xref: /freebsd/sys/kern/kern_thread.c (revision 8b238f4126d32df3e70056bc32536b7248ebffa0)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
5  *  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice(s), this list of conditions and the following disclaimer as
12  *    the first lines of this file unmodified other than the possible
13  *    addition of one or more copyright notices.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice(s), this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
22  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
28  * DAMAGE.
29  */
30 
31 #include "opt_witness.h"
32 #include "opt_hwpmc_hooks.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/epoch.h>
44 #include <sys/rangelock.h>
45 #include <sys/resourcevar.h>
46 #include <sys/sdt.h>
47 #include <sys/smp.h>
48 #include <sys/sched.h>
49 #include <sys/sleepqueue.h>
50 #include <sys/selinfo.h>
51 #include <sys/syscallsubr.h>
52 #include <sys/sysent.h>
53 #include <sys/turnstile.h>
54 #include <sys/ktr.h>
55 #include <sys/rwlock.h>
56 #include <sys/umtx.h>
57 #include <sys/vmmeter.h>
58 #include <sys/cpuset.h>
59 #ifdef	HWPMC_HOOKS
60 #include <sys/pmckern.h>
61 #endif
62 
63 #include <security/audit/audit.h>
64 
65 #include <vm/vm.h>
66 #include <vm/vm_extern.h>
67 #include <vm/uma.h>
68 #include <sys/eventhandler.h>
69 
70 /*
71  * Asserts below verify the stability of struct thread and struct proc
72  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
73  * to drift, change to the structures must be accompanied by the
74  * assert update.
75  *
76  * On the stable branches after KBI freeze, conditions must not be
77  * violated.  Typically new fields are moved to the end of the
78  * structures.
79  */
80 #ifdef __amd64__
81 _Static_assert(offsetof(struct thread, td_flags) == 0xfc,
82     "struct thread KBI td_flags");
83 _Static_assert(offsetof(struct thread, td_pflags) == 0x104,
84     "struct thread KBI td_pflags");
85 _Static_assert(offsetof(struct thread, td_frame) == 0x478,
86     "struct thread KBI td_frame");
87 _Static_assert(offsetof(struct thread, td_emuldata) == 0x690,
88     "struct thread KBI td_emuldata");
89 _Static_assert(offsetof(struct proc, p_flag) == 0xb0,
90     "struct proc KBI p_flag");
91 _Static_assert(offsetof(struct proc, p_pid) == 0xbc,
92     "struct proc KBI p_pid");
93 _Static_assert(offsetof(struct proc, p_filemon) == 0x3c8,
94     "struct proc KBI p_filemon");
95 _Static_assert(offsetof(struct proc, p_comm) == 0x3e0,
96     "struct proc KBI p_comm");
97 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4c0,
98     "struct proc KBI p_emuldata");
99 #endif
100 #ifdef __i386__
101 _Static_assert(offsetof(struct thread, td_flags) == 0x98,
102     "struct thread KBI td_flags");
103 _Static_assert(offsetof(struct thread, td_pflags) == 0xa0,
104     "struct thread KBI td_pflags");
105 _Static_assert(offsetof(struct thread, td_frame) == 0x2f0,
106     "struct thread KBI td_frame");
107 _Static_assert(offsetof(struct thread, td_emuldata) == 0x338,
108     "struct thread KBI td_emuldata");
109 _Static_assert(offsetof(struct proc, p_flag) == 0x68,
110     "struct proc KBI p_flag");
111 _Static_assert(offsetof(struct proc, p_pid) == 0x74,
112     "struct proc KBI p_pid");
113 _Static_assert(offsetof(struct proc, p_filemon) == 0x278,
114     "struct proc KBI p_filemon");
115 _Static_assert(offsetof(struct proc, p_comm) == 0x28c,
116     "struct proc KBI p_comm");
117 _Static_assert(offsetof(struct proc, p_emuldata) == 0x318,
118     "struct proc KBI p_emuldata");
119 #endif
120 
121 SDT_PROVIDER_DECLARE(proc);
122 SDT_PROBE_DEFINE(proc, , , lwp__exit);
123 
124 /*
125  * thread related storage.
126  */
127 static uma_zone_t thread_zone;
128 
129 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
130 static struct mtx zombie_lock;
131 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
132 
133 static void thread_zombie(struct thread *);
134 static int thread_unsuspend_one(struct thread *td, struct proc *p,
135     bool boundary);
136 
137 #define TID_BUFFER_SIZE	1024
138 
139 struct mtx tid_lock;
140 static struct unrhdr *tid_unrhdr;
141 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
142 static int tid_head, tid_tail;
143 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
144 
145 struct	tidhashhead *tidhashtbl;
146 u_long	tidhash;
147 struct	rwlock tidhash_lock;
148 
149 EVENTHANDLER_LIST_DEFINE(thread_ctor);
150 EVENTHANDLER_LIST_DEFINE(thread_dtor);
151 EVENTHANDLER_LIST_DEFINE(thread_init);
152 EVENTHANDLER_LIST_DEFINE(thread_fini);
153 
154 static lwpid_t
155 tid_alloc(void)
156 {
157 	lwpid_t	tid;
158 
159 	tid = alloc_unr(tid_unrhdr);
160 	if (tid != -1)
161 		return (tid);
162 	mtx_lock(&tid_lock);
163 	if (tid_head == tid_tail) {
164 		mtx_unlock(&tid_lock);
165 		return (-1);
166 	}
167 	tid = tid_buffer[tid_head];
168 	tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
169 	mtx_unlock(&tid_lock);
170 	return (tid);
171 }
172 
173 static void
174 tid_free(lwpid_t tid)
175 {
176 	lwpid_t tmp_tid = -1;
177 
178 	mtx_lock(&tid_lock);
179 	if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
180 		tmp_tid = tid_buffer[tid_head];
181 		tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
182 	}
183 	tid_buffer[tid_tail] = tid;
184 	tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
185 	mtx_unlock(&tid_lock);
186 	if (tmp_tid != -1)
187 		free_unr(tid_unrhdr, tmp_tid);
188 }
189 
190 /*
191  * Prepare a thread for use.
192  */
193 static int
194 thread_ctor(void *mem, int size, void *arg, int flags)
195 {
196 	struct thread	*td;
197 
198 	td = (struct thread *)mem;
199 	td->td_state = TDS_INACTIVE;
200 	td->td_lastcpu = td->td_oncpu = NOCPU;
201 
202 	td->td_tid = tid_alloc();
203 
204 	/*
205 	 * Note that td_critnest begins life as 1 because the thread is not
206 	 * running and is thereby implicitly waiting to be on the receiving
207 	 * end of a context switch.
208 	 */
209 	td->td_critnest = 1;
210 	td->td_lend_user_pri = PRI_MAX;
211 	EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
212 #ifdef AUDIT
213 	audit_thread_alloc(td);
214 #endif
215 	umtx_thread_alloc(td);
216 	return (0);
217 }
218 
219 /*
220  * Reclaim a thread after use.
221  */
222 static void
223 thread_dtor(void *mem, int size, void *arg)
224 {
225 	struct thread *td;
226 
227 	td = (struct thread *)mem;
228 
229 #ifdef INVARIANTS
230 	/* Verify that this thread is in a safe state to free. */
231 	switch (td->td_state) {
232 	case TDS_INHIBITED:
233 	case TDS_RUNNING:
234 	case TDS_CAN_RUN:
235 	case TDS_RUNQ:
236 		/*
237 		 * We must never unlink a thread that is in one of
238 		 * these states, because it is currently active.
239 		 */
240 		panic("bad state for thread unlinking");
241 		/* NOTREACHED */
242 	case TDS_INACTIVE:
243 		break;
244 	default:
245 		panic("bad thread state");
246 		/* NOTREACHED */
247 	}
248 #endif
249 #ifdef AUDIT
250 	audit_thread_free(td);
251 #endif
252 	/* Free all OSD associated to this thread. */
253 	osd_thread_exit(td);
254 	td_softdep_cleanup(td);
255 	MPASS(td->td_su == NULL);
256 
257 	EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
258 	tid_free(td->td_tid);
259 }
260 
261 /*
262  * Initialize type-stable parts of a thread (when newly created).
263  */
264 static int
265 thread_init(void *mem, int size, int flags)
266 {
267 	struct thread *td;
268 
269 	td = (struct thread *)mem;
270 
271 	td->td_sleepqueue = sleepq_alloc();
272 	td->td_turnstile = turnstile_alloc();
273 	td->td_rlqe = NULL;
274 	EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
275 	umtx_thread_init(td);
276 	td->td_kstack = 0;
277 	td->td_sel = NULL;
278 	return (0);
279 }
280 
281 /*
282  * Tear down type-stable parts of a thread (just before being discarded).
283  */
284 static void
285 thread_fini(void *mem, int size)
286 {
287 	struct thread *td;
288 
289 	td = (struct thread *)mem;
290 	EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
291 	rlqentry_free(td->td_rlqe);
292 	turnstile_free(td->td_turnstile);
293 	sleepq_free(td->td_sleepqueue);
294 	umtx_thread_fini(td);
295 	seltdfini(td);
296 }
297 
298 /*
299  * For a newly created process,
300  * link up all the structures and its initial threads etc.
301  * called from:
302  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
303  * proc_dtor() (should go away)
304  * proc_init()
305  */
306 void
307 proc_linkup0(struct proc *p, struct thread *td)
308 {
309 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
310 	proc_linkup(p, td);
311 }
312 
313 void
314 proc_linkup(struct proc *p, struct thread *td)
315 {
316 
317 	sigqueue_init(&p->p_sigqueue, p);
318 	p->p_ksi = ksiginfo_alloc(1);
319 	if (p->p_ksi != NULL) {
320 		/* XXX p_ksi may be null if ksiginfo zone is not ready */
321 		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
322 	}
323 	LIST_INIT(&p->p_mqnotifier);
324 	p->p_numthreads = 0;
325 	thread_link(td, p);
326 }
327 
328 /*
329  * Initialize global thread allocation resources.
330  */
331 void
332 threadinit(void)
333 {
334 
335 	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
336 
337 	/*
338 	 * pid_max cannot be greater than PID_MAX.
339 	 * leave one number for thread0.
340 	 */
341 	tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
342 
343 	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
344 	    thread_ctor, thread_dtor, thread_init, thread_fini,
345 	    32 - 1, UMA_ZONE_NOFREE);
346 	tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
347 	rw_init(&tidhash_lock, "tidhash");
348 }
349 
350 /*
351  * Place an unused thread on the zombie list.
352  * Use the slpq as that must be unused by now.
353  */
354 void
355 thread_zombie(struct thread *td)
356 {
357 	mtx_lock_spin(&zombie_lock);
358 	TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
359 	mtx_unlock_spin(&zombie_lock);
360 }
361 
362 /*
363  * Release a thread that has exited after cpu_throw().
364  */
365 void
366 thread_stash(struct thread *td)
367 {
368 	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
369 	thread_zombie(td);
370 }
371 
372 /*
373  * Reap zombie resources.
374  */
375 void
376 thread_reap(void)
377 {
378 	struct thread *td_first, *td_next;
379 
380 	/*
381 	 * Don't even bother to lock if none at this instant,
382 	 * we really don't care about the next instant.
383 	 */
384 	if (!TAILQ_EMPTY(&zombie_threads)) {
385 		mtx_lock_spin(&zombie_lock);
386 		td_first = TAILQ_FIRST(&zombie_threads);
387 		if (td_first)
388 			TAILQ_INIT(&zombie_threads);
389 		mtx_unlock_spin(&zombie_lock);
390 		while (td_first) {
391 			td_next = TAILQ_NEXT(td_first, td_slpq);
392 			thread_cow_free(td_first);
393 			thread_free(td_first);
394 			td_first = td_next;
395 		}
396 	}
397 }
398 
399 /*
400  * Allocate a thread.
401  */
402 struct thread *
403 thread_alloc(int pages)
404 {
405 	struct thread *td;
406 
407 	thread_reap(); /* check if any zombies to get */
408 
409 	td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
410 	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
411 	if (!vm_thread_new(td, pages)) {
412 		uma_zfree(thread_zone, td);
413 		return (NULL);
414 	}
415 	cpu_thread_alloc(td);
416 	return (td);
417 }
418 
419 int
420 thread_alloc_stack(struct thread *td, int pages)
421 {
422 
423 	KASSERT(td->td_kstack == 0,
424 	    ("thread_alloc_stack called on a thread with kstack"));
425 	if (!vm_thread_new(td, pages))
426 		return (0);
427 	cpu_thread_alloc(td);
428 	return (1);
429 }
430 
431 /*
432  * Deallocate a thread.
433  */
434 void
435 thread_free(struct thread *td)
436 {
437 
438 	lock_profile_thread_exit(td);
439 	if (td->td_cpuset)
440 		cpuset_rel(td->td_cpuset);
441 	td->td_cpuset = NULL;
442 	cpu_thread_free(td);
443 	if (td->td_kstack != 0)
444 		vm_thread_dispose(td);
445 	callout_drain(&td->td_slpcallout);
446 	uma_zfree(thread_zone, td);
447 }
448 
449 void
450 thread_cow_get_proc(struct thread *newtd, struct proc *p)
451 {
452 
453 	PROC_LOCK_ASSERT(p, MA_OWNED);
454 	newtd->td_ucred = crhold(p->p_ucred);
455 	newtd->td_limit = lim_hold(p->p_limit);
456 	newtd->td_cowgen = p->p_cowgen;
457 }
458 
459 void
460 thread_cow_get(struct thread *newtd, struct thread *td)
461 {
462 
463 	newtd->td_ucred = crhold(td->td_ucred);
464 	newtd->td_limit = lim_hold(td->td_limit);
465 	newtd->td_cowgen = td->td_cowgen;
466 }
467 
468 void
469 thread_cow_free(struct thread *td)
470 {
471 
472 	if (td->td_ucred != NULL)
473 		crfree(td->td_ucred);
474 	if (td->td_limit != NULL)
475 		lim_free(td->td_limit);
476 }
477 
478 void
479 thread_cow_update(struct thread *td)
480 {
481 	struct proc *p;
482 	struct ucred *oldcred;
483 	struct plimit *oldlimit;
484 
485 	p = td->td_proc;
486 	oldcred = NULL;
487 	oldlimit = NULL;
488 	PROC_LOCK(p);
489 	if (td->td_ucred != p->p_ucred) {
490 		oldcred = td->td_ucred;
491 		td->td_ucred = crhold(p->p_ucred);
492 	}
493 	if (td->td_limit != p->p_limit) {
494 		oldlimit = td->td_limit;
495 		td->td_limit = lim_hold(p->p_limit);
496 	}
497 	td->td_cowgen = p->p_cowgen;
498 	PROC_UNLOCK(p);
499 	if (oldcred != NULL)
500 		crfree(oldcred);
501 	if (oldlimit != NULL)
502 		lim_free(oldlimit);
503 }
504 
505 /*
506  * Discard the current thread and exit from its context.
507  * Always called with scheduler locked.
508  *
509  * Because we can't free a thread while we're operating under its context,
510  * push the current thread into our CPU's deadthread holder. This means
511  * we needn't worry about someone else grabbing our context before we
512  * do a cpu_throw().
513  */
514 void
515 thread_exit(void)
516 {
517 	uint64_t runtime, new_switchtime;
518 	struct thread *td;
519 	struct thread *td2;
520 	struct proc *p;
521 	int wakeup_swapper;
522 
523 	td = curthread;
524 	p = td->td_proc;
525 
526 	PROC_SLOCK_ASSERT(p, MA_OWNED);
527 	mtx_assert(&Giant, MA_NOTOWNED);
528 
529 	PROC_LOCK_ASSERT(p, MA_OWNED);
530 	KASSERT(p != NULL, ("thread exiting without a process"));
531 	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
532 	    (long)p->p_pid, td->td_name);
533 	SDT_PROBE0(proc, , , lwp__exit);
534 	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
535 
536 	/*
537 	 * drop FPU & debug register state storage, or any other
538 	 * architecture specific resources that
539 	 * would not be on a new untouched process.
540 	 */
541 	cpu_thread_exit(td);
542 
543 	/*
544 	 * The last thread is left attached to the process
545 	 * So that the whole bundle gets recycled. Skip
546 	 * all this stuff if we never had threads.
547 	 * EXIT clears all sign of other threads when
548 	 * it goes to single threading, so the last thread always
549 	 * takes the short path.
550 	 */
551 	if (p->p_flag & P_HADTHREADS) {
552 		if (p->p_numthreads > 1) {
553 			atomic_add_int(&td->td_proc->p_exitthreads, 1);
554 			thread_unlink(td);
555 			td2 = FIRST_THREAD_IN_PROC(p);
556 			sched_exit_thread(td2, td);
557 
558 			/*
559 			 * The test below is NOT true if we are the
560 			 * sole exiting thread. P_STOPPED_SINGLE is unset
561 			 * in exit1() after it is the only survivor.
562 			 */
563 			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
564 				if (p->p_numthreads == p->p_suspcount) {
565 					thread_lock(p->p_singlethread);
566 					wakeup_swapper = thread_unsuspend_one(
567 						p->p_singlethread, p, false);
568 					thread_unlock(p->p_singlethread);
569 					if (wakeup_swapper)
570 						kick_proc0();
571 				}
572 			}
573 
574 			PCPU_SET(deadthread, td);
575 		} else {
576 			/*
577 			 * The last thread is exiting.. but not through exit()
578 			 */
579 			panic ("thread_exit: Last thread exiting on its own");
580 		}
581 	}
582 #ifdef	HWPMC_HOOKS
583 	/*
584 	 * If this thread is part of a process that is being tracked by hwpmc(4),
585 	 * inform the module of the thread's impending exit.
586 	 */
587 	if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
588 		PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
589 		PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
590 	} else if (PMC_SYSTEM_SAMPLING_ACTIVE())
591 		PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL);
592 #endif
593 	PROC_UNLOCK(p);
594 	PROC_STATLOCK(p);
595 	thread_lock(td);
596 	PROC_SUNLOCK(p);
597 
598 	/* Do the same timestamp bookkeeping that mi_switch() would do. */
599 	new_switchtime = cpu_ticks();
600 	runtime = new_switchtime - PCPU_GET(switchtime);
601 	td->td_runtime += runtime;
602 	td->td_incruntime += runtime;
603 	PCPU_SET(switchtime, new_switchtime);
604 	PCPU_SET(switchticks, ticks);
605 	VM_CNT_INC(v_swtch);
606 
607 	/* Save our resource usage in our process. */
608 	td->td_ru.ru_nvcsw++;
609 	ruxagg(p, td);
610 	rucollect(&p->p_ru, &td->td_ru);
611 	PROC_STATUNLOCK(p);
612 
613 	td->td_state = TDS_INACTIVE;
614 #ifdef WITNESS
615 	witness_thread_exit(td);
616 #endif
617 	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
618 	sched_throw(td);
619 	panic("I'm a teapot!");
620 	/* NOTREACHED */
621 }
622 
623 /*
624  * Do any thread specific cleanups that may be needed in wait()
625  * called with Giant, proc and schedlock not held.
626  */
627 void
628 thread_wait(struct proc *p)
629 {
630 	struct thread *td;
631 
632 	mtx_assert(&Giant, MA_NOTOWNED);
633 	KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
634 	KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
635 	td = FIRST_THREAD_IN_PROC(p);
636 	/* Lock the last thread so we spin until it exits cpu_throw(). */
637 	thread_lock(td);
638 	thread_unlock(td);
639 	lock_profile_thread_exit(td);
640 	cpuset_rel(td->td_cpuset);
641 	td->td_cpuset = NULL;
642 	cpu_thread_clean(td);
643 	thread_cow_free(td);
644 	callout_drain(&td->td_slpcallout);
645 	thread_reap();	/* check for zombie threads etc. */
646 }
647 
648 /*
649  * Link a thread to a process.
650  * set up anything that needs to be initialized for it to
651  * be used by the process.
652  */
653 void
654 thread_link(struct thread *td, struct proc *p)
655 {
656 
657 	/*
658 	 * XXX This can't be enabled because it's called for proc0 before
659 	 * its lock has been created.
660 	 * PROC_LOCK_ASSERT(p, MA_OWNED);
661 	 */
662 	td->td_state    = TDS_INACTIVE;
663 	td->td_proc     = p;
664 	td->td_flags    = TDF_INMEM;
665 
666 	LIST_INIT(&td->td_contested);
667 	LIST_INIT(&td->td_lprof[0]);
668 	LIST_INIT(&td->td_lprof[1]);
669 #ifdef EPOCH_TRACE
670 	SLIST_INIT(&td->td_epochs);
671 #endif
672 	sigqueue_init(&td->td_sigqueue, p);
673 	callout_init(&td->td_slpcallout, 1);
674 	TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
675 	p->p_numthreads++;
676 }
677 
678 /*
679  * Called from:
680  *  thread_exit()
681  */
682 void
683 thread_unlink(struct thread *td)
684 {
685 	struct proc *p = td->td_proc;
686 
687 	PROC_LOCK_ASSERT(p, MA_OWNED);
688 #ifdef EPOCH_TRACE
689 	MPASS(SLIST_EMPTY(&td->td_epochs));
690 #endif
691 
692 	TAILQ_REMOVE(&p->p_threads, td, td_plist);
693 	p->p_numthreads--;
694 	/* could clear a few other things here */
695 	/* Must  NOT clear links to proc! */
696 }
697 
698 static int
699 calc_remaining(struct proc *p, int mode)
700 {
701 	int remaining;
702 
703 	PROC_LOCK_ASSERT(p, MA_OWNED);
704 	PROC_SLOCK_ASSERT(p, MA_OWNED);
705 	if (mode == SINGLE_EXIT)
706 		remaining = p->p_numthreads;
707 	else if (mode == SINGLE_BOUNDARY)
708 		remaining = p->p_numthreads - p->p_boundary_count;
709 	else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
710 		remaining = p->p_numthreads - p->p_suspcount;
711 	else
712 		panic("calc_remaining: wrong mode %d", mode);
713 	return (remaining);
714 }
715 
716 static int
717 remain_for_mode(int mode)
718 {
719 
720 	return (mode == SINGLE_ALLPROC ? 0 : 1);
721 }
722 
723 static int
724 weed_inhib(int mode, struct thread *td2, struct proc *p)
725 {
726 	int wakeup_swapper;
727 
728 	PROC_LOCK_ASSERT(p, MA_OWNED);
729 	PROC_SLOCK_ASSERT(p, MA_OWNED);
730 	THREAD_LOCK_ASSERT(td2, MA_OWNED);
731 
732 	wakeup_swapper = 0;
733 	switch (mode) {
734 	case SINGLE_EXIT:
735 		if (TD_IS_SUSPENDED(td2))
736 			wakeup_swapper |= thread_unsuspend_one(td2, p, true);
737 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
738 			wakeup_swapper |= sleepq_abort(td2, EINTR);
739 		break;
740 	case SINGLE_BOUNDARY:
741 	case SINGLE_NO_EXIT:
742 		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & TDF_BOUNDARY) == 0)
743 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
744 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0)
745 			wakeup_swapper |= sleepq_abort(td2, ERESTART);
746 		break;
747 	case SINGLE_ALLPROC:
748 		/*
749 		 * ALLPROC suspend tries to avoid spurious EINTR for
750 		 * threads sleeping interruptable, by suspending the
751 		 * thread directly, similarly to sig_suspend_threads().
752 		 * Since such sleep is not performed at the user
753 		 * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
754 		 * is used to avoid immediate un-suspend.
755 		 */
756 		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
757 		    TDF_ALLPROCSUSP)) == 0)
758 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
759 		if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR) != 0) {
760 			if ((td2->td_flags & TDF_SBDRY) == 0) {
761 				thread_suspend_one(td2);
762 				td2->td_flags |= TDF_ALLPROCSUSP;
763 			} else {
764 				wakeup_swapper |= sleepq_abort(td2, ERESTART);
765 			}
766 		}
767 		break;
768 	}
769 	return (wakeup_swapper);
770 }
771 
772 /*
773  * Enforce single-threading.
774  *
775  * Returns 1 if the caller must abort (another thread is waiting to
776  * exit the process or similar). Process is locked!
777  * Returns 0 when you are successfully the only thread running.
778  * A process has successfully single threaded in the suspend mode when
779  * There are no threads in user mode. Threads in the kernel must be
780  * allowed to continue until they get to the user boundary. They may even
781  * copy out their return values and data before suspending. They may however be
782  * accelerated in reaching the user boundary as we will wake up
783  * any sleeping threads that are interruptable. (PCATCH).
784  */
785 int
786 thread_single(struct proc *p, int mode)
787 {
788 	struct thread *td;
789 	struct thread *td2;
790 	int remaining, wakeup_swapper;
791 
792 	td = curthread;
793 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
794 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
795 	    ("invalid mode %d", mode));
796 	/*
797 	 * If allowing non-ALLPROC singlethreading for non-curproc
798 	 * callers, calc_remaining() and remain_for_mode() should be
799 	 * adjusted to also account for td->td_proc != p.  For now
800 	 * this is not implemented because it is not used.
801 	 */
802 	KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
803 	    (mode != SINGLE_ALLPROC && td->td_proc == p),
804 	    ("mode %d proc %p curproc %p", mode, p, td->td_proc));
805 	mtx_assert(&Giant, MA_NOTOWNED);
806 	PROC_LOCK_ASSERT(p, MA_OWNED);
807 
808 	if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
809 		return (0);
810 
811 	/* Is someone already single threading? */
812 	if (p->p_singlethread != NULL && p->p_singlethread != td)
813 		return (1);
814 
815 	if (mode == SINGLE_EXIT) {
816 		p->p_flag |= P_SINGLE_EXIT;
817 		p->p_flag &= ~P_SINGLE_BOUNDARY;
818 	} else {
819 		p->p_flag &= ~P_SINGLE_EXIT;
820 		if (mode == SINGLE_BOUNDARY)
821 			p->p_flag |= P_SINGLE_BOUNDARY;
822 		else
823 			p->p_flag &= ~P_SINGLE_BOUNDARY;
824 	}
825 	if (mode == SINGLE_ALLPROC)
826 		p->p_flag |= P_TOTAL_STOP;
827 	p->p_flag |= P_STOPPED_SINGLE;
828 	PROC_SLOCK(p);
829 	p->p_singlethread = td;
830 	remaining = calc_remaining(p, mode);
831 	while (remaining != remain_for_mode(mode)) {
832 		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
833 			goto stopme;
834 		wakeup_swapper = 0;
835 		FOREACH_THREAD_IN_PROC(p, td2) {
836 			if (td2 == td)
837 				continue;
838 			thread_lock(td2);
839 			td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
840 			if (TD_IS_INHIBITED(td2)) {
841 				wakeup_swapper |= weed_inhib(mode, td2, p);
842 #ifdef SMP
843 			} else if (TD_IS_RUNNING(td2) && td != td2) {
844 				forward_signal(td2);
845 #endif
846 			}
847 			thread_unlock(td2);
848 		}
849 		if (wakeup_swapper)
850 			kick_proc0();
851 		remaining = calc_remaining(p, mode);
852 
853 		/*
854 		 * Maybe we suspended some threads.. was it enough?
855 		 */
856 		if (remaining == remain_for_mode(mode))
857 			break;
858 
859 stopme:
860 		/*
861 		 * Wake us up when everyone else has suspended.
862 		 * In the mean time we suspend as well.
863 		 */
864 		thread_suspend_switch(td, p);
865 		remaining = calc_remaining(p, mode);
866 	}
867 	if (mode == SINGLE_EXIT) {
868 		/*
869 		 * Convert the process to an unthreaded process.  The
870 		 * SINGLE_EXIT is called by exit1() or execve(), in
871 		 * both cases other threads must be retired.
872 		 */
873 		KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
874 		p->p_singlethread = NULL;
875 		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
876 
877 		/*
878 		 * Wait for any remaining threads to exit cpu_throw().
879 		 */
880 		while (p->p_exitthreads != 0) {
881 			PROC_SUNLOCK(p);
882 			PROC_UNLOCK(p);
883 			sched_relinquish(td);
884 			PROC_LOCK(p);
885 			PROC_SLOCK(p);
886 		}
887 	} else if (mode == SINGLE_BOUNDARY) {
888 		/*
889 		 * Wait until all suspended threads are removed from
890 		 * the processors.  The thread_suspend_check()
891 		 * increments p_boundary_count while it is still
892 		 * running, which makes it possible for the execve()
893 		 * to destroy vmspace while our other threads are
894 		 * still using the address space.
895 		 *
896 		 * We lock the thread, which is only allowed to
897 		 * succeed after context switch code finished using
898 		 * the address space.
899 		 */
900 		FOREACH_THREAD_IN_PROC(p, td2) {
901 			if (td2 == td)
902 				continue;
903 			thread_lock(td2);
904 			KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
905 			    ("td %p not on boundary", td2));
906 			KASSERT(TD_IS_SUSPENDED(td2),
907 			    ("td %p is not suspended", td2));
908 			thread_unlock(td2);
909 		}
910 	}
911 	PROC_SUNLOCK(p);
912 	return (0);
913 }
914 
915 bool
916 thread_suspend_check_needed(void)
917 {
918 	struct proc *p;
919 	struct thread *td;
920 
921 	td = curthread;
922 	p = td->td_proc;
923 	PROC_LOCK_ASSERT(p, MA_OWNED);
924 	return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
925 	    (td->td_dbgflags & TDB_SUSPEND) != 0));
926 }
927 
928 /*
929  * Called in from locations that can safely check to see
930  * whether we have to suspend or at least throttle for a
931  * single-thread event (e.g. fork).
932  *
933  * Such locations include userret().
934  * If the "return_instead" argument is non zero, the thread must be able to
935  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
936  *
937  * The 'return_instead' argument tells the function if it may do a
938  * thread_exit() or suspend, or whether the caller must abort and back
939  * out instead.
940  *
941  * If the thread that set the single_threading request has set the
942  * P_SINGLE_EXIT bit in the process flags then this call will never return
943  * if 'return_instead' is false, but will exit.
944  *
945  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
946  *---------------+--------------------+---------------------
947  *       0       | returns 0          |   returns 0 or 1
948  *               | when ST ends       |   immediately
949  *---------------+--------------------+---------------------
950  *       1       | thread exits       |   returns 1
951  *               |                    |  immediately
952  * 0 = thread_exit() or suspension ok,
953  * other = return error instead of stopping the thread.
954  *
955  * While a full suspension is under effect, even a single threading
956  * thread would be suspended if it made this call (but it shouldn't).
957  * This call should only be made from places where
958  * thread_exit() would be safe as that may be the outcome unless
959  * return_instead is set.
960  */
961 int
962 thread_suspend_check(int return_instead)
963 {
964 	struct thread *td;
965 	struct proc *p;
966 	int wakeup_swapper;
967 
968 	td = curthread;
969 	p = td->td_proc;
970 	mtx_assert(&Giant, MA_NOTOWNED);
971 	PROC_LOCK_ASSERT(p, MA_OWNED);
972 	while (thread_suspend_check_needed()) {
973 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
974 			KASSERT(p->p_singlethread != NULL,
975 			    ("singlethread not set"));
976 			/*
977 			 * The only suspension in action is a
978 			 * single-threading. Single threader need not stop.
979 			 * It is safe to access p->p_singlethread unlocked
980 			 * because it can only be set to our address by us.
981 			 */
982 			if (p->p_singlethread == td)
983 				return (0);	/* Exempt from stopping. */
984 		}
985 		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
986 			return (EINTR);
987 
988 		/* Should we goto user boundary if we didn't come from there? */
989 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
990 		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
991 			return (ERESTART);
992 
993 		/*
994 		 * Ignore suspend requests if they are deferred.
995 		 */
996 		if ((td->td_flags & TDF_SBDRY) != 0) {
997 			KASSERT(return_instead,
998 			    ("TDF_SBDRY set for unsafe thread_suspend_check"));
999 			KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
1000 			    (TDF_SEINTR | TDF_SERESTART),
1001 			    ("both TDF_SEINTR and TDF_SERESTART"));
1002 			return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
1003 		}
1004 
1005 		/*
1006 		 * If the process is waiting for us to exit,
1007 		 * this thread should just suicide.
1008 		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1009 		 */
1010 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1011 			PROC_UNLOCK(p);
1012 
1013 			/*
1014 			 * Allow Linux emulation layer to do some work
1015 			 * before thread suicide.
1016 			 */
1017 			if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1018 				(p->p_sysent->sv_thread_detach)(td);
1019 			umtx_thread_exit(td);
1020 			kern_thr_exit(td);
1021 			panic("stopped thread did not exit");
1022 		}
1023 
1024 		PROC_SLOCK(p);
1025 		thread_stopped(p);
1026 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1027 			if (p->p_numthreads == p->p_suspcount + 1) {
1028 				thread_lock(p->p_singlethread);
1029 				wakeup_swapper = thread_unsuspend_one(
1030 				    p->p_singlethread, p, false);
1031 				thread_unlock(p->p_singlethread);
1032 				if (wakeup_swapper)
1033 					kick_proc0();
1034 			}
1035 		}
1036 		PROC_UNLOCK(p);
1037 		thread_lock(td);
1038 		/*
1039 		 * When a thread suspends, it just
1040 		 * gets taken off all queues.
1041 		 */
1042 		thread_suspend_one(td);
1043 		if (return_instead == 0) {
1044 			p->p_boundary_count++;
1045 			td->td_flags |= TDF_BOUNDARY;
1046 		}
1047 		PROC_SUNLOCK(p);
1048 		mi_switch(SW_INVOL | SWT_SUSPEND, NULL);
1049 		thread_unlock(td);
1050 		PROC_LOCK(p);
1051 	}
1052 	return (0);
1053 }
1054 
1055 void
1056 thread_suspend_switch(struct thread *td, struct proc *p)
1057 {
1058 
1059 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1060 	PROC_LOCK_ASSERT(p, MA_OWNED);
1061 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1062 	/*
1063 	 * We implement thread_suspend_one in stages here to avoid
1064 	 * dropping the proc lock while the thread lock is owned.
1065 	 */
1066 	if (p == td->td_proc) {
1067 		thread_stopped(p);
1068 		p->p_suspcount++;
1069 	}
1070 	PROC_UNLOCK(p);
1071 	thread_lock(td);
1072 	td->td_flags &= ~TDF_NEEDSUSPCHK;
1073 	TD_SET_SUSPENDED(td);
1074 	sched_sleep(td, 0);
1075 	PROC_SUNLOCK(p);
1076 	DROP_GIANT();
1077 	mi_switch(SW_VOL | SWT_SUSPEND, NULL);
1078 	thread_unlock(td);
1079 	PICKUP_GIANT();
1080 	PROC_LOCK(p);
1081 	PROC_SLOCK(p);
1082 }
1083 
1084 void
1085 thread_suspend_one(struct thread *td)
1086 {
1087 	struct proc *p;
1088 
1089 	p = td->td_proc;
1090 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1091 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1092 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1093 	p->p_suspcount++;
1094 	td->td_flags &= ~TDF_NEEDSUSPCHK;
1095 	TD_SET_SUSPENDED(td);
1096 	sched_sleep(td, 0);
1097 }
1098 
1099 static int
1100 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1101 {
1102 
1103 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1104 	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1105 	TD_CLR_SUSPENDED(td);
1106 	td->td_flags &= ~TDF_ALLPROCSUSP;
1107 	if (td->td_proc == p) {
1108 		PROC_SLOCK_ASSERT(p, MA_OWNED);
1109 		p->p_suspcount--;
1110 		if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1111 			td->td_flags &= ~TDF_BOUNDARY;
1112 			p->p_boundary_count--;
1113 		}
1114 	}
1115 	return (setrunnable(td));
1116 }
1117 
1118 /*
1119  * Allow all threads blocked by single threading to continue running.
1120  */
1121 void
1122 thread_unsuspend(struct proc *p)
1123 {
1124 	struct thread *td;
1125 	int wakeup_swapper;
1126 
1127 	PROC_LOCK_ASSERT(p, MA_OWNED);
1128 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1129 	wakeup_swapper = 0;
1130 	if (!P_SHOULDSTOP(p)) {
1131                 FOREACH_THREAD_IN_PROC(p, td) {
1132 			thread_lock(td);
1133 			if (TD_IS_SUSPENDED(td)) {
1134 				wakeup_swapper |= thread_unsuspend_one(td, p,
1135 				    true);
1136 			}
1137 			thread_unlock(td);
1138 		}
1139 	} else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1140 	    p->p_numthreads == p->p_suspcount) {
1141 		/*
1142 		 * Stopping everything also did the job for the single
1143 		 * threading request. Now we've downgraded to single-threaded,
1144 		 * let it continue.
1145 		 */
1146 		if (p->p_singlethread->td_proc == p) {
1147 			thread_lock(p->p_singlethread);
1148 			wakeup_swapper = thread_unsuspend_one(
1149 			    p->p_singlethread, p, false);
1150 			thread_unlock(p->p_singlethread);
1151 		}
1152 	}
1153 	if (wakeup_swapper)
1154 		kick_proc0();
1155 }
1156 
1157 /*
1158  * End the single threading mode..
1159  */
1160 void
1161 thread_single_end(struct proc *p, int mode)
1162 {
1163 	struct thread *td;
1164 	int wakeup_swapper;
1165 
1166 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1167 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1168 	    ("invalid mode %d", mode));
1169 	PROC_LOCK_ASSERT(p, MA_OWNED);
1170 	KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1171 	    (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1172 	    ("mode %d does not match P_TOTAL_STOP", mode));
1173 	KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1174 	    ("thread_single_end from other thread %p %p",
1175 	    curthread, p->p_singlethread));
1176 	KASSERT(mode != SINGLE_BOUNDARY ||
1177 	    (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1178 	    ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1179 	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1180 	    P_TOTAL_STOP);
1181 	PROC_SLOCK(p);
1182 	p->p_singlethread = NULL;
1183 	wakeup_swapper = 0;
1184 	/*
1185 	 * If there are other threads they may now run,
1186 	 * unless of course there is a blanket 'stop order'
1187 	 * on the process. The single threader must be allowed
1188 	 * to continue however as this is a bad place to stop.
1189 	 */
1190 	if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1191                 FOREACH_THREAD_IN_PROC(p, td) {
1192 			thread_lock(td);
1193 			if (TD_IS_SUSPENDED(td)) {
1194 				wakeup_swapper |= thread_unsuspend_one(td, p,
1195 				    mode == SINGLE_BOUNDARY);
1196 			}
1197 			thread_unlock(td);
1198 		}
1199 	}
1200 	KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1201 	    ("inconsistent boundary count %d", p->p_boundary_count));
1202 	PROC_SUNLOCK(p);
1203 	if (wakeup_swapper)
1204 		kick_proc0();
1205 }
1206 
1207 struct thread *
1208 thread_find(struct proc *p, lwpid_t tid)
1209 {
1210 	struct thread *td;
1211 
1212 	PROC_LOCK_ASSERT(p, MA_OWNED);
1213 	FOREACH_THREAD_IN_PROC(p, td) {
1214 		if (td->td_tid == tid)
1215 			break;
1216 	}
1217 	return (td);
1218 }
1219 
1220 /* Locate a thread by number; return with proc lock held. */
1221 struct thread *
1222 tdfind(lwpid_t tid, pid_t pid)
1223 {
1224 #define RUN_THRESH	16
1225 	struct thread *td;
1226 	int run = 0;
1227 
1228 	rw_rlock(&tidhash_lock);
1229 	LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1230 		if (td->td_tid == tid) {
1231 			if (pid != -1 && td->td_proc->p_pid != pid) {
1232 				td = NULL;
1233 				break;
1234 			}
1235 			PROC_LOCK(td->td_proc);
1236 			if (td->td_proc->p_state == PRS_NEW) {
1237 				PROC_UNLOCK(td->td_proc);
1238 				td = NULL;
1239 				break;
1240 			}
1241 			if (run > RUN_THRESH) {
1242 				if (rw_try_upgrade(&tidhash_lock)) {
1243 					LIST_REMOVE(td, td_hash);
1244 					LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1245 						td, td_hash);
1246 					rw_wunlock(&tidhash_lock);
1247 					return (td);
1248 				}
1249 			}
1250 			break;
1251 		}
1252 		run++;
1253 	}
1254 	rw_runlock(&tidhash_lock);
1255 	return (td);
1256 }
1257 
1258 void
1259 tidhash_add(struct thread *td)
1260 {
1261 	rw_wlock(&tidhash_lock);
1262 	LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1263 	rw_wunlock(&tidhash_lock);
1264 }
1265 
1266 void
1267 tidhash_remove(struct thread *td)
1268 {
1269 	rw_wlock(&tidhash_lock);
1270 	LIST_REMOVE(td, td_hash);
1271 	rw_wunlock(&tidhash_lock);
1272 }
1273