1 /* 2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice(s), this list of conditions and the following disclaimer as 10 * the first lines of this file unmodified other than the possible 11 * addition of one or more copyright notices. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice(s), this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY 17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 19 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY 20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 26 * DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/kernel.h> 34 #include <sys/lock.h> 35 #include <sys/malloc.h> 36 #include <sys/mutex.h> 37 #include <sys/proc.h> 38 #include <sys/smp.h> 39 #include <sys/sysctl.h> 40 #include <sys/sysproto.h> 41 #include <sys/filedesc.h> 42 #include <sys/sched.h> 43 #include <sys/signalvar.h> 44 #include <sys/sx.h> 45 #include <sys/tty.h> 46 #include <sys/user.h> 47 #include <sys/jail.h> 48 #include <sys/kse.h> 49 #include <sys/ktr.h> 50 #include <sys/ucontext.h> 51 52 #include <vm/vm.h> 53 #include <vm/vm_object.h> 54 #include <vm/pmap.h> 55 #include <vm/uma.h> 56 #include <vm/vm_map.h> 57 58 #include <machine/frame.h> 59 60 /* 61 * KSEGRP related storage. 62 */ 63 static uma_zone_t ksegrp_zone; 64 static uma_zone_t kse_zone; 65 static uma_zone_t thread_zone; 66 static uma_zone_t upcall_zone; 67 68 /* DEBUG ONLY */ 69 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation"); 70 static int thread_debug = 0; 71 SYSCTL_INT(_kern_threads, OID_AUTO, debug, CTLFLAG_RW, 72 &thread_debug, 0, "thread debug"); 73 74 static int max_threads_per_proc = 150; 75 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW, 76 &max_threads_per_proc, 0, "Limit on threads per proc"); 77 78 static int max_groups_per_proc = 50; 79 SYSCTL_INT(_kern_threads, OID_AUTO, max_groups_per_proc, CTLFLAG_RW, 80 &max_groups_per_proc, 0, "Limit on thread groups per proc"); 81 82 static int max_threads_hits; 83 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD, 84 &max_threads_hits, 0, ""); 85 86 static int virtual_cpu; 87 88 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start)) 89 90 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads); 91 TAILQ_HEAD(, kse) zombie_kses = TAILQ_HEAD_INITIALIZER(zombie_kses); 92 TAILQ_HEAD(, ksegrp) zombie_ksegrps = TAILQ_HEAD_INITIALIZER(zombie_ksegrps); 93 TAILQ_HEAD(, kse_upcall) zombie_upcalls = 94 TAILQ_HEAD_INITIALIZER(zombie_upcalls); 95 struct mtx kse_zombie_lock; 96 MTX_SYSINIT(kse_zombie_lock, &kse_zombie_lock, "kse zombie lock", MTX_SPIN); 97 98 static void kse_purge(struct proc *p, struct thread *td); 99 static void kse_purge_group(struct thread *td); 100 static int thread_update_usr_ticks(struct thread *td, int user); 101 static void thread_alloc_spare(struct thread *td, struct thread *spare); 102 103 static int 104 sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS) 105 { 106 int error, new_val; 107 int def_val; 108 109 #ifdef SMP 110 def_val = mp_ncpus; 111 #else 112 def_val = 1; 113 #endif 114 if (virtual_cpu == 0) 115 new_val = def_val; 116 else 117 new_val = virtual_cpu; 118 error = sysctl_handle_int(oidp, &new_val, 0, req); 119 if (error != 0 || req->newptr == NULL) 120 return (error); 121 if (new_val < 0) 122 return (EINVAL); 123 virtual_cpu = new_val; 124 return (0); 125 } 126 127 /* DEBUG ONLY */ 128 SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW, 129 0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I", 130 "debug virtual cpus"); 131 132 /* 133 * Prepare a thread for use. 134 */ 135 static void 136 thread_ctor(void *mem, int size, void *arg) 137 { 138 struct thread *td; 139 140 td = (struct thread *)mem; 141 td->td_state = TDS_INACTIVE; 142 td->td_oncpu = NOCPU; 143 } 144 145 /* 146 * Reclaim a thread after use. 147 */ 148 static void 149 thread_dtor(void *mem, int size, void *arg) 150 { 151 struct thread *td; 152 153 td = (struct thread *)mem; 154 155 #ifdef INVARIANTS 156 /* Verify that this thread is in a safe state to free. */ 157 switch (td->td_state) { 158 case TDS_INHIBITED: 159 case TDS_RUNNING: 160 case TDS_CAN_RUN: 161 case TDS_RUNQ: 162 /* 163 * We must never unlink a thread that is in one of 164 * these states, because it is currently active. 165 */ 166 panic("bad state for thread unlinking"); 167 /* NOTREACHED */ 168 case TDS_INACTIVE: 169 break; 170 default: 171 panic("bad thread state"); 172 /* NOTREACHED */ 173 } 174 #endif 175 } 176 177 /* 178 * Initialize type-stable parts of a thread (when newly created). 179 */ 180 static void 181 thread_init(void *mem, int size) 182 { 183 struct thread *td; 184 185 td = (struct thread *)mem; 186 mtx_lock(&Giant); 187 pmap_new_thread(td, 0); 188 mtx_unlock(&Giant); 189 cpu_thread_setup(td); 190 td->td_sched = (struct td_sched *)&td[1]; 191 } 192 193 /* 194 * Tear down type-stable parts of a thread (just before being discarded). 195 */ 196 static void 197 thread_fini(void *mem, int size) 198 { 199 struct thread *td; 200 201 td = (struct thread *)mem; 202 pmap_dispose_thread(td); 203 } 204 205 /* 206 * Initialize type-stable parts of a kse (when newly created). 207 */ 208 static void 209 kse_init(void *mem, int size) 210 { 211 struct kse *ke; 212 213 ke = (struct kse *)mem; 214 ke->ke_sched = (struct ke_sched *)&ke[1]; 215 } 216 217 /* 218 * Initialize type-stable parts of a ksegrp (when newly created). 219 */ 220 static void 221 ksegrp_init(void *mem, int size) 222 { 223 struct ksegrp *kg; 224 225 kg = (struct ksegrp *)mem; 226 kg->kg_sched = (struct kg_sched *)&kg[1]; 227 } 228 229 /* 230 * KSE is linked into kse group. 231 */ 232 void 233 kse_link(struct kse *ke, struct ksegrp *kg) 234 { 235 struct proc *p = kg->kg_proc; 236 237 TAILQ_INSERT_HEAD(&kg->kg_kseq, ke, ke_kglist); 238 kg->kg_kses++; 239 ke->ke_state = KES_UNQUEUED; 240 ke->ke_proc = p; 241 ke->ke_ksegrp = kg; 242 ke->ke_thread = NULL; 243 ke->ke_oncpu = NOCPU; 244 ke->ke_flags = 0; 245 } 246 247 void 248 kse_unlink(struct kse *ke) 249 { 250 struct ksegrp *kg; 251 252 mtx_assert(&sched_lock, MA_OWNED); 253 kg = ke->ke_ksegrp; 254 TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist); 255 if (ke->ke_state == KES_IDLE) { 256 TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist); 257 kg->kg_idle_kses--; 258 } 259 if (--kg->kg_kses == 0) 260 ksegrp_unlink(kg); 261 /* 262 * Aggregate stats from the KSE 263 */ 264 kse_stash(ke); 265 } 266 267 void 268 ksegrp_link(struct ksegrp *kg, struct proc *p) 269 { 270 271 TAILQ_INIT(&kg->kg_threads); 272 TAILQ_INIT(&kg->kg_runq); /* links with td_runq */ 273 TAILQ_INIT(&kg->kg_slpq); /* links with td_runq */ 274 TAILQ_INIT(&kg->kg_kseq); /* all kses in ksegrp */ 275 TAILQ_INIT(&kg->kg_iq); /* all idle kses in ksegrp */ 276 TAILQ_INIT(&kg->kg_upcalls); /* all upcall structure in ksegrp */ 277 kg->kg_proc = p; 278 /* 279 * the following counters are in the -zero- section 280 * and may not need clearing 281 */ 282 kg->kg_numthreads = 0; 283 kg->kg_runnable = 0; 284 kg->kg_kses = 0; 285 kg->kg_runq_kses = 0; /* XXXKSE change name */ 286 kg->kg_idle_kses = 0; 287 kg->kg_numupcalls = 0; 288 /* link it in now that it's consistent */ 289 p->p_numksegrps++; 290 TAILQ_INSERT_HEAD(&p->p_ksegrps, kg, kg_ksegrp); 291 } 292 293 void 294 ksegrp_unlink(struct ksegrp *kg) 295 { 296 struct proc *p; 297 298 mtx_assert(&sched_lock, MA_OWNED); 299 KASSERT((kg->kg_numthreads == 0), ("ksegrp_unlink: residual threads")); 300 KASSERT((kg->kg_kses == 0), ("ksegrp_unlink: residual kses")); 301 KASSERT((kg->kg_numupcalls == 0), ("ksegrp_unlink: residual upcalls")); 302 303 p = kg->kg_proc; 304 TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp); 305 p->p_numksegrps--; 306 /* 307 * Aggregate stats from the KSE 308 */ 309 ksegrp_stash(kg); 310 } 311 312 struct kse_upcall * 313 upcall_alloc(void) 314 { 315 struct kse_upcall *ku; 316 317 ku = uma_zalloc(upcall_zone, M_WAITOK); 318 bzero(ku, sizeof(*ku)); 319 return (ku); 320 } 321 322 void 323 upcall_free(struct kse_upcall *ku) 324 { 325 326 uma_zfree(upcall_zone, ku); 327 } 328 329 void 330 upcall_link(struct kse_upcall *ku, struct ksegrp *kg) 331 { 332 333 mtx_assert(&sched_lock, MA_OWNED); 334 TAILQ_INSERT_TAIL(&kg->kg_upcalls, ku, ku_link); 335 ku->ku_ksegrp = kg; 336 kg->kg_numupcalls++; 337 } 338 339 void 340 upcall_unlink(struct kse_upcall *ku) 341 { 342 struct ksegrp *kg = ku->ku_ksegrp; 343 344 mtx_assert(&sched_lock, MA_OWNED); 345 KASSERT(ku->ku_owner == NULL, ("%s: have owner", __func__)); 346 TAILQ_REMOVE(&kg->kg_upcalls, ku, ku_link); 347 kg->kg_numupcalls--; 348 upcall_stash(ku); 349 } 350 351 void 352 upcall_remove(struct thread *td) 353 { 354 355 if (td->td_upcall) { 356 td->td_upcall->ku_owner = NULL; 357 upcall_unlink(td->td_upcall); 358 td->td_upcall = 0; 359 } 360 } 361 362 /* 363 * For a newly created process, 364 * link up all the structures and its initial threads etc. 365 */ 366 void 367 proc_linkup(struct proc *p, struct ksegrp *kg, 368 struct kse *ke, struct thread *td) 369 { 370 371 TAILQ_INIT(&p->p_ksegrps); /* all ksegrps in proc */ 372 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 373 TAILQ_INIT(&p->p_suspended); /* Threads suspended */ 374 p->p_numksegrps = 0; 375 p->p_numthreads = 0; 376 377 ksegrp_link(kg, p); 378 kse_link(ke, kg); 379 thread_link(td, kg); 380 } 381 382 /* 383 struct kse_thr_interrupt_args { 384 struct kse_thr_mailbox * tmbx; 385 }; 386 */ 387 int 388 kse_thr_interrupt(struct thread *td, struct kse_thr_interrupt_args *uap) 389 { 390 struct proc *p; 391 struct thread *td2; 392 393 p = td->td_proc; 394 if (!(p->p_flag & P_THREADED) || (uap->tmbx == NULL)) 395 return (EINVAL); 396 mtx_lock_spin(&sched_lock); 397 FOREACH_THREAD_IN_PROC(p, td2) { 398 if (td2->td_mailbox == uap->tmbx) { 399 td2->td_flags |= TDF_INTERRUPT; 400 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR)) { 401 if (td2->td_flags & TDF_CVWAITQ) 402 cv_abort(td2); 403 else 404 abortsleep(td2); 405 } 406 mtx_unlock_spin(&sched_lock); 407 return (0); 408 } 409 } 410 mtx_unlock_spin(&sched_lock); 411 return (ESRCH); 412 } 413 414 /* 415 struct kse_exit_args { 416 register_t dummy; 417 }; 418 */ 419 int 420 kse_exit(struct thread *td, struct kse_exit_args *uap) 421 { 422 struct proc *p; 423 struct ksegrp *kg; 424 struct kse *ke; 425 426 p = td->td_proc; 427 if (td->td_upcall == NULL || TD_CAN_UNBIND(td)) 428 return (EINVAL); 429 kg = td->td_ksegrp; 430 /* Serialize removing upcall */ 431 PROC_LOCK(p); 432 mtx_lock_spin(&sched_lock); 433 if ((kg->kg_numupcalls == 1) && (kg->kg_numthreads > 1)) { 434 mtx_unlock_spin(&sched_lock); 435 PROC_UNLOCK(p); 436 return (EDEADLK); 437 } 438 ke = td->td_kse; 439 upcall_remove(td); 440 if (p->p_numthreads == 1) { 441 kse_purge(p, td); 442 p->p_flag &= ~P_THREADED; 443 mtx_unlock_spin(&sched_lock); 444 PROC_UNLOCK(p); 445 } else { 446 if (kg->kg_numthreads == 1) { /* Shutdown a group */ 447 kse_purge_group(td); 448 ke->ke_flags |= KEF_EXIT; 449 } 450 thread_stopped(p); 451 thread_exit(); 452 /* NOTREACHED */ 453 } 454 return (0); 455 } 456 457 /* 458 * Either becomes an upcall or waits for an awakening event and 459 * then becomes an upcall. Only error cases return. 460 */ 461 /* 462 struct kse_release_args { 463 struct timespec *timeout; 464 }; 465 */ 466 int 467 kse_release(struct thread *td, struct kse_release_args *uap) 468 { 469 struct proc *p; 470 struct ksegrp *kg; 471 struct timespec ts, ts2, ts3, timeout; 472 struct timeval tv; 473 int error; 474 475 p = td->td_proc; 476 kg = td->td_ksegrp; 477 if (td->td_upcall == NULL || TD_CAN_UNBIND(td)) 478 return (EINVAL); 479 if (uap->timeout != NULL) { 480 if ((error = copyin(uap->timeout, &timeout, sizeof(timeout)))) 481 return (error); 482 getnanouptime(&ts); 483 timespecadd(&ts, &timeout); 484 TIMESPEC_TO_TIMEVAL(&tv, &timeout); 485 } 486 mtx_lock_spin(&sched_lock); 487 /* Change OURSELF to become an upcall. */ 488 td->td_flags = TDF_UPCALLING; 489 #if 0 /* XXX This shouldn't be necessary */ 490 if (p->p_sflag & PS_NEEDSIGCHK) 491 td->td_flags |= TDF_ASTPENDING; 492 #endif 493 mtx_unlock_spin(&sched_lock); 494 PROC_LOCK(p); 495 while ((td->td_upcall->ku_flags & KUF_DOUPCALL) == 0 && 496 (kg->kg_completed == NULL)) { 497 kg->kg_upsleeps++; 498 error = msleep(&kg->kg_completed, &p->p_mtx, PPAUSE|PCATCH, 499 "kse_rel", (uap->timeout ? tvtohz(&tv) : 0)); 500 kg->kg_upsleeps--; 501 PROC_UNLOCK(p); 502 if (uap->timeout == NULL || error != EWOULDBLOCK) 503 return (0); 504 getnanouptime(&ts2); 505 if (timespeccmp(&ts2, &ts, >=)) 506 return (0); 507 ts3 = ts; 508 timespecsub(&ts3, &ts2); 509 TIMESPEC_TO_TIMEVAL(&tv, &ts3); 510 PROC_LOCK(p); 511 } 512 PROC_UNLOCK(p); 513 return (0); 514 } 515 516 /* struct kse_wakeup_args { 517 struct kse_mailbox *mbx; 518 }; */ 519 int 520 kse_wakeup(struct thread *td, struct kse_wakeup_args *uap) 521 { 522 struct proc *p; 523 struct ksegrp *kg; 524 struct kse_upcall *ku; 525 struct thread *td2; 526 527 p = td->td_proc; 528 td2 = NULL; 529 ku = NULL; 530 /* KSE-enabled processes only, please. */ 531 if (!(p->p_flag & P_THREADED)) 532 return (EINVAL); 533 PROC_LOCK(p); 534 mtx_lock_spin(&sched_lock); 535 if (uap->mbx) { 536 FOREACH_KSEGRP_IN_PROC(p, kg) { 537 FOREACH_UPCALL_IN_GROUP(kg, ku) { 538 if (ku->ku_mailbox == uap->mbx) 539 break; 540 } 541 if (ku) 542 break; 543 } 544 } else { 545 kg = td->td_ksegrp; 546 if (kg->kg_upsleeps) { 547 wakeup_one(&kg->kg_completed); 548 mtx_unlock_spin(&sched_lock); 549 PROC_UNLOCK(p); 550 return (0); 551 } 552 ku = TAILQ_FIRST(&kg->kg_upcalls); 553 } 554 if (ku) { 555 if ((td2 = ku->ku_owner) == NULL) { 556 panic("%s: no owner", __func__); 557 } else if (TD_ON_SLEEPQ(td2) && 558 (td2->td_wchan == &kg->kg_completed)) { 559 abortsleep(td2); 560 } else { 561 ku->ku_flags |= KUF_DOUPCALL; 562 } 563 mtx_unlock_spin(&sched_lock); 564 PROC_UNLOCK(p); 565 return (0); 566 } 567 mtx_unlock_spin(&sched_lock); 568 PROC_UNLOCK(p); 569 return (ESRCH); 570 } 571 572 /* 573 * No new KSEG: first call: use current KSE, don't schedule an upcall 574 * All other situations, do allocate max new KSEs and schedule an upcall. 575 */ 576 /* struct kse_create_args { 577 struct kse_mailbox *mbx; 578 int newgroup; 579 }; */ 580 int 581 kse_create(struct thread *td, struct kse_create_args *uap) 582 { 583 struct kse *newke; 584 struct ksegrp *newkg; 585 struct ksegrp *kg; 586 struct proc *p; 587 struct kse_mailbox mbx; 588 struct kse_upcall *newku; 589 int err, ncpus; 590 591 p = td->td_proc; 592 if ((err = copyin(uap->mbx, &mbx, sizeof(mbx)))) 593 return (err); 594 595 /* Too bad, why hasn't kernel always a cpu counter !? */ 596 #ifdef SMP 597 ncpus = mp_ncpus; 598 #else 599 ncpus = 1; 600 #endif 601 if (thread_debug && virtual_cpu != 0) 602 ncpus = virtual_cpu; 603 604 /* Easier to just set it than to test and set */ 605 PROC_LOCK(p); 606 p->p_flag |= P_THREADED; 607 PROC_UNLOCK(p); 608 kg = td->td_ksegrp; 609 if (uap->newgroup) { 610 /* Have race condition but it is cheap */ 611 if (p->p_numksegrps >= max_groups_per_proc) 612 return (EPROCLIM); 613 /* 614 * If we want a new KSEGRP it doesn't matter whether 615 * we have already fired up KSE mode before or not. 616 * We put the process in KSE mode and create a new KSEGRP. 617 */ 618 newkg = ksegrp_alloc(); 619 bzero(&newkg->kg_startzero, RANGEOF(struct ksegrp, 620 kg_startzero, kg_endzero)); 621 bcopy(&kg->kg_startcopy, &newkg->kg_startcopy, 622 RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy)); 623 mtx_lock_spin(&sched_lock); 624 if (p->p_numksegrps >= max_groups_per_proc) { 625 mtx_unlock_spin(&sched_lock); 626 ksegrp_free(newkg); 627 return (EPROCLIM); 628 } 629 ksegrp_link(newkg, p); 630 mtx_unlock_spin(&sched_lock); 631 } else { 632 newkg = kg; 633 } 634 635 /* 636 * Creating upcalls more than number of physical cpu does 637 * not help performance. 638 */ 639 if (newkg->kg_numupcalls >= ncpus) 640 return (EPROCLIM); 641 642 if (newkg->kg_numupcalls == 0) { 643 /* 644 * Initialize KSE group, optimized for MP. 645 * Create KSEs as many as physical cpus, this increases 646 * concurrent even if userland is not MP safe and can only run 647 * on single CPU (for early version of libpthread, it is true). 648 * In ideal world, every physical cpu should execute a thread. 649 * If there is enough KSEs, threads in kernel can be 650 * executed parallel on different cpus with full speed, 651 * Concurrent in kernel shouldn't be restricted by number of 652 * upcalls userland provides. 653 * Adding more upcall structures only increases concurrent 654 * in userland. 655 * Highest performance configuration is: 656 * N kses = N upcalls = N phyiscal cpus 657 */ 658 while (newkg->kg_kses < ncpus) { 659 newke = kse_alloc(); 660 bzero(&newke->ke_startzero, RANGEOF(struct kse, 661 ke_startzero, ke_endzero)); 662 #if 0 663 mtx_lock_spin(&sched_lock); 664 bcopy(&ke->ke_startcopy, &newke->ke_startcopy, 665 RANGEOF(struct kse, ke_startcopy, ke_endcopy)); 666 mtx_unlock_spin(&sched_lock); 667 #endif 668 mtx_lock_spin(&sched_lock); 669 kse_link(newke, newkg); 670 /* Add engine */ 671 kse_reassign(newke); 672 mtx_unlock_spin(&sched_lock); 673 } 674 } 675 newku = upcall_alloc(); 676 newku->ku_mailbox = uap->mbx; 677 newku->ku_func = mbx.km_func; 678 bcopy(&mbx.km_stack, &newku->ku_stack, sizeof(stack_t)); 679 680 /* For the first call this may not have been set */ 681 if (td->td_standin == NULL) 682 thread_alloc_spare(td, NULL); 683 684 mtx_lock_spin(&sched_lock); 685 if (newkg->kg_numupcalls >= ncpus) { 686 mtx_unlock_spin(&sched_lock); 687 upcall_free(newku); 688 return (EPROCLIM); 689 } 690 upcall_link(newku, newkg); 691 if (mbx.km_quantum) 692 newkg->kg_upquantum = max(1, mbx.km_quantum/tick); 693 694 /* 695 * Each upcall structure has an owner thread, find which 696 * one owns it. 697 */ 698 if (uap->newgroup) { 699 /* 700 * Because new ksegrp hasn't thread, 701 * create an initial upcall thread to own it. 702 */ 703 thread_schedule_upcall(td, newku); 704 } else { 705 /* 706 * If current thread hasn't an upcall structure, 707 * just assign the upcall to it. 708 */ 709 if (td->td_upcall == NULL) { 710 newku->ku_owner = td; 711 td->td_upcall = newku; 712 } else { 713 /* 714 * Create a new upcall thread to own it. 715 */ 716 thread_schedule_upcall(td, newku); 717 } 718 } 719 mtx_unlock_spin(&sched_lock); 720 return (0); 721 } 722 723 /* 724 * Fill a ucontext_t with a thread's context information. 725 * 726 * This is an analogue to getcontext(3). 727 */ 728 void 729 thread_getcontext(struct thread *td, ucontext_t *uc) 730 { 731 732 get_mcontext(td, &uc->uc_mcontext, 0); 733 PROC_LOCK(td->td_proc); 734 uc->uc_sigmask = td->td_sigmask; 735 PROC_UNLOCK(td->td_proc); 736 } 737 738 /* 739 * Set a thread's context from a ucontext_t. 740 * 741 * This is an analogue to setcontext(3). 742 */ 743 int 744 thread_setcontext(struct thread *td, ucontext_t *uc) 745 { 746 int ret; 747 748 ret = set_mcontext(td, &uc->uc_mcontext); 749 if (ret == 0) { 750 SIG_CANTMASK(uc->uc_sigmask); 751 PROC_LOCK(td->td_proc); 752 td->td_sigmask = uc->uc_sigmask; 753 PROC_UNLOCK(td->td_proc); 754 } 755 return (ret); 756 } 757 758 /* 759 * Initialize global thread allocation resources. 760 */ 761 void 762 threadinit(void) 763 { 764 765 #ifndef __ia64__ 766 thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(), 767 thread_ctor, thread_dtor, thread_init, thread_fini, 768 UMA_ALIGN_CACHE, 0); 769 #else 770 /* 771 * XXX the ia64 kstack allocator is really lame and is at the mercy 772 * of contigmallloc(). This hackery is to pre-construct a whole 773 * pile of thread structures with associated kernel stacks early 774 * in the system startup while contigmalloc() still works. Once we 775 * have them, keep them. Sigh. 776 */ 777 thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(), 778 thread_ctor, thread_dtor, thread_init, thread_fini, 779 UMA_ALIGN_CACHE, UMA_ZONE_NOFREE); 780 uma_prealloc(thread_zone, 512); /* XXX arbitary */ 781 #endif 782 ksegrp_zone = uma_zcreate("KSEGRP", sched_sizeof_ksegrp(), 783 NULL, NULL, ksegrp_init, NULL, 784 UMA_ALIGN_CACHE, 0); 785 kse_zone = uma_zcreate("KSE", sched_sizeof_kse(), 786 NULL, NULL, kse_init, NULL, 787 UMA_ALIGN_CACHE, 0); 788 upcall_zone = uma_zcreate("UPCALL", sizeof(struct kse_upcall), 789 NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0); 790 } 791 792 /* 793 * Stash an embarasingly extra thread into the zombie thread queue. 794 */ 795 void 796 thread_stash(struct thread *td) 797 { 798 mtx_lock_spin(&kse_zombie_lock); 799 TAILQ_INSERT_HEAD(&zombie_threads, td, td_runq); 800 mtx_unlock_spin(&kse_zombie_lock); 801 } 802 803 /* 804 * Stash an embarasingly extra kse into the zombie kse queue. 805 */ 806 void 807 kse_stash(struct kse *ke) 808 { 809 mtx_lock_spin(&kse_zombie_lock); 810 TAILQ_INSERT_HEAD(&zombie_kses, ke, ke_procq); 811 mtx_unlock_spin(&kse_zombie_lock); 812 } 813 814 /* 815 * Stash an embarasingly extra upcall into the zombie upcall queue. 816 */ 817 818 void 819 upcall_stash(struct kse_upcall *ku) 820 { 821 mtx_lock_spin(&kse_zombie_lock); 822 TAILQ_INSERT_HEAD(&zombie_upcalls, ku, ku_link); 823 mtx_unlock_spin(&kse_zombie_lock); 824 } 825 826 /* 827 * Stash an embarasingly extra ksegrp into the zombie ksegrp queue. 828 */ 829 void 830 ksegrp_stash(struct ksegrp *kg) 831 { 832 mtx_lock_spin(&kse_zombie_lock); 833 TAILQ_INSERT_HEAD(&zombie_ksegrps, kg, kg_ksegrp); 834 mtx_unlock_spin(&kse_zombie_lock); 835 } 836 837 /* 838 * Reap zombie kse resource. 839 */ 840 void 841 thread_reap(void) 842 { 843 struct thread *td_first, *td_next; 844 struct kse *ke_first, *ke_next; 845 struct ksegrp *kg_first, * kg_next; 846 struct kse_upcall *ku_first, *ku_next; 847 848 /* 849 * Don't even bother to lock if none at this instant, 850 * we really don't care about the next instant.. 851 */ 852 if ((!TAILQ_EMPTY(&zombie_threads)) 853 || (!TAILQ_EMPTY(&zombie_kses)) 854 || (!TAILQ_EMPTY(&zombie_ksegrps)) 855 || (!TAILQ_EMPTY(&zombie_upcalls))) { 856 mtx_lock_spin(&kse_zombie_lock); 857 td_first = TAILQ_FIRST(&zombie_threads); 858 ke_first = TAILQ_FIRST(&zombie_kses); 859 kg_first = TAILQ_FIRST(&zombie_ksegrps); 860 ku_first = TAILQ_FIRST(&zombie_upcalls); 861 if (td_first) 862 TAILQ_INIT(&zombie_threads); 863 if (ke_first) 864 TAILQ_INIT(&zombie_kses); 865 if (kg_first) 866 TAILQ_INIT(&zombie_ksegrps); 867 if (ku_first) 868 TAILQ_INIT(&zombie_upcalls); 869 mtx_unlock_spin(&kse_zombie_lock); 870 while (td_first) { 871 td_next = TAILQ_NEXT(td_first, td_runq); 872 if (td_first->td_ucred) 873 crfree(td_first->td_ucred); 874 thread_free(td_first); 875 td_first = td_next; 876 } 877 while (ke_first) { 878 ke_next = TAILQ_NEXT(ke_first, ke_procq); 879 kse_free(ke_first); 880 ke_first = ke_next; 881 } 882 while (kg_first) { 883 kg_next = TAILQ_NEXT(kg_first, kg_ksegrp); 884 ksegrp_free(kg_first); 885 kg_first = kg_next; 886 } 887 while (ku_first) { 888 ku_next = TAILQ_NEXT(ku_first, ku_link); 889 upcall_free(ku_first); 890 ku_first = ku_next; 891 } 892 } 893 } 894 895 /* 896 * Allocate a ksegrp. 897 */ 898 struct ksegrp * 899 ksegrp_alloc(void) 900 { 901 return (uma_zalloc(ksegrp_zone, M_WAITOK)); 902 } 903 904 /* 905 * Allocate a kse. 906 */ 907 struct kse * 908 kse_alloc(void) 909 { 910 return (uma_zalloc(kse_zone, M_WAITOK)); 911 } 912 913 /* 914 * Allocate a thread. 915 */ 916 struct thread * 917 thread_alloc(void) 918 { 919 thread_reap(); /* check if any zombies to get */ 920 return (uma_zalloc(thread_zone, M_WAITOK)); 921 } 922 923 /* 924 * Deallocate a ksegrp. 925 */ 926 void 927 ksegrp_free(struct ksegrp *td) 928 { 929 uma_zfree(ksegrp_zone, td); 930 } 931 932 /* 933 * Deallocate a kse. 934 */ 935 void 936 kse_free(struct kse *td) 937 { 938 uma_zfree(kse_zone, td); 939 } 940 941 /* 942 * Deallocate a thread. 943 */ 944 void 945 thread_free(struct thread *td) 946 { 947 948 cpu_thread_clean(td); 949 uma_zfree(thread_zone, td); 950 } 951 952 /* 953 * Store the thread context in the UTS's mailbox. 954 * then add the mailbox at the head of a list we are building in user space. 955 * The list is anchored in the ksegrp structure. 956 */ 957 int 958 thread_export_context(struct thread *td) 959 { 960 struct proc *p; 961 struct ksegrp *kg; 962 uintptr_t mbx; 963 void *addr; 964 int error,temp; 965 ucontext_t uc; 966 967 p = td->td_proc; 968 kg = td->td_ksegrp; 969 970 /* Export the user/machine context. */ 971 addr = (void *)(&td->td_mailbox->tm_context); 972 error = copyin(addr, &uc, sizeof(ucontext_t)); 973 if (error) 974 goto bad; 975 976 thread_getcontext(td, &uc); 977 error = copyout(&uc, addr, sizeof(ucontext_t)); 978 if (error) 979 goto bad; 980 981 /* Exports clock ticks in kernel mode */ 982 addr = (caddr_t)(&td->td_mailbox->tm_sticks); 983 temp = fuword(addr) + td->td_usticks; 984 if (suword(addr, temp)) 985 goto bad; 986 987 /* Get address in latest mbox of list pointer */ 988 addr = (void *)(&td->td_mailbox->tm_next); 989 /* 990 * Put the saved address of the previous first 991 * entry into this one 992 */ 993 for (;;) { 994 mbx = (uintptr_t)kg->kg_completed; 995 if (suword(addr, mbx)) { 996 error = EFAULT; 997 goto bad; 998 } 999 PROC_LOCK(p); 1000 if (mbx == (uintptr_t)kg->kg_completed) { 1001 kg->kg_completed = td->td_mailbox; 1002 /* 1003 * The thread context may be taken away by 1004 * other upcall threads when we unlock 1005 * process lock. it's no longer valid to 1006 * use it again in any other places. 1007 */ 1008 td->td_mailbox = NULL; 1009 PROC_UNLOCK(p); 1010 break; 1011 } 1012 PROC_UNLOCK(p); 1013 } 1014 td->td_usticks = 0; 1015 return (0); 1016 1017 bad: 1018 PROC_LOCK(p); 1019 psignal(p, SIGSEGV); 1020 PROC_UNLOCK(p); 1021 /* The mailbox is bad, don't use it */ 1022 td->td_mailbox = NULL; 1023 td->td_usticks = 0; 1024 return (error); 1025 } 1026 1027 /* 1028 * Take the list of completed mailboxes for this KSEGRP and put them on this 1029 * upcall's mailbox as it's the next one going up. 1030 */ 1031 static int 1032 thread_link_mboxes(struct ksegrp *kg, struct kse_upcall *ku) 1033 { 1034 struct proc *p = kg->kg_proc; 1035 void *addr; 1036 uintptr_t mbx; 1037 1038 addr = (void *)(&ku->ku_mailbox->km_completed); 1039 for (;;) { 1040 mbx = (uintptr_t)kg->kg_completed; 1041 if (suword(addr, mbx)) { 1042 PROC_LOCK(p); 1043 psignal(p, SIGSEGV); 1044 PROC_UNLOCK(p); 1045 return (EFAULT); 1046 } 1047 PROC_LOCK(p); 1048 if (mbx == (uintptr_t)kg->kg_completed) { 1049 kg->kg_completed = NULL; 1050 PROC_UNLOCK(p); 1051 break; 1052 } 1053 PROC_UNLOCK(p); 1054 } 1055 return (0); 1056 } 1057 1058 /* 1059 * This function should be called at statclock interrupt time 1060 */ 1061 int 1062 thread_statclock(int user) 1063 { 1064 struct thread *td = curthread; 1065 1066 if (td->td_ksegrp->kg_numupcalls == 0) 1067 return (-1); 1068 if (user) { 1069 /* Current always do via ast() */ 1070 mtx_lock_spin(&sched_lock); 1071 td->td_flags |= (TDF_USTATCLOCK|TDF_ASTPENDING); 1072 mtx_unlock_spin(&sched_lock); 1073 td->td_uuticks++; 1074 } else { 1075 if (td->td_mailbox != NULL) 1076 td->td_usticks++; 1077 else { 1078 /* XXXKSE 1079 * We will call thread_user_enter() for every 1080 * kernel entry in future, so if the thread mailbox 1081 * is NULL, it must be a UTS kernel, don't account 1082 * clock ticks for it. 1083 */ 1084 } 1085 } 1086 return (0); 1087 } 1088 1089 /* 1090 * Export state clock ticks for userland 1091 */ 1092 static int 1093 thread_update_usr_ticks(struct thread *td, int user) 1094 { 1095 struct proc *p = td->td_proc; 1096 struct kse_thr_mailbox *tmbx; 1097 struct kse_upcall *ku; 1098 struct ksegrp *kg; 1099 caddr_t addr; 1100 uint uticks; 1101 1102 if ((ku = td->td_upcall) == NULL) 1103 return (-1); 1104 1105 tmbx = (void *)fuword((void *)&ku->ku_mailbox->km_curthread); 1106 if ((tmbx == NULL) || (tmbx == (void *)-1)) 1107 return (-1); 1108 if (user) { 1109 uticks = td->td_uuticks; 1110 td->td_uuticks = 0; 1111 addr = (caddr_t)&tmbx->tm_uticks; 1112 } else { 1113 uticks = td->td_usticks; 1114 td->td_usticks = 0; 1115 addr = (caddr_t)&tmbx->tm_sticks; 1116 } 1117 if (uticks) { 1118 if (suword(addr, uticks+fuword(addr))) { 1119 PROC_LOCK(p); 1120 psignal(p, SIGSEGV); 1121 PROC_UNLOCK(p); 1122 return (-2); 1123 } 1124 } 1125 kg = td->td_ksegrp; 1126 if (kg->kg_upquantum && ticks >= kg->kg_nextupcall) { 1127 mtx_lock_spin(&sched_lock); 1128 td->td_upcall->ku_flags |= KUF_DOUPCALL; 1129 mtx_unlock_spin(&sched_lock); 1130 } 1131 return (0); 1132 } 1133 1134 /* 1135 * Discard the current thread and exit from its context. 1136 * 1137 * Because we can't free a thread while we're operating under its context, 1138 * push the current thread into our CPU's deadthread holder. This means 1139 * we needn't worry about someone else grabbing our context before we 1140 * do a cpu_throw(). 1141 */ 1142 void 1143 thread_exit(void) 1144 { 1145 struct thread *td; 1146 struct kse *ke; 1147 struct proc *p; 1148 struct ksegrp *kg; 1149 1150 td = curthread; 1151 kg = td->td_ksegrp; 1152 p = td->td_proc; 1153 ke = td->td_kse; 1154 1155 mtx_assert(&sched_lock, MA_OWNED); 1156 KASSERT(p != NULL, ("thread exiting without a process")); 1157 KASSERT(ke != NULL, ("thread exiting without a kse")); 1158 KASSERT(kg != NULL, ("thread exiting without a kse group")); 1159 PROC_LOCK_ASSERT(p, MA_OWNED); 1160 CTR1(KTR_PROC, "thread_exit: thread %p", td); 1161 KASSERT(!mtx_owned(&Giant), ("dying thread owns giant")); 1162 1163 if (td->td_standin != NULL) { 1164 thread_stash(td->td_standin); 1165 td->td_standin = NULL; 1166 } 1167 1168 cpu_thread_exit(td); /* XXXSMP */ 1169 1170 /* 1171 * The last thread is left attached to the process 1172 * So that the whole bundle gets recycled. Skip 1173 * all this stuff. 1174 */ 1175 if (p->p_numthreads > 1) { 1176 thread_unlink(td); 1177 if (p->p_maxthrwaits) 1178 wakeup(&p->p_numthreads); 1179 /* 1180 * The test below is NOT true if we are the 1181 * sole exiting thread. P_STOPPED_SNGL is unset 1182 * in exit1() after it is the only survivor. 1183 */ 1184 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 1185 if (p->p_numthreads == p->p_suspcount) { 1186 thread_unsuspend_one(p->p_singlethread); 1187 } 1188 } 1189 1190 /* 1191 * Because each upcall structure has an owner thread, 1192 * owner thread exits only when process is in exiting 1193 * state, so upcall to userland is no longer needed, 1194 * deleting upcall structure is safe here. 1195 * So when all threads in a group is exited, all upcalls 1196 * in the group should be automatically freed. 1197 */ 1198 if (td->td_upcall) 1199 upcall_remove(td); 1200 1201 ke->ke_state = KES_UNQUEUED; 1202 ke->ke_thread = NULL; 1203 /* 1204 * Decide what to do with the KSE attached to this thread. 1205 */ 1206 if (ke->ke_flags & KEF_EXIT) 1207 kse_unlink(ke); 1208 else 1209 kse_reassign(ke); 1210 PROC_UNLOCK(p); 1211 td->td_kse = NULL; 1212 td->td_state = TDS_INACTIVE; 1213 #if 0 1214 td->td_proc = NULL; 1215 #endif 1216 td->td_ksegrp = NULL; 1217 td->td_last_kse = NULL; 1218 PCPU_SET(deadthread, td); 1219 } else { 1220 PROC_UNLOCK(p); 1221 } 1222 /* XXX Shouldn't cpu_throw() here. */ 1223 mtx_assert(&sched_lock, MA_OWNED); 1224 #if defined(__i386__) || defined(__sparc64__) || defined(__amd64__) 1225 cpu_throw(td, choosethread()); 1226 #else 1227 cpu_throw(); 1228 #endif 1229 panic("I'm a teapot!"); 1230 /* NOTREACHED */ 1231 } 1232 1233 /* 1234 * Do any thread specific cleanups that may be needed in wait() 1235 * called with Giant held, proc and schedlock not held. 1236 */ 1237 void 1238 thread_wait(struct proc *p) 1239 { 1240 struct thread *td; 1241 1242 KASSERT((p->p_numthreads == 1), ("Muliple threads in wait1()")); 1243 KASSERT((p->p_numksegrps == 1), ("Muliple ksegrps in wait1()")); 1244 FOREACH_THREAD_IN_PROC(p, td) { 1245 if (td->td_standin != NULL) { 1246 thread_free(td->td_standin); 1247 td->td_standin = NULL; 1248 } 1249 cpu_thread_clean(td); 1250 } 1251 thread_reap(); /* check for zombie threads etc. */ 1252 } 1253 1254 /* 1255 * Link a thread to a process. 1256 * set up anything that needs to be initialized for it to 1257 * be used by the process. 1258 * 1259 * Note that we do not link to the proc's ucred here. 1260 * The thread is linked as if running but no KSE assigned. 1261 */ 1262 void 1263 thread_link(struct thread *td, struct ksegrp *kg) 1264 { 1265 struct proc *p; 1266 1267 p = kg->kg_proc; 1268 td->td_state = TDS_INACTIVE; 1269 td->td_proc = p; 1270 td->td_ksegrp = kg; 1271 td->td_last_kse = NULL; 1272 td->td_flags = 0; 1273 td->td_kse = NULL; 1274 1275 LIST_INIT(&td->td_contested); 1276 callout_init(&td->td_slpcallout, 1); 1277 TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist); 1278 TAILQ_INSERT_HEAD(&kg->kg_threads, td, td_kglist); 1279 p->p_numthreads++; 1280 kg->kg_numthreads++; 1281 } 1282 1283 void 1284 thread_unlink(struct thread *td) 1285 { 1286 struct proc *p = td->td_proc; 1287 struct ksegrp *kg = td->td_ksegrp; 1288 1289 mtx_assert(&sched_lock, MA_OWNED); 1290 TAILQ_REMOVE(&p->p_threads, td, td_plist); 1291 p->p_numthreads--; 1292 TAILQ_REMOVE(&kg->kg_threads, td, td_kglist); 1293 kg->kg_numthreads--; 1294 /* could clear a few other things here */ 1295 } 1296 1297 /* 1298 * Purge a ksegrp resource. When a ksegrp is preparing to 1299 * exit, it calls this function. 1300 */ 1301 static void 1302 kse_purge_group(struct thread *td) 1303 { 1304 struct ksegrp *kg; 1305 struct kse *ke; 1306 1307 kg = td->td_ksegrp; 1308 KASSERT(kg->kg_numthreads == 1, ("%s: bad thread number", __func__)); 1309 while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) { 1310 KASSERT(ke->ke_state == KES_IDLE, 1311 ("%s: wrong idle KSE state", __func__)); 1312 kse_unlink(ke); 1313 } 1314 KASSERT((kg->kg_kses == 1), 1315 ("%s: ksegrp still has %d KSEs", __func__, kg->kg_kses)); 1316 KASSERT((kg->kg_numupcalls == 0), 1317 ("%s: ksegrp still has %d upcall datas", 1318 __func__, kg->kg_numupcalls)); 1319 } 1320 1321 /* 1322 * Purge a process's KSE resource. When a process is preparing to 1323 * exit, it calls kse_purge to release any extra KSE resources in 1324 * the process. 1325 */ 1326 static void 1327 kse_purge(struct proc *p, struct thread *td) 1328 { 1329 struct ksegrp *kg; 1330 struct kse *ke; 1331 1332 KASSERT(p->p_numthreads == 1, ("bad thread number")); 1333 while ((kg = TAILQ_FIRST(&p->p_ksegrps)) != NULL) { 1334 TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp); 1335 p->p_numksegrps--; 1336 /* 1337 * There is no ownership for KSE, after all threads 1338 * in the group exited, it is possible that some KSEs 1339 * were left in idle queue, gc them now. 1340 */ 1341 while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) { 1342 KASSERT(ke->ke_state == KES_IDLE, 1343 ("%s: wrong idle KSE state", __func__)); 1344 TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist); 1345 kg->kg_idle_kses--; 1346 TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist); 1347 kg->kg_kses--; 1348 kse_stash(ke); 1349 } 1350 KASSERT(((kg->kg_kses == 0) && (kg != td->td_ksegrp)) || 1351 ((kg->kg_kses == 1) && (kg == td->td_ksegrp)), 1352 ("ksegrp has wrong kg_kses: %d", kg->kg_kses)); 1353 KASSERT((kg->kg_numupcalls == 0), 1354 ("%s: ksegrp still has %d upcall datas", 1355 __func__, kg->kg_numupcalls)); 1356 1357 if (kg != td->td_ksegrp) 1358 ksegrp_stash(kg); 1359 } 1360 TAILQ_INSERT_HEAD(&p->p_ksegrps, td->td_ksegrp, kg_ksegrp); 1361 p->p_numksegrps++; 1362 } 1363 1364 /* 1365 * This function is intended to be used to initialize a spare thread 1366 * for upcall. Initialize thread's large data area outside sched_lock 1367 * for thread_schedule_upcall(). 1368 */ 1369 void 1370 thread_alloc_spare(struct thread *td, struct thread *spare) 1371 { 1372 if (td->td_standin) 1373 return; 1374 if (spare == NULL) 1375 spare = thread_alloc(); 1376 td->td_standin = spare; 1377 bzero(&spare->td_startzero, 1378 (unsigned)RANGEOF(struct thread, td_startzero, td_endzero)); 1379 spare->td_proc = td->td_proc; 1380 spare->td_ucred = crhold(td->td_ucred); 1381 } 1382 1383 /* 1384 * Create a thread and schedule it for upcall on the KSE given. 1385 * Use our thread's standin so that we don't have to allocate one. 1386 */ 1387 struct thread * 1388 thread_schedule_upcall(struct thread *td, struct kse_upcall *ku) 1389 { 1390 struct thread *td2; 1391 1392 mtx_assert(&sched_lock, MA_OWNED); 1393 1394 /* 1395 * Schedule an upcall thread on specified kse_upcall, 1396 * the kse_upcall must be free. 1397 * td must have a spare thread. 1398 */ 1399 KASSERT(ku->ku_owner == NULL, ("%s: upcall has owner", __func__)); 1400 if ((td2 = td->td_standin) != NULL) { 1401 td->td_standin = NULL; 1402 } else { 1403 panic("no reserve thread when scheduling an upcall"); 1404 return (NULL); 1405 } 1406 CTR3(KTR_PROC, "thread_schedule_upcall: thread %p (pid %d, %s)", 1407 td2, td->td_proc->p_pid, td->td_proc->p_comm); 1408 bcopy(&td->td_startcopy, &td2->td_startcopy, 1409 (unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy)); 1410 thread_link(td2, ku->ku_ksegrp); 1411 /* inherit blocked thread's context */ 1412 bcopy(td->td_frame, td2->td_frame, sizeof(struct trapframe)); 1413 cpu_set_upcall(td2, td->td_pcb); 1414 /* Let the new thread become owner of the upcall */ 1415 ku->ku_owner = td2; 1416 td2->td_upcall = ku; 1417 td2->td_flags = TDF_UPCALLING; 1418 #if 0 /* XXX This shouldn't be necessary */ 1419 if (td->td_proc->p_sflag & PS_NEEDSIGCHK) 1420 td2->td_flags |= TDF_ASTPENDING; 1421 #endif 1422 td2->td_kse = NULL; 1423 td2->td_state = TDS_CAN_RUN; 1424 td2->td_inhibitors = 0; 1425 setrunqueue(td2); 1426 return (td2); /* bogus.. should be a void function */ 1427 } 1428 1429 void 1430 thread_signal_add(struct thread *td, int sig) 1431 { 1432 struct kse_upcall *ku; 1433 struct proc *p; 1434 sigset_t ss; 1435 int error; 1436 1437 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 1438 td = curthread; 1439 ku = td->td_upcall; 1440 p = td->td_proc; 1441 1442 PROC_UNLOCK(p); 1443 error = copyin(&ku->ku_mailbox->km_sigscaught, &ss, sizeof(sigset_t)); 1444 if (error) 1445 goto error; 1446 1447 SIGADDSET(ss, sig); 1448 1449 error = copyout(&ss, &ku->ku_mailbox->km_sigscaught, sizeof(sigset_t)); 1450 if (error) 1451 goto error; 1452 1453 PROC_LOCK(p); 1454 return; 1455 error: 1456 PROC_LOCK(p); 1457 sigexit(td, SIGILL); 1458 } 1459 1460 1461 /* 1462 * Schedule an upcall to notify a KSE process recieved signals. 1463 * 1464 */ 1465 void 1466 thread_signal_upcall(struct thread *td) 1467 { 1468 mtx_lock_spin(&sched_lock); 1469 td->td_flags |= TDF_UPCALLING; 1470 mtx_unlock_spin(&sched_lock); 1471 1472 return; 1473 } 1474 1475 void 1476 thread_switchout(struct thread *td) 1477 { 1478 struct kse_upcall *ku; 1479 1480 mtx_assert(&sched_lock, MA_OWNED); 1481 1482 /* 1483 * If the outgoing thread is in threaded group and has never 1484 * scheduled an upcall, decide whether this is a short 1485 * or long term event and thus whether or not to schedule 1486 * an upcall. 1487 * If it is a short term event, just suspend it in 1488 * a way that takes its KSE with it. 1489 * Select the events for which we want to schedule upcalls. 1490 * For now it's just sleep. 1491 * XXXKSE eventually almost any inhibition could do. 1492 */ 1493 if (TD_CAN_UNBIND(td) && (td->td_standin) && TD_ON_SLEEPQ(td)) { 1494 /* 1495 * Release ownership of upcall, and schedule an upcall 1496 * thread, this new upcall thread becomes the owner of 1497 * the upcall structure. 1498 */ 1499 ku = td->td_upcall; 1500 ku->ku_owner = NULL; 1501 td->td_upcall = NULL; 1502 td->td_flags &= ~TDF_CAN_UNBIND; 1503 thread_schedule_upcall(td, ku); 1504 } 1505 } 1506 1507 /* 1508 * Setup done on the thread when it enters the kernel. 1509 * XXXKSE Presently only for syscalls but eventually all kernel entries. 1510 */ 1511 void 1512 thread_user_enter(struct proc *p, struct thread *td) 1513 { 1514 struct ksegrp *kg; 1515 struct kse_upcall *ku; 1516 struct kse_thr_mailbox *tmbx; 1517 1518 kg = td->td_ksegrp; 1519 1520 /* 1521 * First check that we shouldn't just abort. 1522 * But check if we are the single thread first! 1523 */ 1524 PROC_LOCK(p); 1525 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) { 1526 mtx_lock_spin(&sched_lock); 1527 thread_stopped(p); 1528 thread_exit(); 1529 /* NOTREACHED */ 1530 } 1531 PROC_UNLOCK(p); 1532 1533 /* 1534 * If we are doing a syscall in a KSE environment, 1535 * note where our mailbox is. There is always the 1536 * possibility that we could do this lazily (in kse_reassign()), 1537 * but for now do it every time. 1538 */ 1539 kg = td->td_ksegrp; 1540 if (kg->kg_numupcalls) { 1541 ku = td->td_upcall; 1542 KASSERT(ku, ("%s: no upcall owned", __func__)); 1543 KASSERT((ku->ku_owner == td), ("%s: wrong owner", __func__)); 1544 KASSERT(!TD_CAN_UNBIND(td), ("%s: can unbind", __func__)); 1545 ku->ku_mflags = fuword((void *)&ku->ku_mailbox->km_flags); 1546 tmbx = (void *)fuword((void *)&ku->ku_mailbox->km_curthread); 1547 if ((tmbx == NULL) || (tmbx == (void *)-1)) { 1548 td->td_mailbox = NULL; 1549 } else { 1550 td->td_mailbox = tmbx; 1551 if (td->td_standin == NULL) 1552 thread_alloc_spare(td, NULL); 1553 mtx_lock_spin(&sched_lock); 1554 if (ku->ku_mflags & KMF_NOUPCALL) 1555 td->td_flags &= ~TDF_CAN_UNBIND; 1556 else 1557 td->td_flags |= TDF_CAN_UNBIND; 1558 mtx_unlock_spin(&sched_lock); 1559 } 1560 } 1561 } 1562 1563 /* 1564 * The extra work we go through if we are a threaded process when we 1565 * return to userland. 1566 * 1567 * If we are a KSE process and returning to user mode, check for 1568 * extra work to do before we return (e.g. for more syscalls 1569 * to complete first). If we were in a critical section, we should 1570 * just return to let it finish. Same if we were in the UTS (in 1571 * which case the mailbox's context's busy indicator will be set). 1572 * The only traps we suport will have set the mailbox. 1573 * We will clear it here. 1574 */ 1575 int 1576 thread_userret(struct thread *td, struct trapframe *frame) 1577 { 1578 int error = 0, upcalls, uts_crit; 1579 struct kse_upcall *ku; 1580 struct ksegrp *kg, *kg2; 1581 struct proc *p; 1582 struct timespec ts; 1583 1584 p = td->td_proc; 1585 kg = td->td_ksegrp; 1586 1587 /* Nothing to do with non-threaded group/process */ 1588 if (td->td_ksegrp->kg_numupcalls == 0) 1589 return (0); 1590 1591 /* 1592 * Stat clock interrupt hit in userland, it 1593 * is returning from interrupt, charge thread's 1594 * userland time for UTS. 1595 */ 1596 if (td->td_flags & TDF_USTATCLOCK) { 1597 thread_update_usr_ticks(td, 1); 1598 mtx_lock_spin(&sched_lock); 1599 td->td_flags &= ~TDF_USTATCLOCK; 1600 mtx_unlock_spin(&sched_lock); 1601 if (kg->kg_completed || 1602 (td->td_upcall->ku_flags & KUF_DOUPCALL)) 1603 thread_user_enter(p, td); 1604 } 1605 1606 uts_crit = (td->td_mailbox == NULL); 1607 ku = td->td_upcall; 1608 /* 1609 * Optimisation: 1610 * This thread has not started any upcall. 1611 * If there is no work to report other than ourself, 1612 * then it can return direct to userland. 1613 */ 1614 if (TD_CAN_UNBIND(td)) { 1615 mtx_lock_spin(&sched_lock); 1616 td->td_flags &= ~TDF_CAN_UNBIND; 1617 if ((td->td_flags & TDF_NEEDSIGCHK) == 0 && 1618 (kg->kg_completed == NULL) && 1619 (ku->ku_flags & KUF_DOUPCALL) == 0 && 1620 (kg->kg_upquantum && ticks < kg->kg_nextupcall)) { 1621 mtx_unlock_spin(&sched_lock); 1622 thread_update_usr_ticks(td, 0); 1623 nanotime(&ts); 1624 error = copyout(&ts, 1625 (caddr_t)&ku->ku_mailbox->km_timeofday, 1626 sizeof(ts)); 1627 td->td_mailbox = 0; 1628 ku->ku_mflags = 0; 1629 if (error) 1630 goto out; 1631 return (0); 1632 } 1633 mtx_unlock_spin(&sched_lock); 1634 error = thread_export_context(td); 1635 if (error) { 1636 /* 1637 * Failing to do the KSE operation just defaults 1638 * back to synchonous operation, so just return from 1639 * the syscall. 1640 */ 1641 goto out; 1642 } 1643 /* 1644 * There is something to report, and we own an upcall 1645 * strucuture, we can go to userland. 1646 * Turn ourself into an upcall thread. 1647 */ 1648 mtx_lock_spin(&sched_lock); 1649 td->td_flags |= TDF_UPCALLING; 1650 mtx_unlock_spin(&sched_lock); 1651 } else if (td->td_mailbox && (ku == NULL)) { 1652 error = thread_export_context(td); 1653 /* possibly upcall with error? */ 1654 PROC_LOCK(p); 1655 /* 1656 * There are upcall threads waiting for 1657 * work to do, wake one of them up. 1658 * XXXKSE Maybe wake all of them up. 1659 */ 1660 if (!error && kg->kg_upsleeps) 1661 wakeup_one(&kg->kg_completed); 1662 mtx_lock_spin(&sched_lock); 1663 thread_stopped(p); 1664 thread_exit(); 1665 /* NOTREACHED */ 1666 } 1667 1668 KASSERT(TD_CAN_UNBIND(td) == 0, ("can unbind")); 1669 1670 if (p->p_numthreads > max_threads_per_proc) { 1671 max_threads_hits++; 1672 PROC_LOCK(p); 1673 mtx_lock_spin(&sched_lock); 1674 while (p->p_numthreads > max_threads_per_proc) { 1675 if (P_SHOULDSTOP(p)) 1676 break; 1677 upcalls = 0; 1678 FOREACH_KSEGRP_IN_PROC(p, kg2) { 1679 if (kg2->kg_numupcalls == 0) 1680 upcalls++; 1681 else 1682 upcalls += kg2->kg_numupcalls; 1683 } 1684 if (upcalls >= max_threads_per_proc) 1685 break; 1686 mtx_unlock_spin(&sched_lock); 1687 p->p_maxthrwaits++; 1688 msleep(&p->p_numthreads, &p->p_mtx, PPAUSE|PCATCH, 1689 "maxthreads", NULL); 1690 p->p_maxthrwaits--; 1691 mtx_lock_spin(&sched_lock); 1692 } 1693 mtx_unlock_spin(&sched_lock); 1694 PROC_UNLOCK(p); 1695 } 1696 1697 if (td->td_flags & TDF_UPCALLING) { 1698 uts_crit = 0; 1699 kg->kg_nextupcall = ticks+kg->kg_upquantum; 1700 /* 1701 * There is no more work to do and we are going to ride 1702 * this thread up to userland as an upcall. 1703 * Do the last parts of the setup needed for the upcall. 1704 */ 1705 CTR3(KTR_PROC, "userret: upcall thread %p (pid %d, %s)", 1706 td, td->td_proc->p_pid, td->td_proc->p_comm); 1707 1708 mtx_lock_spin(&sched_lock); 1709 td->td_flags &= ~TDF_UPCALLING; 1710 if (ku->ku_flags & KUF_DOUPCALL) 1711 ku->ku_flags &= ~KUF_DOUPCALL; 1712 mtx_unlock_spin(&sched_lock); 1713 1714 /* 1715 * Set user context to the UTS 1716 */ 1717 if (!(ku->ku_mflags & KMF_NOUPCALL)) { 1718 cpu_set_upcall_kse(td, ku); 1719 error = suword(&ku->ku_mailbox->km_curthread, 0); 1720 if (error) 1721 goto out; 1722 } 1723 1724 /* 1725 * Unhook the list of completed threads. 1726 * anything that completes after this gets to 1727 * come in next time. 1728 * Put the list of completed thread mailboxes on 1729 * this KSE's mailbox. 1730 */ 1731 if (!(ku->ku_mflags & KMF_NOCOMPLETED) && 1732 (error = thread_link_mboxes(kg, ku)) != 0) 1733 goto out; 1734 } 1735 if (!uts_crit) { 1736 nanotime(&ts); 1737 error = copyout(&ts, &ku->ku_mailbox->km_timeofday, sizeof(ts)); 1738 } 1739 1740 out: 1741 if (error) { 1742 /* 1743 * Things are going to be so screwed we should just kill 1744 * the process. 1745 * how do we do that? 1746 */ 1747 PROC_LOCK(td->td_proc); 1748 psignal(td->td_proc, SIGSEGV); 1749 PROC_UNLOCK(td->td_proc); 1750 } else { 1751 /* 1752 * Optimisation: 1753 * Ensure that we have a spare thread available, 1754 * for when we re-enter the kernel. 1755 */ 1756 if (td->td_standin == NULL) 1757 thread_alloc_spare(td, NULL); 1758 } 1759 1760 ku->ku_mflags = 0; 1761 /* 1762 * Clear thread mailbox first, then clear system tick count. 1763 * The order is important because thread_statclock() use 1764 * mailbox pointer to see if it is an userland thread or 1765 * an UTS kernel thread. 1766 */ 1767 td->td_mailbox = NULL; 1768 td->td_usticks = 0; 1769 return (error); /* go sync */ 1770 } 1771 1772 /* 1773 * Enforce single-threading. 1774 * 1775 * Returns 1 if the caller must abort (another thread is waiting to 1776 * exit the process or similar). Process is locked! 1777 * Returns 0 when you are successfully the only thread running. 1778 * A process has successfully single threaded in the suspend mode when 1779 * There are no threads in user mode. Threads in the kernel must be 1780 * allowed to continue until they get to the user boundary. They may even 1781 * copy out their return values and data before suspending. They may however be 1782 * accellerated in reaching the user boundary as we will wake up 1783 * any sleeping threads that are interruptable. (PCATCH). 1784 */ 1785 int 1786 thread_single(int force_exit) 1787 { 1788 struct thread *td; 1789 struct thread *td2; 1790 struct proc *p; 1791 1792 td = curthread; 1793 p = td->td_proc; 1794 mtx_assert(&Giant, MA_OWNED); 1795 PROC_LOCK_ASSERT(p, MA_OWNED); 1796 KASSERT((td != NULL), ("curthread is NULL")); 1797 1798 if ((p->p_flag & P_THREADED) == 0 && p->p_numthreads == 1) 1799 return (0); 1800 1801 /* Is someone already single threading? */ 1802 if (p->p_singlethread) 1803 return (1); 1804 1805 if (force_exit == SINGLE_EXIT) { 1806 p->p_flag |= P_SINGLE_EXIT; 1807 } else 1808 p->p_flag &= ~P_SINGLE_EXIT; 1809 p->p_flag |= P_STOPPED_SINGLE; 1810 mtx_lock_spin(&sched_lock); 1811 p->p_singlethread = td; 1812 while ((p->p_numthreads - p->p_suspcount) != 1) { 1813 FOREACH_THREAD_IN_PROC(p, td2) { 1814 if (td2 == td) 1815 continue; 1816 td2->td_flags |= TDF_ASTPENDING; 1817 if (TD_IS_INHIBITED(td2)) { 1818 if (force_exit == SINGLE_EXIT) { 1819 if (TD_IS_SUSPENDED(td2)) { 1820 thread_unsuspend_one(td2); 1821 } 1822 if (TD_ON_SLEEPQ(td2) && 1823 (td2->td_flags & TDF_SINTR)) { 1824 if (td2->td_flags & TDF_CVWAITQ) 1825 cv_abort(td2); 1826 else 1827 abortsleep(td2); 1828 } 1829 } else { 1830 if (TD_IS_SUSPENDED(td2)) 1831 continue; 1832 /* 1833 * maybe other inhibitted states too? 1834 * XXXKSE Is it totally safe to 1835 * suspend a non-interruptable thread? 1836 */ 1837 if (td2->td_inhibitors & 1838 (TDI_SLEEPING | TDI_SWAPPED)) 1839 thread_suspend_one(td2); 1840 } 1841 } 1842 } 1843 /* 1844 * Maybe we suspended some threads.. was it enough? 1845 */ 1846 if ((p->p_numthreads - p->p_suspcount) == 1) 1847 break; 1848 1849 /* 1850 * Wake us up when everyone else has suspended. 1851 * In the mean time we suspend as well. 1852 */ 1853 thread_suspend_one(td); 1854 DROP_GIANT(); 1855 PROC_UNLOCK(p); 1856 p->p_stats->p_ru.ru_nvcsw++; 1857 mi_switch(); 1858 mtx_unlock_spin(&sched_lock); 1859 PICKUP_GIANT(); 1860 PROC_LOCK(p); 1861 mtx_lock_spin(&sched_lock); 1862 } 1863 if (force_exit == SINGLE_EXIT) { 1864 if (td->td_upcall) 1865 upcall_remove(td); 1866 kse_purge(p, td); 1867 } 1868 mtx_unlock_spin(&sched_lock); 1869 return (0); 1870 } 1871 1872 /* 1873 * Called in from locations that can safely check to see 1874 * whether we have to suspend or at least throttle for a 1875 * single-thread event (e.g. fork). 1876 * 1877 * Such locations include userret(). 1878 * If the "return_instead" argument is non zero, the thread must be able to 1879 * accept 0 (caller may continue), or 1 (caller must abort) as a result. 1880 * 1881 * The 'return_instead' argument tells the function if it may do a 1882 * thread_exit() or suspend, or whether the caller must abort and back 1883 * out instead. 1884 * 1885 * If the thread that set the single_threading request has set the 1886 * P_SINGLE_EXIT bit in the process flags then this call will never return 1887 * if 'return_instead' is false, but will exit. 1888 * 1889 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0 1890 *---------------+--------------------+--------------------- 1891 * 0 | returns 0 | returns 0 or 1 1892 * | when ST ends | immediatly 1893 *---------------+--------------------+--------------------- 1894 * 1 | thread exits | returns 1 1895 * | | immediatly 1896 * 0 = thread_exit() or suspension ok, 1897 * other = return error instead of stopping the thread. 1898 * 1899 * While a full suspension is under effect, even a single threading 1900 * thread would be suspended if it made this call (but it shouldn't). 1901 * This call should only be made from places where 1902 * thread_exit() would be safe as that may be the outcome unless 1903 * return_instead is set. 1904 */ 1905 int 1906 thread_suspend_check(int return_instead) 1907 { 1908 struct thread *td; 1909 struct proc *p; 1910 struct ksegrp *kg; 1911 1912 td = curthread; 1913 p = td->td_proc; 1914 kg = td->td_ksegrp; 1915 PROC_LOCK_ASSERT(p, MA_OWNED); 1916 while (P_SHOULDSTOP(p)) { 1917 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 1918 KASSERT(p->p_singlethread != NULL, 1919 ("singlethread not set")); 1920 /* 1921 * The only suspension in action is a 1922 * single-threading. Single threader need not stop. 1923 * XXX Should be safe to access unlocked 1924 * as it can only be set to be true by us. 1925 */ 1926 if (p->p_singlethread == td) 1927 return (0); /* Exempt from stopping. */ 1928 } 1929 if (return_instead) 1930 return (1); 1931 1932 mtx_lock_spin(&sched_lock); 1933 thread_stopped(p); 1934 /* 1935 * If the process is waiting for us to exit, 1936 * this thread should just suicide. 1937 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE. 1938 */ 1939 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) { 1940 while (mtx_owned(&Giant)) 1941 mtx_unlock(&Giant); 1942 if (p->p_flag & P_THREADED) 1943 thread_exit(); 1944 else 1945 thr_exit1(); 1946 } 1947 1948 /* 1949 * When a thread suspends, it just 1950 * moves to the processes's suspend queue 1951 * and stays there. 1952 */ 1953 thread_suspend_one(td); 1954 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 1955 if (p->p_numthreads == p->p_suspcount) { 1956 thread_unsuspend_one(p->p_singlethread); 1957 } 1958 } 1959 DROP_GIANT(); 1960 PROC_UNLOCK(p); 1961 p->p_stats->p_ru.ru_nivcsw++; 1962 mi_switch(); 1963 mtx_unlock_spin(&sched_lock); 1964 PICKUP_GIANT(); 1965 PROC_LOCK(p); 1966 } 1967 return (0); 1968 } 1969 1970 void 1971 thread_suspend_one(struct thread *td) 1972 { 1973 struct proc *p = td->td_proc; 1974 1975 mtx_assert(&sched_lock, MA_OWNED); 1976 PROC_LOCK_ASSERT(p, MA_OWNED); 1977 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 1978 p->p_suspcount++; 1979 TD_SET_SUSPENDED(td); 1980 TAILQ_INSERT_TAIL(&p->p_suspended, td, td_runq); 1981 /* 1982 * Hack: If we are suspending but are on the sleep queue 1983 * then we are in msleep or the cv equivalent. We 1984 * want to look like we have two Inhibitors. 1985 * May already be set.. doesn't matter. 1986 */ 1987 if (TD_ON_SLEEPQ(td)) 1988 TD_SET_SLEEPING(td); 1989 } 1990 1991 void 1992 thread_unsuspend_one(struct thread *td) 1993 { 1994 struct proc *p = td->td_proc; 1995 1996 mtx_assert(&sched_lock, MA_OWNED); 1997 PROC_LOCK_ASSERT(p, MA_OWNED); 1998 TAILQ_REMOVE(&p->p_suspended, td, td_runq); 1999 TD_CLR_SUSPENDED(td); 2000 p->p_suspcount--; 2001 setrunnable(td); 2002 } 2003 2004 /* 2005 * Allow all threads blocked by single threading to continue running. 2006 */ 2007 void 2008 thread_unsuspend(struct proc *p) 2009 { 2010 struct thread *td; 2011 2012 mtx_assert(&sched_lock, MA_OWNED); 2013 PROC_LOCK_ASSERT(p, MA_OWNED); 2014 if (!P_SHOULDSTOP(p)) { 2015 while (( td = TAILQ_FIRST(&p->p_suspended))) { 2016 thread_unsuspend_one(td); 2017 } 2018 } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) && 2019 (p->p_numthreads == p->p_suspcount)) { 2020 /* 2021 * Stopping everything also did the job for the single 2022 * threading request. Now we've downgraded to single-threaded, 2023 * let it continue. 2024 */ 2025 thread_unsuspend_one(p->p_singlethread); 2026 } 2027 } 2028 2029 void 2030 thread_single_end(void) 2031 { 2032 struct thread *td; 2033 struct proc *p; 2034 2035 td = curthread; 2036 p = td->td_proc; 2037 PROC_LOCK_ASSERT(p, MA_OWNED); 2038 p->p_flag &= ~P_STOPPED_SINGLE; 2039 mtx_lock_spin(&sched_lock); 2040 p->p_singlethread = NULL; 2041 /* 2042 * If there are other threads they mey now run, 2043 * unless of course there is a blanket 'stop order' 2044 * on the process. The single threader must be allowed 2045 * to continue however as this is a bad place to stop. 2046 */ 2047 if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) { 2048 while (( td = TAILQ_FIRST(&p->p_suspended))) { 2049 thread_unsuspend_one(td); 2050 } 2051 } 2052 mtx_unlock_spin(&sched_lock); 2053 } 2054 2055 2056