include <sys/turnstile.h> 56 #include <sys/taskqueue.h> 57 #include <sys/ktr.h> 58 #include <sys/rwlock.h> 59 #include <sys/umtx.h> 60 #include <sys/vmmeter.h> 61 #include <sys/cpuset.h> 62 #ifdef HWPMC_HOOKS 63 #include <sys/pmckern.h> 64 #endif 65 #include <sys/priv.h> 66 67 #include <security/audit/audit.h> 68 69 #include <vm/pmap.h> 70 #include <vm/vm.h> 71 #include <vm/vm_extern.h> 72 #include <vm/uma.h> 73 #include <vm/vm_phys.h> 74 #include <sys/eventhandler.h> 75 76 /* 77 * Asserts below verify the stability of struct thread and struct proc 78 * layout, as exposed by KBI to modules. On head, the KBI is allowed 79 * to drift, change to the structures must be accompanied by the 80 * assert update. 81 * 82 * On the stable branches after KBI freeze, conditions must not be 83 * violated. Typically new fields are moved to the end of the 84 * structures. 85 */ 86 #ifdef __amd64__ 87 _Static_assert(offsetof(struct thread, td_flags) == 0xfc, 88 "struct thread KBI td_flags"); 89 _Static_assert(offsetof(struct thread, td_pflags) == 0x104, 90 "struct thread KBI td_pflags"); 91 _Static_assert(offsetof(struct thread, td_frame) == 0x4a0, 92 "struct thread KBI td_frame"); 93 _Static_assert(offsetof(struct thread, td_emuldata) == 0x6b0, 94 "struct thread KBI td_emuldata"); 95 _Static_assert(offsetof(struct proc, p_flag) == 0xb8, 96 "struct proc KBI p_flag"); 97 _Static_assert(offsetof(struct proc, p_pid) == 0xc4, 98 "struct proc KBI p_pid"); 99 _Static_assert(offsetof(struct proc, p_filemon) == 0x3c0, 100 "struct proc KBI p_filemon"); 101 _Static_assert(offsetof(struct proc, p_comm) == 0x3d8, 102 "struct proc KBI p_comm"); 103 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4b8, 104 "struct proc KBI p_emuldata"); 105 #endif 106 #ifdef __i386__ 107 _Static_assert(offsetof(struct thread, td_flags) == 0x98, 108 "struct thread KBI td_flags"); 109 _Static_assert(offsetof(struct thread, td_pflags) == 0xa0, 110 "struct thread KBI td_pflags"); 111 _Static_assert(offsetof(struct thread, td_frame) == 0x300, 112 "struct thread KBI td_frame"); 113 _Static_assert(offsetof(struct thread, td_emuldata) == 0x344, 114 "struct thread KBI td_emuldata"); 115 _Static_assert(offsetof(struct proc, p_flag) == 0x6c, 116 "struct proc KBI p_flag"); 117 _Static_assert(offsetof(struct proc, p_pid) == 0x78, 118 "struct proc KBI p_pid"); 119 _Static_assert(offsetof(struct proc, p_filemon) == 0x26c, 120 "struct proc KBI p_filemon"); 121 _Static_assert(offsetof(struct proc, p_comm) == 0x280, 122 "struct proc KBI p_comm"); 123 _Static_assert(offsetof(struct proc, p_emuldata) == 0x30c, 124 "struct proc KBI p_emuldata"); 125 #endif 126 127 SDT_PROVIDER_DECLARE(proc); 128 SDT_PROBE_DEFINE(proc, , , lwp__exit); 129 130 /* 131 * thread related storage. 132 */ 133 static uma_zone_t thread_zone; 134 135 struct thread_domain_data { 136 struct thread *tdd_zombies; 137 int tdd_reapticks; 138 } __aligned(CACHE_LINE_SIZE); 139 140 static struct thread_domain_data thread_domain_data[MAXMEMDOM]; 141 142 static struct task thread_reap_task; 143 static struct callout thread_reap_callout; 144 145 static void thread_zombie(struct thread *); 146 static void thread_reap_all(void); 147 static void thread_reap_task_cb(void *, int); 148 static void thread_reap_callout_cb(void *); 149 static int thread_unsuspend_one(struct thread *td, struct proc *p, 150 bool boundary); 151 static void thread_free_batched(struct thread *td); 152 153 static __exclusive_cache_line struct mtx tid_lock; 154 static bitstr_t *tid_bitmap; 155 156 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash"); 157 158 static int maxthread; 159 SYSCTL_INT(_kern, OID_AUTO, maxthread, CTLFLAG_RDTUN, 160 &maxthread, 0, "Maximum number of threads"); 161 162 static __exclusive_cache_line int nthreads; 163 164 static LIST_HEAD(tidhashhead, thread) *tidhashtbl; 165 static u_long tidhash; 166 static u_long tidhashlock; 167 static struct rwlock *tidhashtbl_lock; 168 #define TIDHASH(tid) (&tidhashtbl[(tid) & tidhash]) 169 #define TIDHASHLOCK(tid) (&tidhashtbl_lock[(tid) & tidhashlock]) 170 171 EVENTHANDLER_LIST_DEFINE(thread_ctor); 172 EVENTHANDLER_LIST_DEFINE(thread_dtor); 173 EVENTHANDLER_LIST_DEFINE(thread_init); 174 EVENTHANDLER_LIST_DEFINE(thread_fini); 175 176 static bool 177 thread_count_inc_try(void) 178 { 179 int nthreads_new; 180 181 nthreads_new = atomic_fetchadd_int(&nthreads, 1) + 1; 182 if (nthreads_new >= maxthread - 100) { 183 if (priv_check_cred(curthread->td_ucred, PRIV_MAXPROC) != 0 || 184 nthreads_new >= maxthread) { 185 atomic_subtract_int(&nthreads, 1); 186 return (false); 187 } 188 } 189 return (true); 190 } 191 192 static bool 193 thread_count_inc(void) 194 { 195 static struct timeval lastfail; 196 static int curfail; 197 198 thread_reap(); 199 if (thread_count_inc_try()) { 200 return (true); 201 } 202 203 thread_reap_all(); 204 if (thread_count_inc_try()) { 205 return (true); 206 } 207 208 if (ppsratecheck(&lastfail, &curfail, 1)) { 209 printf("maxthread limit exceeded by uid %u " 210 "(pid %d); consider increasing kern.maxthread\n", 211 curthread->td_ucred->cr_ruid, curproc->p_pid); 212 } 213 return (false); 214 } 215 216 static void 217 thread_count_sub(int n) 218 { 219 220 atomic_subtract_int(&nthreads, n); 221 } 222 223 static void 224 thread_count_dec(void) 225 { 226 227 thread_count_sub(1); 228 } 229 230 static lwpid_t 231 tid_alloc(void) 232 { 233 static lwpid_t trytid; 234 lwpid_t tid; 235 236 mtx_lock(&tid_lock); 237 /* 238 * It is an invariant that the bitmap is big enough to hold maxthread 239 * IDs. If we got to this point there has to be at least one free. 240 */ 241 if (trytid >= maxthread) 242 trytid = 0; 243 bit_ffc_at(tid_bitmap, trytid, maxthread, &tid); 244 if (tid == -1) { 245 KASSERT(trytid != 0, ("unexpectedly ran out of IDs")); 246 trytid = 0; 247 bit_ffc_at(tid_bitmap, trytid, maxthread, &tid); 248 KASSERT(tid != -1, ("unexpectedly ran out of IDs")); 249 } 250 bit_set(tid_bitmap, tid); 251 trytid = tid + 1; 252 mtx_unlock(&tid_lock); 253 return (tid + NO_PID); 254 } 255 256 static void 257 tid_free_locked(lwpid_t rtid) 258 { 259 lwpid_t tid; 260 261 mtx_assert(&tid_lock, MA_OWNED); 262 KASSERT(rtid >= NO_PID, 263 ("%s: invalid tid %d\n", __func__, rtid)); 264 tid = rtid - NO_PID; 265 KASSERT(bit_test(tid_bitmap, tid) != 0, 266 ("thread ID %d not allocated\n", rtid)); 267 bit_clear(tid_bitmap, tid); 268 } 269 270 static void 271 tid_free(lwpid_t rtid) 272 { 273 274 mtx_lock(&tid_lock); 275 tid_free_locked(rtid); 276 mtx_unlock(&tid_lock); 277 } 278 279 static void 280 tid_free_batch(lwpid_t *batch, int n) 281 { 282 int i; 283 284 mtx_lock(&tid_lock); 285 for (i = 0; i < n; i++) { 286 tid_free_locked(batch[i]); 287 } 288 mtx_unlock(&tid_lock); 289 } 290 291 /* 292 * Batching for thread reapping. 293 */ 294 struct tidbatch { 295 lwpid_t tab[16]; 296 int n; 297 }; 298 299 static void 300 tidbatch_prep(struct tidbatch *tb) 301 { 302 303 tb->n = 0; 304 } 305 306 static void 307 tidbatch_add(struct tidbatch *tb, struct thread *td) 308 { 309 310 KASSERT(tb->n < nitems(tb->tab), 311 ("%s: count too high %d", __func__, tb->n)); 312 tb->tab[tb->n] = td->td_tid; 313 tb->n++; 314 } 315 316 static void 317 tidbatch_process(struct tidbatch *tb) 318 { 319 320 KASSERT(tb->n <= nitems(tb->tab), 321 ("%s: count too high %d", __func__, tb->n)); 322 if (tb->n == nitems(tb->tab)) { 323 tid_free_batch(tb->tab, tb->n); 324 tb->n = 0; 325 } 326 } 327 328 static void 329 tidbatch_final(struct tidbatch *tb) 330 { 331 332 KASSERT(tb->n <= nitems(tb->tab), 333 ("%s: count too high %d", __func__, tb->n)); 334 if (tb->n != 0) { 335 tid_free_batch(tb->tab, tb->n); 336 } 337 } 338 339 /* 340 * Prepare a thread for use. 341 */ 342 static int 343 thread_ctor(void *mem, int size, void *arg, int flags) 344 { 345 struct thread *td; 346 347 td = (struct thread *)mem; 348 td->td_state = TDS_INACTIVE; 349 td->td_lastcpu = td->td_oncpu = NOCPU; 350 td->td_allocdomain = vm_phys_domain(vtophys(td)); 351 352 /* 353 * Note that td_critnest begins life as 1 because the thread is not 354 * running and is thereby implicitly waiting to be on the receiving 355 * end of a context switch. 356 */ 357 td->td_critnest = 1; 358 td->td_lend_user_pri = PRI_MAX; 359 #ifdef AUDIT 360 audit_thread_alloc(td); 361 #endif 362 #ifdef KDTRACE_HOOKS 363 kdtrace_thread_ctor(td); 364 #endif 365 umtx_thread_alloc(td); 366 MPASS(td->td_sel == NULL); 367 return (0); 368 } 369 370 /* 371 * Reclaim a thread after use. 372 */ 373 static void 374 thread_dtor(void *mem, int size, void *arg) 375 { 376 struct thread *td; 377 378 td = (struct thread *)mem; 379 380 #ifdef INVARIANTS 381 /* Verify that this thread is in a safe state to free. */ 382 switch (td->td_state) { 383 case TDS_INHIBITED: 384 case TDS_RUNNING: 385 case TDS_CAN_RUN: 386 case TDS_RUNQ: 387 /* 388 * We must never unlink a thread that is in one of 389 * these states, because it is currently active. 390 */ 391 panic("bad state for thread unlinking"); 392 /* NOTREACHED */ 393 case TDS_INACTIVE: 394 break; 395 default: 396 panic("bad thread state"); 397 /* NOTREACHED */ 398 } 399 #endif 400 #ifdef AUDIT 401 audit_thread_free(td); 402 #endif 403 #ifdef KDTRACE_HOOKS 404 kdtrace_thread_dtor(td); 405 #endif 406 /* Free all OSD associated to this thread. */ 407 osd_thread_exit(td); 408 td_softdep_cleanup(td); 409 MPASS(td->td_su == NULL); 410 seltdfini(td); 411 } 412 413 /* 414 * Initialize type-stable parts of a thread (when newly created). 415 */ 416 static int 417 thread_init(void *mem, int size, int flags) 418 { 419 struct thread *td; 420 421 td = (struct thread *)mem; 422 423 td->td_sleepqueue = sleepq_alloc(); 424 td->td_turnstile = turnstile_alloc(); 425 td->td_rlqe = NULL; 426 EVENTHANDLER_DIRECT_INVOKE(thread_init, td); 427 umtx_thread_init(td); 428 td->td_kstack = 0; 429 td->td_sel = NULL; 430 return (0); 431 } 432 433 /* 434 * Tear down type-stable parts of a thread (just before being discarded). 435 */ 436 static void 437 thread_fini(void *mem, int size) 438 { 439 struct thread *td; 440 441 td = (struct thread *)mem; 442 EVENTHANDLER_DIRECT_INVOKE(thread_fini, td); 443 rlqentry_free(td->td_rlqe); 444 turnstile_free(td->td_turnstile); 445 sleepq_free(td->td_sleepqueue); 446 umtx_thread_fini(td); 447 MPASS(td->td_sel == NULL); 448 } 449 450 /* 451 * For a newly created process, 452 * link up all the structures and its initial threads etc. 453 * called from: 454 * {arch}/{arch}/machdep.c {arch}_init(), init386() etc. 455 * proc_dtor() (should go away) 456 * proc_init() 457 */ 458 void 459 proc_linkup0(struct proc *p, struct thread *td) 460 { 461 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 462 proc_linkup(p, td); 463 } 464 465 void 466 proc_linkup(struct proc *p, struct thread *td) 467 { 468 469 sigqueue_init(&p->p_sigqueue, p); 470 p->p_ksi = ksiginfo_alloc(1); 471 if (p->p_ksi != NULL) { 472 /* XXX p_ksi may be null if ksiginfo zone is not ready */ 473 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS; 474 } 475 LIST_INIT(&p->p_mqnotifier); 476 p->p_numthreads = 0; 477 thread_link(td, p); 478 } 479 480 extern int max_threads_per_proc; 481 482 /* 483 * Initialize global thread allocation resources. 484 */ 485 void 486 threadinit(void) 487 { 488 u_long i; 489 lwpid_t tid0; 490 uint32_t flags; 491 492 /* 493 * Place an upper limit on threads which can be allocated. 494 * 495 * Note that other factors may make the de facto limit much lower. 496 * 497 * Platform limits are somewhat arbitrary but deemed "more than good 498 * enough" for the foreseable future. 499 */ 500 if (maxthread == 0) { 501 #ifdef _LP64 502 maxthread = MIN(maxproc * max_threads_per_proc, 1000000); 503 #else 504 maxthread = MIN(maxproc * max_threads_per_proc, 100000); 505 #endif 506 } 507 508 mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF); 509 tid_bitmap = bit_alloc(maxthread, M_TIDHASH, M_WAITOK); 510 /* 511 * Handle thread0. 512 */ 513 thread_count_inc(); 514 tid0 = tid_alloc(); 515 if (tid0 != THREAD0_TID) 516 panic("tid0 %d != %d\n", tid0, THREAD0_TID); 517 518 flags = UMA_ZONE_NOFREE; 519 #ifdef __aarch64__ 520 /* 521 * Force thread structures to be allocated from the direct map. 522 * Otherwise, superpage promotions and demotions may temporarily 523 * invalidate thread structure mappings. For most dynamically allocated 524 * structures this is not a problem, but translation faults cannot be 525 * handled without accessing curthread. 526 */ 527 flags |= UMA_ZONE_CONTIG; 528 #endif 529 thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(), 530 thread_ctor, thread_dtor, thread_init, thread_fini, 531 32 - 1, flags); 532 tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash); 533 tidhashlock = (tidhash + 1) / 64; 534 if (tidhashlock > 0) 535 tidhashlock--; 536 tidhashtbl_lock = malloc(sizeof(*tidhashtbl_lock) * (tidhashlock + 1), 537 M_TIDHASH, M_WAITOK | M_ZERO); 538 for (i = 0; i < tidhashlock + 1; i++) 539 rw_init(&tidhashtbl_lock[i], "tidhash"); 540 541 TASK_INIT(&thread_reap_task, 0, thread_reap_task_cb, NULL); 542 callout_init(&thread_reap_callout, 1); 543 callout_reset(&thread_reap_callout, 5 * hz, thread_reap_callout_cb, NULL); 544 } 545 546 /* 547 * Place an unused thread on the zombie list. 548 */ 549 void 550 thread_zombie(struct thread *td) 551 { 552 struct thread_domain_data *tdd; 553 struct thread *ztd; 554 555 tdd = &thread_domain_data[td->td_allocdomain]; 556 ztd = atomic_load_ptr(&tdd->tdd_zombies); 557 for (;;) { 558 td->td_zombie = ztd; 559 if (atomic_fcmpset_rel_ptr((uintptr_t *)&tdd->tdd_zombies, 560 (uintptr_t *)&ztd, (uintptr_t)td)) 561 break; 562 continue; 563 } 564 } 565 566 /* 567 * Release a thread that has exited after cpu_throw(). 568 */ 569 void 570 thread_stash(struct thread *td) 571 { 572 atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1); 573 thread_zombie(td); 574 } 575 576 /* 577 * Reap zombies from passed domain. 578 */ 579 static void 580 thread_reap_domain(struct thread_domain_data *tdd) 581 { 582 struct thread *itd, *ntd; 583 struct tidbatch tidbatch; 584 struct credbatch credbatch; 585 int tdcount; 586 struct plimit *lim; 587 int limcount; 588 589 /* 590 * Reading upfront is pessimal if followed by concurrent atomic_swap, 591 * but most of the time the list is empty. 592 */ 593 if (tdd->tdd_zombies == NULL) 594 return; 595 596 itd = (struct thread *)atomic_swap_ptr((uintptr_t *)&tdd->tdd_zombies, 597 (uintptr_t)NULL); 598 if (itd == NULL) 599 return; 600 601 /* 602 * Multiple CPUs can get here, the race is fine as ticks is only 603 * advisory. 604 */ 605 tdd->tdd_reapticks = ticks; 606 607 tidbatch_prep(&tidbatch); 608 credbatch_prep(&credbatch); 609 tdcount = 0; 610 lim = NULL; 611 limcount = 0; 612 613 while (itd != NULL) { 614 ntd = itd->td_zombie; 615 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, itd); 616 tidbatch_add(&tidbatch, itd); 617 credbatch_add(&credbatch, itd); 618 MPASS(itd->td_limit != NULL); 619 if (lim != itd->td_limit) { 620 if (limcount != 0) { 621 lim_freen(lim, limcount); 622 limcount = 0; 623 } 624 } 625 lim = itd->td_limit; 626 limcount++; 627 thread_free_batched(itd); 628 tidbatch_process(&tidbatch); 629 credbatch_process(&credbatch); 630 tdcount++; 631 if (tdcount == 32) { 632 thread_count_sub(tdcount); 633 tdcount = 0; 634 } 635 itd = ntd; 636 } 637 638 tidbatch_final(&tidbatch); 639 credbatch_final(&credbatch); 640 if (tdcount != 0) { 641 thread_count_sub(tdcount); 642 } 643 MPASS(limcount != 0); 644 lim_freen(lim, limcount); 645 } 646 647 /* 648 * Reap zombies from all domains. 649 */ 650 static void 651 thread_reap_all(void) 652 { 653 struct thread_domain_data *tdd; 654 int i, domain; 655 656 domain = PCPU_GET(domain); 657 for (i = 0; i < vm_ndomains; i++) { 658 tdd = &thread_domain_data[(i + domain) % vm_ndomains]; 659 thread_reap_domain(tdd); 660 } 661 } 662 663 /* 664 * Reap zombies from local domain. 665 */ 666 void 667 thread_reap(void) 668 { 669 struct thread_domain_data *tdd; 670 int domain; 671 672 domain = PCPU_GET(domain); 673 tdd = &thread_domain_data[domain]; 674 675 thread_reap_domain(tdd); 676 } 677 678 static void 679 thread_reap_task_cb(void *arg __unused, int pending __unused) 680 { 681 682 thread_reap_all(); 683 } 684 685 static void 686 thread_reap_callout_cb(void *arg __unused) 687 { 688 struct thread_domain_data *tdd; 689 int i, cticks, lticks; 690 bool wantreap; 691 692 wantreap = false; 693 cticks = atomic_load_int(&ticks); 694 for (i = 0; i < vm_ndomains; i++) { 695 tdd = &thread_domain_data[i]; 696 lticks = tdd->tdd_reapticks; 697 if (tdd->tdd_zombies != NULL && 698 (u_int)(cticks - lticks) > 5 * hz) { 699 wantreap = true; 700 break; 701 } 702 } 703 704 if (wantreap) 705 taskqueue_enqueue(taskqueue_thread, &thread_reap_task); 706 callout_reset(&thread_reap_callout, 5 * hz, thread_reap_callout_cb, NULL); 707 } 708 709 /* 710 * Allocate a thread. 711 */ 712 struct thread * 713 thread_alloc(int pages) 714 { 715 struct thread *td; 716 lwpid_t tid; 717 718 if (!thread_count_inc()) { 719 return (NULL); 720 } 721 722 tid = tid_alloc(); 723 td = uma_zalloc(thread_zone, M_WAITOK); 724 KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack")); 725 if (!vm_thread_new(td, pages)) { 726 uma_zfree(thread_zone, td); 727 tid_free(tid); 728 thread_count_dec(); 729 return (NULL); 730 } 731 td->td_tid = tid; 732 cpu_thread_alloc(td); 733 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); 734 return (td); 735 } 736 737 int 738 thread_alloc_stack(struct thread *td, int pages) 739 { 740 741 KASSERT(td->td_kstack == 0, 742 ("thread_alloc_stack called on a thread with kstack")); 743 if (!vm_thread_new(td, pages)) 744 return (0); 745 cpu_thread_alloc(td); 746 return (1); 747 } 748 749 /* 750 * Deallocate a thread. 751 */ 752 static void 753 thread_free_batched(struct thread *td) 754 { 755 756 lock_profile_thread_exit(td); 757 if (td->td_cpuset) 758 cpuset_rel(td->td_cpuset); 759 td->td_cpuset = NULL; 760 cpu_thread_free(td); 761 if (td->td_kstack != 0) 762 vm_thread_dispose(td); 763 callout_drain(&td->td_slpcallout); 764 /* 765 * Freeing handled by the caller. 766 */ 767 td->td_tid = -1; 768 uma_zfree(thread_zone, td); 769 } 770 771 void 772 thread_free(struct thread *td) 773 { 774 lwpid_t tid; 775 776 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); 777 tid = td->td_tid; 778 thread_free_batched(td); 779 tid_free(tid); 780 thread_count_dec(); 781 } 782 783 void 784 thread_cow_get_proc(struct thread *newtd, struct proc *p) 785 { 786 787 PROC_LOCK_ASSERT(p, MA_OWNED); 788 newtd->td_realucred = crcowget(p->p_ucred); 789 newtd->td_ucred = newtd->td_realucred; 790 newtd->td_limit = lim_hold(p->p_limit); 791 newtd->td_cowgen = p->p_cowgen; 792 } 793 794 void 795 thread_cow_get(struct thread *newtd, struct thread *td) 796 { 797 798 MPASS(td->td_realucred == td->td_ucred); 799 newtd->td_realucred = crcowget(td->td_realucred); 800 newtd->td_ucred = newtd->td_realucred; 801 newtd->td_limit = lim_hold(td->td_limit); 802 newtd->td_cowgen = td->td_cowgen; 803 } 804 805 void 806 thread_cow_free(struct thread *td) 807 { 808 809 if (td->td_realucred != NULL) 810 crcowfree(td); 811 if (td->td_limit != NULL) 812 lim_free(td->td_limit); 813 } 814 815 void 816 thread_cow_update(struct thread *td) 817 { 818 struct proc *p; 819 struct ucred *oldcred; 820 struct plimit *oldlimit; 821 822 p = td->td_proc; 823 oldlimit = NULL; 824 PROC_LOCK(p); 825 oldcred = crcowsync(); 826 if (td->td_limit != p->p_limit) { 827 oldlimit = td->td_limit; 828 td->td_limit = lim_hold(p->p_limit); 829 } 830 td->td_cowgen = p->p_cowgen; 831 PROC_UNLOCK(p); 832 if (oldcred != NULL) 833 crfree(oldcred); 834 if (oldlimit != NULL) 835 lim_free(oldlimit); 836 } 837 838 /* 839 * Discard the current thread and exit from its context. 840 * Always called with scheduler locked. 841 * 842 * Because we can't free a thread while we're operating under its context, 843 * push the current thread into our CPU's deadthread holder. This means 844 * we needn't worry about someone else grabbing our context before we 845 * do a cpu_throw(). 846 */ 847 void 848 thread_exit(void) 849 { 850 uint64_t runtime, new_switchtime; 851 struct thread *td; 852 struct thread *td2; 853 struct proc *p; 854 int wakeup_swapper; 855 856 td = curthread; 857 p = td->td_proc; 858 859 PROC_SLOCK_ASSERT(p, MA_OWNED); 860 mtx_assert(&Giant, MA_NOTOWNED); 861 862 PROC_LOCK_ASSERT(p, MA_OWNED); 863 KASSERT(p != NULL, ("thread exiting without a process")); 864 CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td, 865 (long)p->p_pid, td->td_name); 866 SDT_PROBE0(proc, , , lwp__exit); 867 KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending")); 868 MPASS(td->td_realucred == td->td_ucred); 869 870 /* 871 * drop FPU & debug register state storage, or any other 872 * architecture specific resources that 873 * would not be on a new untouched process. 874 */ 875 cpu_thread_exit(td); 876 877 /* 878 * The last thread is left attached to the process 879 * So that the whole bundle gets recycled. Skip 880 * all this stuff if we never had threads. 881 * EXIT clears all sign of other threads when 882 * it goes to single threading, so the last thread always 883 * takes the short path. 884 */ 885 if (p->p_flag & P_HADTHREADS) { 886 if (p->p_numthreads > 1) { 887 atomic_add_int(&td->td_proc->p_exitthreads, 1); 888 thread_unlink(td); 889 td2 = FIRST_THREAD_IN_PROC(p); 890 sched_exit_thread(td2, td); 891 892 /* 893 * The test below is NOT true if we are the 894 * sole exiting thread. P_STOPPED_SINGLE is unset 895 * in exit1() after it is the only survivor. 896 */ 897 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 898 if (p->p_numthreads == p->p_suspcount) { 899 thread_lock(p->p_singlethread); 900 wakeup_swapper = thread_unsuspend_one( 901 p->p_singlethread, p, false); 902 if (wakeup_swapper) 903 kick_proc0(); 904 } 905 } 906 907 PCPU_SET(deadthread, td); 908 } else { 909 /* 910 * The last thread is exiting.. but not through exit() 911 */ 912 panic ("thread_exit: Last thread exiting on its own"); 913 } 914 } 915 #ifdef HWPMC_HOOKS 916 /* 917 * If this thread is part of a process that is being tracked by hwpmc(4), 918 * inform the module of the thread's impending exit. 919 */ 920 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) { 921 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT); 922 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL); 923 } else if (PMC_SYSTEM_SAMPLING_ACTIVE()) 924 PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL); 925 #endif 926 PROC_UNLOCK(p); 927 PROC_STATLOCK(p); 928 thread_lock(td); 929 PROC_SUNLOCK(p); 930 931 /* Do the same timestamp bookkeeping that mi_switch() would do. */ 932 new_switchtime = cpu_ticks(); 933 runtime = new_switchtime - PCPU_GET(switchtime); 934 td->td_runtime += runtime; 935 td->td_incruntime += runtime; 936 PCPU_SET(switchtime, new_switchtime); 937 PCPU_SET(switchticks, ticks); 938 VM_CNT_INC(v_swtch); 939 940 /* Save our resource usage in our process. */ 941 td->td_ru.ru_nvcsw++; 942 ruxagg_locked(p, td); 943 rucollect(&p->p_ru, &td->td_ru); 944 PROC_STATUNLOCK(p); 945 946 td->td_state = TDS_INACTIVE; 947 #ifdef WITNESS 948 witness_thread_exit(td); 949 #endif 950 CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td); 951 sched_throw(td); 952 panic("I'm a teapot!"); 953 /* NOTREACHED */ 954 } 955 956 /* 957 * Do any thread specific cleanups that may be needed in wait() 958 * called with Giant, proc and schedlock not held. 959 */ 960 void 961 thread_wait(struct proc *p) 962 { 963 struct thread *td; 964 965 mtx_assert(&Giant, MA_NOTOWNED); 966 KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()")); 967 KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking")); 968 td = FIRST_THREAD_IN_PROC(p); 969 /* Lock the last thread so we spin until it exits cpu_throw(). */ 970 thread_lock(td); 971 thread_unlock(td); 972 lock_profile_thread_exit(td); 973 cpuset_rel(td->td_cpuset); 974 td->td_cpuset = NULL; 975 cpu_thread_clean(td); 976 thread_cow_free(td); 977 callout_drain(&td->td_slpcallout); 978 thread_reap(); /* check for zombie threads etc. */ 979 } 980 981 /* 982 * Link a thread to a process. 983 * set up anything that needs to be initialized for it to 984 * be used by the process. 985 */ 986 void 987 thread_link(struct thread *td, struct proc *p) 988 { 989 990 /* 991 * XXX This can't be enabled because it's called for proc0 before 992 * its lock has been created. 993 * PROC_LOCK_ASSERT(p, MA_OWNED); 994 */ 995 td->td_state = TDS_INACTIVE; 996 td->td_proc = p; 997 td->td_flags = TDF_INMEM; 998 999 LIST_INIT(&td->td_contested); 1000 LIST_INIT(&td->td_lprof[0]); 1001 LIST_INIT(&td->td_lprof[1]); 1002 #ifdef EPOCH_TRACE 1003 SLIST_INIT(&td->td_epochs); 1004 #endif 1005 sigqueue_init(&td->td_sigqueue, p); 1006 callout_init(&td->td_slpcallout, 1); 1007 TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist); 1008 p->p_numthreads++; 1009 } 1010 1011 /* 1012 * Called from: 1013 * thread_exit() 1014 */ 1015 void 1016 thread_unlink(struct thread *td) 1017 { 1018 struct proc *p = td->td_proc; 1019 1020 PROC_LOCK_ASSERT(p, MA_OWNED); 1021 #ifdef EPOCH_TRACE 1022 MPASS(SLIST_EMPTY(&td->td_epochs)); 1023 #endif 1024 1025 TAILQ_REMOVE(&p->p_threads, td, td_plist); 1026 p->p_numthreads--; 1027 /* could clear a few other things here */ 1028 /* Must NOT clear links to proc! */ 1029 } 1030 1031 static int 1032 calc_remaining(struct proc *p, int mode) 1033 { 1034 int remaining; 1035 1036 PROC_LOCK_ASSERT(p, MA_OWNED); 1037 PROC_SLOCK_ASSERT(p, MA_OWNED); 1038 if (mode == SINGLE_EXIT) 1039 remaining = p->p_numthreads; 1040 else if (mode == SINGLE_BOUNDARY) 1041 remaining = p->p_numthreads - p->p_boundary_count; 1042 else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC) 1043 remaining = p->p_numthreads - p->p_suspcount; 1044 else 1045 panic("calc_remaining: wrong mode %d", mode); 1046 return (remaining); 1047 } 1048 1049 static int 1050 remain_for_mode(int mode) 1051 { 1052 1053 return (mode == SINGLE_ALLPROC ? 0 : 1); 1054 } 1055 1056 static int 1057 weed_inhib(int mode, struct thread *td2, struct proc *p) 1058 { 1059 int wakeup_swapper; 1060 1061 PROC_LOCK_ASSERT(p, MA_OWNED); 1062 PROC_SLOCK_ASSERT(p, MA_OWNED); 1063 THREAD_LOCK_ASSERT(td2, MA_OWNED); 1064 1065 wakeup_swapper = 0; 1066 1067 /* 1068 * Since the thread lock is dropped by the scheduler we have 1069 * to retry to check for races. 1070 */ 1071 restart: 1072 switch (mode) { 1073 case SINGLE_EXIT: 1074 if (TD_IS_SUSPENDED(td2)) { 1075 wakeup_swapper |= thread_unsuspend_one(td2, p, true); 1076 thread_lock(td2); 1077 goto restart; 1078 } 1079 if (TD_CAN_ABORT(td2)) { 1080 wakeup_swapper |= sleepq_abort(td2, EINTR); 1081 return (wakeup_swapper); 1082 } 1083 break; 1084 case SINGLE_BOUNDARY: 1085 case SINGLE_NO_EXIT: 1086 if (TD_IS_SUSPENDED(td2) && 1087 (td2->td_flags & TDF_BOUNDARY) == 0) { 1088 wakeup_swapper |= thread_unsuspend_one(td2, p, false); 1089 thread_lock(td2); 1090 goto restart; 1091 } 1092 if (TD_CAN_ABORT(td2)) { 1093 wakeup_swapper |= sleepq_abort(td2, ERESTART); 1094 return (wakeup_swapper); 1095 } 1096 break; 1097 case SINGLE_ALLPROC: 1098 /* 1099 * ALLPROC suspend tries to avoid spurious EINTR for 1100 * threads sleeping interruptable, by suspending the 1101 * thread directly, similarly to sig_suspend_threads(). 1102 * Since such sleep is not performed at the user 1103 * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP 1104 * is used to avoid immediate un-suspend. 1105 */ 1106 if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY | 1107 TDF_ALLPROCSUSP)) == 0) { 1108 wakeup_swapper |= thread_unsuspend_one(td2, p, false); 1109 thread_lock(td2); 1110 goto restart; 1111 } 1112 if (TD_CAN_ABORT(td2)) { 1113 if ((td2->td_flags & TDF_SBDRY) == 0) { 1114 thread_suspend_one(td2); 1115 td2->td_flags |= TDF_ALLPROCSUSP; 1116 } else { 1117 wakeup_swapper |= sleepq_abort(td2, ERESTART); 1118 return (wakeup_swapper); 1119 } 1120 } 1121 break; 1122 default: 1123 break; 1124 } 1125 thread_unlock(td2); 1126 return (wakeup_swapper); 1127 } 1128 1129 /* 1130 * Enforce single-threading. 1131 * 1132 * Returns 1 if the caller must abort (another thread is waiting to 1133 * exit the process or similar). Process is locked! 1134 * Returns 0 when you are successfully the only thread running. 1135 * A process has successfully single threaded in the suspend mode when 1136 * There are no threads in user mode. Threads in the kernel must be 1137 * allowed to continue until they get to the user boundary. They may even 1138 * copy out their return values and data before suspending. They may however be 1139 * accelerated in reaching the user boundary as we will wake up 1140 * any sleeping threads that are interruptable. (PCATCH). 1141 */ 1142 int 1143 thread_single(struct proc *p, int mode) 1144 { 1145 struct thread *td; 1146 struct thread *td2; 1147 int remaining, wakeup_swapper; 1148 1149 td = curthread; 1150 KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY || 1151 mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT, 1152 ("invalid mode %d", mode)); 1153 /* 1154 * If allowing non-ALLPROC singlethreading for non-curproc 1155 * callers, calc_remaining() and remain_for_mode() should be 1156 * adjusted to also account for td->td_proc != p. For now 1157 * this is not implemented because it is not used. 1158 */ 1159 KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) || 1160 (mode != SINGLE_ALLPROC && td->td_proc == p), 1161 ("mode %d proc %p curproc %p", mode, p, td->td_proc)); 1162 mtx_assert(&Giant, MA_NOTOWNED); 1163 PROC_LOCK_ASSERT(p, MA_OWNED); 1164 1165 if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC) 1166 return (0); 1167 1168 /* Is someone already single threading? */ 1169 if (p->p_singlethread != NULL && p->p_singlethread != td) 1170 return (1); 1171 1172 if (mode == SINGLE_EXIT) { 1173 p->p_flag |= P_SINGLE_EXIT; 1174 p->p_flag &= ~P_SINGLE_BOUNDARY; 1175 } else { 1176 p->p_flag &= ~P_SINGLE_EXIT; 1177 if (mode == SINGLE_BOUNDARY) 1178 p->p_flag |= P_SINGLE_BOUNDARY; 1179 else 1180 p->p_flag &= ~P_SINGLE_BOUNDARY; 1181 } 1182 if (mode == SINGLE_ALLPROC) 1183 p->p_flag |= P_TOTAL_STOP; 1184 p->p_flag |= P_STOPPED_SINGLE; 1185 PROC_SLOCK(p); 1186 p->p_singlethread = td; 1187 remaining = calc_remaining(p, mode); 1188 while (remaining != remain_for_mode(mode)) { 1189 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE) 1190 goto stopme; 1191 wakeup_swapper = 0; 1192 FOREACH_THREAD_IN_PROC(p, td2) { 1193 if (td2 == td) 1194 continue; 1195 thread_lock(td2); 1196 td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK; 1197 if (TD_IS_INHIBITED(td2)) { 1198 wakeup_swapper |= weed_inhib(mode, td2, p); 1199 #ifdef SMP 1200 } else if (TD_IS_RUNNING(td2) && td != td2) { 1201 forward_signal(td2); 1202 thread_unlock(td2); 1203 #endif 1204 } else 1205 thread_unlock(td2); 1206 } 1207 if (wakeup_swapper) 1208 kick_proc0(); 1209 remaining = calc_remaining(p, mode); 1210 1211 /* 1212 * Maybe we suspended some threads.. was it enough? 1213 */ 1214 if (remaining == remain_for_mode(mode)) 1215 break; 1216 1217 stopme: 1218 /* 1219 * Wake us up when everyone else has suspended. 1220 * In the mean time we suspend as well. 1221 */ 1222 thread_suspend_switch(td, p); 1223 remaining = calc_remaining(p, mode); 1224 } 1225 if (mode == SINGLE_EXIT) { 1226 /* 1227 * Convert the process to an unthreaded process. The 1228 * SINGLE_EXIT is called by exit1() or execve(), in 1229 * both cases other threads must be retired. 1230 */ 1231 KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads")); 1232 p->p_singlethread = NULL; 1233 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS); 1234 1235 /* 1236 * Wait for any remaining threads to exit cpu_throw(). 1237 */ 1238 while (p->p_exitthreads != 0) { 1239 PROC_SUNLOCK(p); 1240 PROC_UNLOCK(p); 1241 sched_relinquish(td); 1242 PROC_LOCK(p); 1243 PROC_SLOCK(p); 1244 } 1245 } else if (mode == SINGLE_BOUNDARY) { 1246 /* 1247 * Wait until all suspended threads are removed from 1248 * the processors. The thread_suspend_check() 1249 * increments p_boundary_count while it is still 1250 * running, which makes it possible for the execve() 1251 * to destroy vmspace while our other threads are 1252 * still using the address space. 1253 * 1254 * We lock the thread, which is only allowed to 1255 * succeed after context switch code finished using 1256 * the address space. 1257 */ 1258 FOREACH_THREAD_IN_PROC(p, td2) { 1259 if (td2 == td) 1260 continue; 1261 thread_lock(td2); 1262 KASSERT((td2->td_flags & TDF_BOUNDARY) != 0, 1263 ("td %p not on boundary", td2)); 1264 KASSERT(TD_IS_SUSPENDED(td2), 1265 ("td %p is not suspended", td2)); 1266 thread_unlock(td2); 1267 } 1268 } 1269 PROC_SUNLOCK(p); 1270 return (0); 1271 } 1272 1273 bool 1274 thread_suspend_check_needed(void) 1275 { 1276 struct proc *p; 1277 struct thread *td; 1278 1279 td = curthread; 1280 p = td->td_proc; 1281 PROC_LOCK_ASSERT(p, MA_OWNED); 1282 return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 && 1283 (td->td_dbgflags & TDB_SUSPEND) != 0)); 1284 } 1285 1286 /* 1287 * Called in from locations that can safely check to see 1288 * whether we have to suspend or at least throttle for a 1289 * single-thread event (e.g. fork). 1290 * 1291 * Such locations include userret(). 1292 * If the "return_instead" argument is non zero, the thread must be able to 1293 * accept 0 (caller may continue), or 1 (caller must abort) as a result. 1294 * 1295 * The 'return_instead' argument tells the function if it may do a 1296 * thread_exit() or suspend, or whether the caller must abort and back 1297 * out instead. 1298 * 1299 * If the thread that set the single_threading request has set the 1300 * P_SINGLE_EXIT bit in the process flags then this call will never return 1301 * if 'return_instead' is false, but will exit. 1302 * 1303 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0 1304 *---------------+--------------------+--------------------- 1305 * 0 | returns 0 | returns 0 or 1 1306 * | when ST ends | immediately 1307 *---------------+--------------------+--------------------- 1308 * 1 | thread exits | returns 1 1309 * | | immediately 1310 * 0 = thread_exit() or suspension ok, 1311 * other = return error instead of stopping the thread. 1312 * 1313 * While a full suspension is under effect, even a single threading 1314 * thread would be suspended if it made this call (but it shouldn't). 1315 * This call should only be made from places where 1316 * thread_exit() would be safe as that may be the outcome unless 1317 * return_instead is set. 1318 */ 1319 int 1320 thread_suspend_check(int return_instead) 1321 { 1322 struct thread *td; 1323 struct proc *p; 1324 int wakeup_swapper; 1325 1326 td = curthread; 1327 p = td->td_proc; 1328 mtx_assert(&Giant, MA_NOTOWNED); 1329 PROC_LOCK_ASSERT(p, MA_OWNED); 1330 while (thread_suspend_check_needed()) { 1331 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 1332 KASSERT(p->p_singlethread != NULL, 1333 ("singlethread not set")); 1334 /* 1335 * The only suspension in action is a 1336 * single-threading. Single threader need not stop. 1337 * It is safe to access p->p_singlethread unlocked 1338 * because it can only be set to our address by us. 1339 */ 1340 if (p->p_singlethread == td) 1341 return (0); /* Exempt from stopping. */ 1342 } 1343 if ((p->p_flag & P_SINGLE_EXIT) && return_instead) 1344 return (EINTR); 1345 1346 /* Should we goto user boundary if we didn't come from there? */ 1347 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE && 1348 (p->p_flag & P_SINGLE_BOUNDARY) && return_instead) 1349 return (ERESTART); 1350 1351 /* 1352 * Ignore suspend requests if they are deferred. 1353 */ 1354 if ((td->td_flags & TDF_SBDRY) != 0) { 1355 KASSERT(return_instead, 1356 ("TDF_SBDRY set for unsafe thread_suspend_check")); 1357 KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) != 1358 (TDF_SEINTR | TDF_SERESTART), 1359 ("both TDF_SEINTR and TDF_SERESTART")); 1360 return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0); 1361 } 1362 1363 /* 1364 * If the process is waiting for us to exit, 1365 * this thread should just suicide. 1366 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE. 1367 */ 1368 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) { 1369 PROC_UNLOCK(p); 1370 1371 /* 1372 * Allow Linux emulation layer to do some work 1373 * before thread suicide. 1374 */ 1375 if (__predict_false(p->p_sysent->sv_thread_detach != NULL)) 1376 (p->p_sysent->sv_thread_detach)(td); 1377 umtx_thread_exit(td); 1378 kern_thr_exit(td); 1379 panic("stopped thread did not exit"); 1380 } 1381 1382 PROC_SLOCK(p); 1383 thread_stopped(p); 1384 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 1385 if (p->p_numthreads == p->p_suspcount + 1) { 1386 thread_lock(p->p_singlethread); 1387 wakeup_swapper = thread_unsuspend_one( 1388 p->p_singlethread, p, false); 1389 if (wakeup_swapper) 1390 kick_proc0(); 1391 } 1392 } 1393 PROC_UNLOCK(p); 1394 thread_lock(td); 1395 /* 1396 * When a thread suspends, it just 1397 * gets taken off all queues. 1398 */ 1399 thread_suspend_one(td); 1400 if (return_instead == 0) { 1401 p->p_boundary_count++; 1402 td->td_flags |= TDF_BOUNDARY; 1403 } 1404 PROC_SUNLOCK(p); 1405 mi_switch(SW_INVOL | SWT_SUSPEND); 1406 PROC_LOCK(p); 1407 } 1408 return (0); 1409 } 1410 1411 /* 1412 * Check for possible stops and suspensions while executing a 1413 * casueword or similar transiently failing operation. 1414 * 1415 * The sleep argument controls whether the function can handle a stop 1416 * request itself or it should return ERESTART and the request is 1417 * proceed at the kernel/user boundary in ast. 1418 * 1419 * Typically, when retrying due to casueword(9) failure (rv == 1), we 1420 * should handle the stop requests there, with exception of cases when 1421 * the thread owns a kernel resource, for instance busied the umtx 1422 * key, or when functions return immediately if thread_check_susp() 1423 * returned non-zero. On the other hand, retrying the whole lock 1424 * operation, we better not stop there but delegate the handling to 1425 * ast. 1426 * 1427 * If the request is for thread termination P_SINGLE_EXIT, we cannot 1428 * handle it at all, and simply return EINTR. 1429 */ 1430 int 1431 thread_check_susp(struct thread *td, bool sleep) 1432 { 1433 struct proc *p; 1434 int error; 1435 1436 /* 1437 * The check for TDF_NEEDSUSPCHK is racy, but it is enough to 1438 * eventually break the lockstep loop. 1439 */ 1440 if ((td->td_flags & TDF_NEEDSUSPCHK) == 0) 1441 return (0); 1442 error = 0; 1443 p = td->td_proc; 1444 PROC_LOCK(p); 1445 if (p->p_flag & P_SINGLE_EXIT) 1446 error = EINTR; 1447 else if (P_SHOULDSTOP(p) || 1448 ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) 1449 error = sleep ? thread_suspend_check(0) : ERESTART; 1450 PROC_UNLOCK(p); 1451 return (error); 1452 } 1453 1454 void 1455 thread_suspend_switch(struct thread *td, struct proc *p) 1456 { 1457 1458 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 1459 PROC_LOCK_ASSERT(p, MA_OWNED); 1460 PROC_SLOCK_ASSERT(p, MA_OWNED); 1461 /* 1462 * We implement thread_suspend_one in stages here to avoid 1463 * dropping the proc lock while the thread lock is owned. 1464 */ 1465 if (p == td->td_proc) { 1466 thread_stopped(p); 1467 p->p_suspcount++; 1468 } 1469 PROC_UNLOCK(p); 1470 thread_lock(td); 1471 td->td_flags &= ~TDF_NEEDSUSPCHK; 1472 TD_SET_SUSPENDED(td); 1473 sched_sleep(td, 0); 1474 PROC_SUNLOCK(p); 1475 DROP_GIANT(); 1476 mi_switch(SW_VOL | SWT_SUSPEND); 1477 PICKUP_GIANT(); 1478 PROC_LOCK(p); 1479 PROC_SLOCK(p); 1480 } 1481 1482 void 1483 thread_suspend_one(struct thread *td) 1484 { 1485 struct proc *p; 1486 1487 p = td->td_proc; 1488 PROC_SLOCK_ASSERT(p, MA_OWNED); 1489 THREAD_LOCK_ASSERT(td, MA_OWNED); 1490 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 1491 p->p_suspcount++; 1492 td->td_flags &= ~TDF_NEEDSUSPCHK; 1493 TD_SET_SUSPENDED(td); 1494 sched_sleep(td, 0); 1495 } 1496 1497 static int 1498 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary) 1499 { 1500 1501 THREAD_LOCK_ASSERT(td, MA_OWNED); 1502 KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended")); 1503 TD_CLR_SUSPENDED(td); 1504 td->td_flags &= ~TDF_ALLPROCSUSP; 1505 if (td->td_proc == p) { 1506 PROC_SLOCK_ASSERT(p, MA_OWNED); 1507 p->p_suspcount--; 1508 if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) { 1509 td->td_flags &= ~TDF_BOUNDARY; 1510 p->p_boundary_count--; 1511 } 1512 } 1513 return (setrunnable(td, 0)); 1514 } 1515 1516 /* 1517 * Allow all threads blocked by single threading to continue running. 1518 */ 1519 void 1520 thread_unsuspend(struct proc *p) 1521 { 1522 struct thread *td; 1523 int wakeup_swapper; 1524 1525 PROC_LOCK_ASSERT(p, MA_OWNED); 1526 PROC_SLOCK_ASSERT(p, MA_OWNED); 1527 wakeup_swapper = 0; 1528 if (!P_SHOULDSTOP(p)) { 1529 FOREACH_THREAD_IN_PROC(p, td) { 1530 thread_lock(td); 1531 if (TD_IS_SUSPENDED(td)) { 1532 wakeup_swapper |= thread_unsuspend_one(td, p, 1533 true); 1534 } else 1535 thread_unlock(td); 1536 } 1537 } else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE && 1538 p->p_numthreads == p->p_suspcount) { 1539 /* 1540 * Stopping everything also did the job for the single 1541 * threading request. Now we've downgraded to single-threaded, 1542 * let it continue. 1543 */ 1544 if (p->p_singlethread->td_proc == p) { 1545 thread_lock(p->p_singlethread); 1546 wakeup_swapper = thread_unsuspend_one( 1547 p->p_singlethread, p, false); 1548 } 1549 } 1550 if (wakeup_swapper) 1551 kick_proc0(); 1552 } 1553 1554 /* 1555 * End the single threading mode.. 1556 */ 1557 void 1558 thread_single_end(struct proc *p, int mode) 1559 { 1560 struct thread *td; 1561 int wakeup_swapper; 1562 1563 KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY || 1564 mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT, 1565 ("invalid mode %d", mode)); 1566 PROC_LOCK_ASSERT(p, MA_OWNED); 1567 KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) || 1568 (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0), 1569 ("mode %d does not match P_TOTAL_STOP", mode)); 1570 KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread, 1571 ("thread_single_end from other thread %p %p", 1572 curthread, p->p_singlethread)); 1573 KASSERT(mode != SINGLE_BOUNDARY || 1574 (p->p_flag & P_SINGLE_BOUNDARY) != 0, 1575 ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag)); 1576 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY | 1577 P_TOTAL_STOP); 1578 PROC_SLOCK(p); 1579 p->p_singlethread = NULL; 1580 wakeup_swapper = 0; 1581 /* 1582 * If there are other threads they may now run, 1583 * unless of course there is a blanket 'stop order' 1584 * on the process. The single threader must be allowed 1585 * to continue however as this is a bad place to stop. 1586 */ 1587 if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) { 1588 FOREACH_THREAD_IN_PROC(p, td) { 1589 thread_lock(td); 1590 if (TD_IS_SUSPENDED(td)) { 1591 wakeup_swapper |= thread_unsuspend_one(td, p, 1592 mode == SINGLE_BOUNDARY); 1593 } else 1594 thread_unlock(td); 1595 } 1596 } 1597 KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0, 1598 ("inconsistent boundary count %d", p->p_boundary_count)); 1599 PROC_SUNLOCK(p); 1600 if (wakeup_swapper) 1601 kick_proc0(); 1602 } 1603 1604 /* 1605 * Locate a thread by number and return with proc lock held. 1606 * 1607 * thread exit establishes proc -> tidhash lock ordering, but lookup 1608 * takes tidhash first and needs to return locked proc. 1609 * 1610 * The problem is worked around by relying on type-safety of both 1611 * structures and doing the work in 2 steps: 1612 * - tidhash-locked lookup which saves both thread and proc pointers 1613 * - proc-locked verification that the found thread still matches 1614 */ 1615 static bool 1616 tdfind_hash(lwpid_t tid, pid_t pid, struct proc **pp, struct thread **tdp) 1617 { 1618 #define RUN_THRESH 16 1619 struct proc *p; 1620 struct thread *td; 1621 int run; 1622 bool locked; 1623 1624 run = 0; 1625 rw_rlock(TIDHASHLOCK(tid)); 1626 locked = true; 1627 LIST_FOREACH(td, TIDHASH(tid), td_hash) { 1628 if (td->td_tid != tid) { 1629 run++; 1630 continue; 1631 } 1632 p = td->td_proc; 1633 if (pid != -1 && p->p_pid != pid) { 1634 td = NULL; 1635 break; 1636 } 1637 if (run > RUN_THRESH) { 1638 if (rw_try_upgrade(TIDHASHLOCK(tid))) { 1639 LIST_REMOVE(td, td_hash); 1640 LIST_INSERT_HEAD(TIDHASH(td->td_tid), 1641 td, td_hash); 1642 rw_wunlock(TIDHASHLOCK(tid)); 1643 locked = false; 1644 break; 1645 } 1646 } 1647 break; 1648 } 1649 if (locked) 1650 rw_runlock(TIDHASHLOCK(tid)); 1651 if (td == NULL) 1652 return (false); 1653 *pp = p; 1654 *tdp = td; 1655 return (true); 1656 } 1657 1658 struct thread * 1659 tdfind(lwpid_t tid, pid_t pid) 1660 { 1661 struct proc *p; 1662 struct thread *td; 1663 1664 td = curthread; 1665 if (td->td_tid == tid) { 1666 if (pid != -1 && td->td_proc->p_pid != pid) 1667 return (NULL); 1668 PROC_LOCK(td->td_proc); 1669 return (td); 1670 } 1671 1672 for (;;) { 1673 if (!tdfind_hash(tid, pid, &p, &td)) 1674 return (NULL); 1675 PROC_LOCK(p); 1676 if (td->td_tid != tid) { 1677 PROC_UNLOCK(p); 1678 continue; 1679 } 1680 if (td->td_proc != p) { 1681 PROC_UNLOCK(p); 1682 continue; 1683 } 1684 if (p->p_state == PRS_NEW) { 1685 PROC_UNLOCK(p); 1686 return (NULL); 1687 } 1688 return (td); 1689 } 1690 } 1691 1692 void 1693 tidhash_add(struct thread *td) 1694 { 1695 rw_wlock(TIDHASHLOCK(td->td_tid)); 1696 LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash); 1697 rw_wunlock(TIDHASHLOCK(td->td_tid)); 1698 } 1699 1700 void 1701 tidhash_remove(struct thread *td) 1702 { 1703 1704 rw_wlock(TIDHASHLOCK(td->td_tid)); 1705 LIST_REMOVE(td, td_hash); 1706 rw_wunlock(TIDHASHLOCK(td->td_tid)); 1707 } 1708