xref: /freebsd/sys/kern/kern_thread.c (revision 752c1d14e398faab8e6f19f99ee29df87ecb05e1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>.
5  *  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice(s), this list of conditions and the following disclaimer as
12  *    the first lines of this file unmodified other than the possible
13  *    addition of one or more copyright notices.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice(s), this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
19  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
20  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
21  * DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY
22  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
25  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
28  * DAMAGE.
29  */
30 
31 #include "opt_witness.h"
32 #include "opt_hwpmc_hooks.h"
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/lock.h>
41 #include <sys/mutex.h>
42 #include <sys/proc.h>
43 #include <sys/epoch.h>
44 #include <sys/rangelock.h>
45 #include <sys/resourcevar.h>
46 #include <sys/sdt.h>
47 #include <sys/smp.h>
48 #include <sys/sched.h>
49 #include <sys/sleepqueue.h>
50 #include <sys/selinfo.h>
51 #include <sys/syscallsubr.h>
52 #include <sys/sysent.h>
53 #include <sys/turnstile.h>
54 #include <sys/ktr.h>
55 #include <sys/rwlock.h>
56 #include <sys/umtx.h>
57 #include <sys/vmmeter.h>
58 #include <sys/cpuset.h>
59 #ifdef	HWPMC_HOOKS
60 #include <sys/pmckern.h>
61 #endif
62 
63 #include <security/audit/audit.h>
64 
65 #include <vm/vm.h>
66 #include <vm/vm_extern.h>
67 #include <vm/uma.h>
68 #include <sys/eventhandler.h>
69 
70 /*
71  * Asserts below verify the stability of struct thread and struct proc
72  * layout, as exposed by KBI to modules.  On head, the KBI is allowed
73  * to drift, change to the structures must be accompanied by the
74  * assert update.
75  *
76  * On the stable branches after KBI freeze, conditions must not be
77  * violated.  Typically new fields are moved to the end of the
78  * structures.
79  */
80 #ifdef __amd64__
81 _Static_assert(offsetof(struct thread, td_flags) == 0xfc,
82     "struct thread KBI td_flags");
83 _Static_assert(offsetof(struct thread, td_pflags) == 0x104,
84     "struct thread KBI td_pflags");
85 _Static_assert(offsetof(struct thread, td_frame) == 0x4a0,
86     "struct thread KBI td_frame");
87 _Static_assert(offsetof(struct thread, td_emuldata) == 0x6b0,
88     "struct thread KBI td_emuldata");
89 _Static_assert(offsetof(struct proc, p_flag) == 0xb0,
90     "struct proc KBI p_flag");
91 _Static_assert(offsetof(struct proc, p_pid) == 0xbc,
92     "struct proc KBI p_pid");
93 _Static_assert(offsetof(struct proc, p_filemon) == 0x3b8,
94     "struct proc KBI p_filemon");
95 _Static_assert(offsetof(struct proc, p_comm) == 0x3d0,
96     "struct proc KBI p_comm");
97 _Static_assert(offsetof(struct proc, p_emuldata) == 0x4b0,
98     "struct proc KBI p_emuldata");
99 #endif
100 #ifdef __i386__
101 _Static_assert(offsetof(struct thread, td_flags) == 0x98,
102     "struct thread KBI td_flags");
103 _Static_assert(offsetof(struct thread, td_pflags) == 0xa0,
104     "struct thread KBI td_pflags");
105 _Static_assert(offsetof(struct thread, td_frame) == 0x300,
106     "struct thread KBI td_frame");
107 _Static_assert(offsetof(struct thread, td_emuldata) == 0x344,
108     "struct thread KBI td_emuldata");
109 _Static_assert(offsetof(struct proc, p_flag) == 0x68,
110     "struct proc KBI p_flag");
111 _Static_assert(offsetof(struct proc, p_pid) == 0x74,
112     "struct proc KBI p_pid");
113 _Static_assert(offsetof(struct proc, p_filemon) == 0x268,
114     "struct proc KBI p_filemon");
115 _Static_assert(offsetof(struct proc, p_comm) == 0x27c,
116     "struct proc KBI p_comm");
117 _Static_assert(offsetof(struct proc, p_emuldata) == 0x308,
118     "struct proc KBI p_emuldata");
119 #endif
120 
121 SDT_PROVIDER_DECLARE(proc);
122 SDT_PROBE_DEFINE(proc, , , lwp__exit);
123 
124 /*
125  * thread related storage.
126  */
127 static uma_zone_t thread_zone;
128 
129 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads);
130 static struct mtx zombie_lock;
131 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN);
132 
133 static void thread_zombie(struct thread *);
134 static int thread_unsuspend_one(struct thread *td, struct proc *p,
135     bool boundary);
136 
137 #define TID_BUFFER_SIZE	1024
138 
139 struct mtx tid_lock;
140 static struct unrhdr *tid_unrhdr;
141 static lwpid_t tid_buffer[TID_BUFFER_SIZE];
142 static int tid_head, tid_tail;
143 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash");
144 
145 struct	tidhashhead *tidhashtbl;
146 u_long	tidhash;
147 struct	rwlock tidhash_lock;
148 
149 EVENTHANDLER_LIST_DEFINE(thread_ctor);
150 EVENTHANDLER_LIST_DEFINE(thread_dtor);
151 EVENTHANDLER_LIST_DEFINE(thread_init);
152 EVENTHANDLER_LIST_DEFINE(thread_fini);
153 
154 static lwpid_t
155 tid_alloc(void)
156 {
157 	lwpid_t	tid;
158 
159 	tid = alloc_unr(tid_unrhdr);
160 	if (tid != -1)
161 		return (tid);
162 	mtx_lock(&tid_lock);
163 	if (tid_head == tid_tail) {
164 		mtx_unlock(&tid_lock);
165 		return (-1);
166 	}
167 	tid = tid_buffer[tid_head];
168 	tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
169 	mtx_unlock(&tid_lock);
170 	return (tid);
171 }
172 
173 static void
174 tid_free(lwpid_t tid)
175 {
176 	lwpid_t tmp_tid = -1;
177 
178 	mtx_lock(&tid_lock);
179 	if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) {
180 		tmp_tid = tid_buffer[tid_head];
181 		tid_head = (tid_head + 1) % TID_BUFFER_SIZE;
182 	}
183 	tid_buffer[tid_tail] = tid;
184 	tid_tail = (tid_tail + 1) % TID_BUFFER_SIZE;
185 	mtx_unlock(&tid_lock);
186 	if (tmp_tid != -1)
187 		free_unr(tid_unrhdr, tmp_tid);
188 }
189 
190 /*
191  * Prepare a thread for use.
192  */
193 static int
194 thread_ctor(void *mem, int size, void *arg, int flags)
195 {
196 	struct thread	*td;
197 
198 	td = (struct thread *)mem;
199 	td->td_state = TDS_INACTIVE;
200 	td->td_lastcpu = td->td_oncpu = NOCPU;
201 
202 	td->td_tid = tid_alloc();
203 
204 	/*
205 	 * Note that td_critnest begins life as 1 because the thread is not
206 	 * running and is thereby implicitly waiting to be on the receiving
207 	 * end of a context switch.
208 	 */
209 	td->td_critnest = 1;
210 	td->td_lend_user_pri = PRI_MAX;
211 	EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
212 #ifdef AUDIT
213 	audit_thread_alloc(td);
214 #endif
215 	umtx_thread_alloc(td);
216 	return (0);
217 }
218 
219 /*
220  * Reclaim a thread after use.
221  */
222 static void
223 thread_dtor(void *mem, int size, void *arg)
224 {
225 	struct thread *td;
226 
227 	td = (struct thread *)mem;
228 
229 #ifdef INVARIANTS
230 	/* Verify that this thread is in a safe state to free. */
231 	switch (td->td_state) {
232 	case TDS_INHIBITED:
233 	case TDS_RUNNING:
234 	case TDS_CAN_RUN:
235 	case TDS_RUNQ:
236 		/*
237 		 * We must never unlink a thread that is in one of
238 		 * these states, because it is currently active.
239 		 */
240 		panic("bad state for thread unlinking");
241 		/* NOTREACHED */
242 	case TDS_INACTIVE:
243 		break;
244 	default:
245 		panic("bad thread state");
246 		/* NOTREACHED */
247 	}
248 #endif
249 #ifdef AUDIT
250 	audit_thread_free(td);
251 #endif
252 	/* Free all OSD associated to this thread. */
253 	osd_thread_exit(td);
254 	td_softdep_cleanup(td);
255 	MPASS(td->td_su == NULL);
256 
257 	EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
258 	tid_free(td->td_tid);
259 }
260 
261 /*
262  * Initialize type-stable parts of a thread (when newly created).
263  */
264 static int
265 thread_init(void *mem, int size, int flags)
266 {
267 	struct thread *td;
268 
269 	td = (struct thread *)mem;
270 
271 	td->td_sleepqueue = sleepq_alloc();
272 	td->td_turnstile = turnstile_alloc();
273 	td->td_rlqe = NULL;
274 	EVENTHANDLER_DIRECT_INVOKE(thread_init, td);
275 	umtx_thread_init(td);
276 	td->td_kstack = 0;
277 	td->td_sel = NULL;
278 	return (0);
279 }
280 
281 /*
282  * Tear down type-stable parts of a thread (just before being discarded).
283  */
284 static void
285 thread_fini(void *mem, int size)
286 {
287 	struct thread *td;
288 
289 	td = (struct thread *)mem;
290 	EVENTHANDLER_DIRECT_INVOKE(thread_fini, td);
291 	rlqentry_free(td->td_rlqe);
292 	turnstile_free(td->td_turnstile);
293 	sleepq_free(td->td_sleepqueue);
294 	umtx_thread_fini(td);
295 	seltdfini(td);
296 }
297 
298 /*
299  * For a newly created process,
300  * link up all the structures and its initial threads etc.
301  * called from:
302  * {arch}/{arch}/machdep.c   {arch}_init(), init386() etc.
303  * proc_dtor() (should go away)
304  * proc_init()
305  */
306 void
307 proc_linkup0(struct proc *p, struct thread *td)
308 {
309 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
310 	proc_linkup(p, td);
311 }
312 
313 void
314 proc_linkup(struct proc *p, struct thread *td)
315 {
316 
317 	sigqueue_init(&p->p_sigqueue, p);
318 	p->p_ksi = ksiginfo_alloc(1);
319 	if (p->p_ksi != NULL) {
320 		/* XXX p_ksi may be null if ksiginfo zone is not ready */
321 		p->p_ksi->ksi_flags = KSI_EXT | KSI_INS;
322 	}
323 	LIST_INIT(&p->p_mqnotifier);
324 	p->p_numthreads = 0;
325 	thread_link(td, p);
326 }
327 
328 /*
329  * Initialize global thread allocation resources.
330  */
331 void
332 threadinit(void)
333 {
334 	uint32_t flags;
335 
336 	mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF);
337 
338 	/*
339 	 * pid_max cannot be greater than PID_MAX.
340 	 * leave one number for thread0.
341 	 */
342 	tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock);
343 
344 	flags = UMA_ZONE_NOFREE;
345 #ifdef __aarch64__
346 	/*
347 	 * Force thread structures to be allocated from the direct map.
348 	 * Otherwise, superpage promotions and demotions may temporarily
349 	 * invalidate thread structure mappings.  For most dynamically allocated
350 	 * structures this is not a problem, but translation faults cannot be
351 	 * handled without accessing curthread.
352 	 */
353 	flags |= UMA_ZONE_CONTIG;
354 #endif
355 	thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(),
356 	    thread_ctor, thread_dtor, thread_init, thread_fini,
357 	    32 - 1, flags);
358 	tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash);
359 	rw_init(&tidhash_lock, "tidhash");
360 }
361 
362 /*
363  * Place an unused thread on the zombie list.
364  * Use the slpq as that must be unused by now.
365  */
366 void
367 thread_zombie(struct thread *td)
368 {
369 	mtx_lock_spin(&zombie_lock);
370 	TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq);
371 	mtx_unlock_spin(&zombie_lock);
372 }
373 
374 /*
375  * Release a thread that has exited after cpu_throw().
376  */
377 void
378 thread_stash(struct thread *td)
379 {
380 	atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1);
381 	thread_zombie(td);
382 }
383 
384 /*
385  * Reap zombie resources.
386  */
387 void
388 thread_reap(void)
389 {
390 	struct thread *td_first, *td_next;
391 
392 	/*
393 	 * Don't even bother to lock if none at this instant,
394 	 * we really don't care about the next instant.
395 	 */
396 	if (!TAILQ_EMPTY(&zombie_threads)) {
397 		mtx_lock_spin(&zombie_lock);
398 		td_first = TAILQ_FIRST(&zombie_threads);
399 		if (td_first)
400 			TAILQ_INIT(&zombie_threads);
401 		mtx_unlock_spin(&zombie_lock);
402 		while (td_first) {
403 			td_next = TAILQ_NEXT(td_first, td_slpq);
404 			thread_cow_free(td_first);
405 			thread_free(td_first);
406 			td_first = td_next;
407 		}
408 	}
409 }
410 
411 /*
412  * Allocate a thread.
413  */
414 struct thread *
415 thread_alloc(int pages)
416 {
417 	struct thread *td;
418 
419 	thread_reap(); /* check if any zombies to get */
420 
421 	td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK);
422 	KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack"));
423 	if (!vm_thread_new(td, pages)) {
424 		uma_zfree(thread_zone, td);
425 		return (NULL);
426 	}
427 	cpu_thread_alloc(td);
428 	return (td);
429 }
430 
431 int
432 thread_alloc_stack(struct thread *td, int pages)
433 {
434 
435 	KASSERT(td->td_kstack == 0,
436 	    ("thread_alloc_stack called on a thread with kstack"));
437 	if (!vm_thread_new(td, pages))
438 		return (0);
439 	cpu_thread_alloc(td);
440 	return (1);
441 }
442 
443 /*
444  * Deallocate a thread.
445  */
446 void
447 thread_free(struct thread *td)
448 {
449 
450 	lock_profile_thread_exit(td);
451 	if (td->td_cpuset)
452 		cpuset_rel(td->td_cpuset);
453 	td->td_cpuset = NULL;
454 	cpu_thread_free(td);
455 	if (td->td_kstack != 0)
456 		vm_thread_dispose(td);
457 	callout_drain(&td->td_slpcallout);
458 	uma_zfree(thread_zone, td);
459 }
460 
461 void
462 thread_cow_get_proc(struct thread *newtd, struct proc *p)
463 {
464 
465 	PROC_LOCK_ASSERT(p, MA_OWNED);
466 	newtd->td_realucred = crcowget(p->p_ucred);
467 	newtd->td_ucred = newtd->td_realucred;
468 	newtd->td_limit = lim_hold(p->p_limit);
469 	newtd->td_cowgen = p->p_cowgen;
470 }
471 
472 void
473 thread_cow_get(struct thread *newtd, struct thread *td)
474 {
475 
476 	MPASS(td->td_realucred == td->td_ucred);
477 	newtd->td_realucred = crcowget(td->td_realucred);
478 	newtd->td_ucred = newtd->td_realucred;
479 	newtd->td_limit = lim_hold(td->td_limit);
480 	newtd->td_cowgen = td->td_cowgen;
481 }
482 
483 void
484 thread_cow_free(struct thread *td)
485 {
486 
487 	if (td->td_realucred != NULL)
488 		crcowfree(td);
489 	if (td->td_limit != NULL)
490 		lim_free(td->td_limit);
491 }
492 
493 void
494 thread_cow_update(struct thread *td)
495 {
496 	struct proc *p;
497 	struct ucred *oldcred;
498 	struct plimit *oldlimit;
499 
500 	p = td->td_proc;
501 	oldlimit = NULL;
502 	PROC_LOCK(p);
503 	oldcred = crcowsync();
504 	if (td->td_limit != p->p_limit) {
505 		oldlimit = td->td_limit;
506 		td->td_limit = lim_hold(p->p_limit);
507 	}
508 	td->td_cowgen = p->p_cowgen;
509 	PROC_UNLOCK(p);
510 	if (oldcred != NULL)
511 		crfree(oldcred);
512 	if (oldlimit != NULL)
513 		lim_free(oldlimit);
514 }
515 
516 /*
517  * Discard the current thread and exit from its context.
518  * Always called with scheduler locked.
519  *
520  * Because we can't free a thread while we're operating under its context,
521  * push the current thread into our CPU's deadthread holder. This means
522  * we needn't worry about someone else grabbing our context before we
523  * do a cpu_throw().
524  */
525 void
526 thread_exit(void)
527 {
528 	uint64_t runtime, new_switchtime;
529 	struct thread *td;
530 	struct thread *td2;
531 	struct proc *p;
532 	int wakeup_swapper;
533 
534 	td = curthread;
535 	p = td->td_proc;
536 
537 	PROC_SLOCK_ASSERT(p, MA_OWNED);
538 	mtx_assert(&Giant, MA_NOTOWNED);
539 
540 	PROC_LOCK_ASSERT(p, MA_OWNED);
541 	KASSERT(p != NULL, ("thread exiting without a process"));
542 	CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td,
543 	    (long)p->p_pid, td->td_name);
544 	SDT_PROBE0(proc, , , lwp__exit);
545 	KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending"));
546 	MPASS(td->td_realucred == td->td_ucred);
547 
548 	/*
549 	 * drop FPU & debug register state storage, or any other
550 	 * architecture specific resources that
551 	 * would not be on a new untouched process.
552 	 */
553 	cpu_thread_exit(td);
554 
555 	/*
556 	 * The last thread is left attached to the process
557 	 * So that the whole bundle gets recycled. Skip
558 	 * all this stuff if we never had threads.
559 	 * EXIT clears all sign of other threads when
560 	 * it goes to single threading, so the last thread always
561 	 * takes the short path.
562 	 */
563 	if (p->p_flag & P_HADTHREADS) {
564 		if (p->p_numthreads > 1) {
565 			atomic_add_int(&td->td_proc->p_exitthreads, 1);
566 			thread_unlink(td);
567 			td2 = FIRST_THREAD_IN_PROC(p);
568 			sched_exit_thread(td2, td);
569 
570 			/*
571 			 * The test below is NOT true if we are the
572 			 * sole exiting thread. P_STOPPED_SINGLE is unset
573 			 * in exit1() after it is the only survivor.
574 			 */
575 			if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
576 				if (p->p_numthreads == p->p_suspcount) {
577 					thread_lock(p->p_singlethread);
578 					wakeup_swapper = thread_unsuspend_one(
579 						p->p_singlethread, p, false);
580 					if (wakeup_swapper)
581 						kick_proc0();
582 				}
583 			}
584 
585 			PCPU_SET(deadthread, td);
586 		} else {
587 			/*
588 			 * The last thread is exiting.. but not through exit()
589 			 */
590 			panic ("thread_exit: Last thread exiting on its own");
591 		}
592 	}
593 #ifdef	HWPMC_HOOKS
594 	/*
595 	 * If this thread is part of a process that is being tracked by hwpmc(4),
596 	 * inform the module of the thread's impending exit.
597 	 */
598 	if (PMC_PROC_IS_USING_PMCS(td->td_proc)) {
599 		PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
600 		PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT, NULL);
601 	} else if (PMC_SYSTEM_SAMPLING_ACTIVE())
602 		PMC_CALL_HOOK_UNLOCKED(td, PMC_FN_THR_EXIT_LOG, NULL);
603 #endif
604 	PROC_UNLOCK(p);
605 	PROC_STATLOCK(p);
606 	thread_lock(td);
607 	PROC_SUNLOCK(p);
608 
609 	/* Do the same timestamp bookkeeping that mi_switch() would do. */
610 	new_switchtime = cpu_ticks();
611 	runtime = new_switchtime - PCPU_GET(switchtime);
612 	td->td_runtime += runtime;
613 	td->td_incruntime += runtime;
614 	PCPU_SET(switchtime, new_switchtime);
615 	PCPU_SET(switchticks, ticks);
616 	VM_CNT_INC(v_swtch);
617 
618 	/* Save our resource usage in our process. */
619 	td->td_ru.ru_nvcsw++;
620 	ruxagg_locked(p, td);
621 	rucollect(&p->p_ru, &td->td_ru);
622 	PROC_STATUNLOCK(p);
623 
624 	td->td_state = TDS_INACTIVE;
625 #ifdef WITNESS
626 	witness_thread_exit(td);
627 #endif
628 	CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td);
629 	sched_throw(td);
630 	panic("I'm a teapot!");
631 	/* NOTREACHED */
632 }
633 
634 /*
635  * Do any thread specific cleanups that may be needed in wait()
636  * called with Giant, proc and schedlock not held.
637  */
638 void
639 thread_wait(struct proc *p)
640 {
641 	struct thread *td;
642 
643 	mtx_assert(&Giant, MA_NOTOWNED);
644 	KASSERT(p->p_numthreads == 1, ("multiple threads in thread_wait()"));
645 	KASSERT(p->p_exitthreads == 0, ("p_exitthreads leaking"));
646 	td = FIRST_THREAD_IN_PROC(p);
647 	/* Lock the last thread so we spin until it exits cpu_throw(). */
648 	thread_lock(td);
649 	thread_unlock(td);
650 	lock_profile_thread_exit(td);
651 	cpuset_rel(td->td_cpuset);
652 	td->td_cpuset = NULL;
653 	cpu_thread_clean(td);
654 	thread_cow_free(td);
655 	callout_drain(&td->td_slpcallout);
656 	thread_reap();	/* check for zombie threads etc. */
657 }
658 
659 /*
660  * Link a thread to a process.
661  * set up anything that needs to be initialized for it to
662  * be used by the process.
663  */
664 void
665 thread_link(struct thread *td, struct proc *p)
666 {
667 
668 	/*
669 	 * XXX This can't be enabled because it's called for proc0 before
670 	 * its lock has been created.
671 	 * PROC_LOCK_ASSERT(p, MA_OWNED);
672 	 */
673 	td->td_state    = TDS_INACTIVE;
674 	td->td_proc     = p;
675 	td->td_flags    = TDF_INMEM;
676 
677 	LIST_INIT(&td->td_contested);
678 	LIST_INIT(&td->td_lprof[0]);
679 	LIST_INIT(&td->td_lprof[1]);
680 #ifdef EPOCH_TRACE
681 	SLIST_INIT(&td->td_epochs);
682 #endif
683 	sigqueue_init(&td->td_sigqueue, p);
684 	callout_init(&td->td_slpcallout, 1);
685 	TAILQ_INSERT_TAIL(&p->p_threads, td, td_plist);
686 	p->p_numthreads++;
687 }
688 
689 /*
690  * Called from:
691  *  thread_exit()
692  */
693 void
694 thread_unlink(struct thread *td)
695 {
696 	struct proc *p = td->td_proc;
697 
698 	PROC_LOCK_ASSERT(p, MA_OWNED);
699 #ifdef EPOCH_TRACE
700 	MPASS(SLIST_EMPTY(&td->td_epochs));
701 #endif
702 
703 	TAILQ_REMOVE(&p->p_threads, td, td_plist);
704 	p->p_numthreads--;
705 	/* could clear a few other things here */
706 	/* Must  NOT clear links to proc! */
707 }
708 
709 static int
710 calc_remaining(struct proc *p, int mode)
711 {
712 	int remaining;
713 
714 	PROC_LOCK_ASSERT(p, MA_OWNED);
715 	PROC_SLOCK_ASSERT(p, MA_OWNED);
716 	if (mode == SINGLE_EXIT)
717 		remaining = p->p_numthreads;
718 	else if (mode == SINGLE_BOUNDARY)
719 		remaining = p->p_numthreads - p->p_boundary_count;
720 	else if (mode == SINGLE_NO_EXIT || mode == SINGLE_ALLPROC)
721 		remaining = p->p_numthreads - p->p_suspcount;
722 	else
723 		panic("calc_remaining: wrong mode %d", mode);
724 	return (remaining);
725 }
726 
727 static int
728 remain_for_mode(int mode)
729 {
730 
731 	return (mode == SINGLE_ALLPROC ? 0 : 1);
732 }
733 
734 static int
735 weed_inhib(int mode, struct thread *td2, struct proc *p)
736 {
737 	int wakeup_swapper;
738 
739 	PROC_LOCK_ASSERT(p, MA_OWNED);
740 	PROC_SLOCK_ASSERT(p, MA_OWNED);
741 	THREAD_LOCK_ASSERT(td2, MA_OWNED);
742 
743 	wakeup_swapper = 0;
744 
745 	/*
746 	 * Since the thread lock is dropped by the scheduler we have
747 	 * to retry to check for races.
748 	 */
749 restart:
750 	switch (mode) {
751 	case SINGLE_EXIT:
752 		if (TD_IS_SUSPENDED(td2)) {
753 			wakeup_swapper |= thread_unsuspend_one(td2, p, true);
754 			thread_lock(td2);
755 			goto restart;
756 		}
757 		if (TD_CAN_ABORT(td2)) {
758 			wakeup_swapper |= sleepq_abort(td2, EINTR);
759 			return (wakeup_swapper);
760 		}
761 		break;
762 	case SINGLE_BOUNDARY:
763 	case SINGLE_NO_EXIT:
764 		if (TD_IS_SUSPENDED(td2) &&
765 		    (td2->td_flags & TDF_BOUNDARY) == 0) {
766 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
767 			thread_lock(td2);
768 			goto restart;
769 		}
770 		if (TD_CAN_ABORT(td2)) {
771 			wakeup_swapper |= sleepq_abort(td2, ERESTART);
772 			return (wakeup_swapper);
773 		}
774 		break;
775 	case SINGLE_ALLPROC:
776 		/*
777 		 * ALLPROC suspend tries to avoid spurious EINTR for
778 		 * threads sleeping interruptable, by suspending the
779 		 * thread directly, similarly to sig_suspend_threads().
780 		 * Since such sleep is not performed at the user
781 		 * boundary, TDF_BOUNDARY flag is not set, and TDF_ALLPROCSUSP
782 		 * is used to avoid immediate un-suspend.
783 		 */
784 		if (TD_IS_SUSPENDED(td2) && (td2->td_flags & (TDF_BOUNDARY |
785 		    TDF_ALLPROCSUSP)) == 0) {
786 			wakeup_swapper |= thread_unsuspend_one(td2, p, false);
787 			thread_lock(td2);
788 			goto restart;
789 		}
790 		if (TD_CAN_ABORT(td2)) {
791 			if ((td2->td_flags & TDF_SBDRY) == 0) {
792 				thread_suspend_one(td2);
793 				td2->td_flags |= TDF_ALLPROCSUSP;
794 			} else {
795 				wakeup_swapper |= sleepq_abort(td2, ERESTART);
796 				return (wakeup_swapper);
797 			}
798 		}
799 		break;
800 	default:
801 		break;
802 	}
803 	thread_unlock(td2);
804 	return (wakeup_swapper);
805 }
806 
807 /*
808  * Enforce single-threading.
809  *
810  * Returns 1 if the caller must abort (another thread is waiting to
811  * exit the process or similar). Process is locked!
812  * Returns 0 when you are successfully the only thread running.
813  * A process has successfully single threaded in the suspend mode when
814  * There are no threads in user mode. Threads in the kernel must be
815  * allowed to continue until they get to the user boundary. They may even
816  * copy out their return values and data before suspending. They may however be
817  * accelerated in reaching the user boundary as we will wake up
818  * any sleeping threads that are interruptable. (PCATCH).
819  */
820 int
821 thread_single(struct proc *p, int mode)
822 {
823 	struct thread *td;
824 	struct thread *td2;
825 	int remaining, wakeup_swapper;
826 
827 	td = curthread;
828 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
829 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
830 	    ("invalid mode %d", mode));
831 	/*
832 	 * If allowing non-ALLPROC singlethreading for non-curproc
833 	 * callers, calc_remaining() and remain_for_mode() should be
834 	 * adjusted to also account for td->td_proc != p.  For now
835 	 * this is not implemented because it is not used.
836 	 */
837 	KASSERT((mode == SINGLE_ALLPROC && td->td_proc != p) ||
838 	    (mode != SINGLE_ALLPROC && td->td_proc == p),
839 	    ("mode %d proc %p curproc %p", mode, p, td->td_proc));
840 	mtx_assert(&Giant, MA_NOTOWNED);
841 	PROC_LOCK_ASSERT(p, MA_OWNED);
842 
843 	if ((p->p_flag & P_HADTHREADS) == 0 && mode != SINGLE_ALLPROC)
844 		return (0);
845 
846 	/* Is someone already single threading? */
847 	if (p->p_singlethread != NULL && p->p_singlethread != td)
848 		return (1);
849 
850 	if (mode == SINGLE_EXIT) {
851 		p->p_flag |= P_SINGLE_EXIT;
852 		p->p_flag &= ~P_SINGLE_BOUNDARY;
853 	} else {
854 		p->p_flag &= ~P_SINGLE_EXIT;
855 		if (mode == SINGLE_BOUNDARY)
856 			p->p_flag |= P_SINGLE_BOUNDARY;
857 		else
858 			p->p_flag &= ~P_SINGLE_BOUNDARY;
859 	}
860 	if (mode == SINGLE_ALLPROC)
861 		p->p_flag |= P_TOTAL_STOP;
862 	p->p_flag |= P_STOPPED_SINGLE;
863 	PROC_SLOCK(p);
864 	p->p_singlethread = td;
865 	remaining = calc_remaining(p, mode);
866 	while (remaining != remain_for_mode(mode)) {
867 		if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE)
868 			goto stopme;
869 		wakeup_swapper = 0;
870 		FOREACH_THREAD_IN_PROC(p, td2) {
871 			if (td2 == td)
872 				continue;
873 			thread_lock(td2);
874 			td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK;
875 			if (TD_IS_INHIBITED(td2)) {
876 				wakeup_swapper |= weed_inhib(mode, td2, p);
877 #ifdef SMP
878 			} else if (TD_IS_RUNNING(td2) && td != td2) {
879 				forward_signal(td2);
880 				thread_unlock(td2);
881 #endif
882 			} else
883 				thread_unlock(td2);
884 		}
885 		if (wakeup_swapper)
886 			kick_proc0();
887 		remaining = calc_remaining(p, mode);
888 
889 		/*
890 		 * Maybe we suspended some threads.. was it enough?
891 		 */
892 		if (remaining == remain_for_mode(mode))
893 			break;
894 
895 stopme:
896 		/*
897 		 * Wake us up when everyone else has suspended.
898 		 * In the mean time we suspend as well.
899 		 */
900 		thread_suspend_switch(td, p);
901 		remaining = calc_remaining(p, mode);
902 	}
903 	if (mode == SINGLE_EXIT) {
904 		/*
905 		 * Convert the process to an unthreaded process.  The
906 		 * SINGLE_EXIT is called by exit1() or execve(), in
907 		 * both cases other threads must be retired.
908 		 */
909 		KASSERT(p->p_numthreads == 1, ("Unthreading with >1 threads"));
910 		p->p_singlethread = NULL;
911 		p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_HADTHREADS);
912 
913 		/*
914 		 * Wait for any remaining threads to exit cpu_throw().
915 		 */
916 		while (p->p_exitthreads != 0) {
917 			PROC_SUNLOCK(p);
918 			PROC_UNLOCK(p);
919 			sched_relinquish(td);
920 			PROC_LOCK(p);
921 			PROC_SLOCK(p);
922 		}
923 	} else if (mode == SINGLE_BOUNDARY) {
924 		/*
925 		 * Wait until all suspended threads are removed from
926 		 * the processors.  The thread_suspend_check()
927 		 * increments p_boundary_count while it is still
928 		 * running, which makes it possible for the execve()
929 		 * to destroy vmspace while our other threads are
930 		 * still using the address space.
931 		 *
932 		 * We lock the thread, which is only allowed to
933 		 * succeed after context switch code finished using
934 		 * the address space.
935 		 */
936 		FOREACH_THREAD_IN_PROC(p, td2) {
937 			if (td2 == td)
938 				continue;
939 			thread_lock(td2);
940 			KASSERT((td2->td_flags & TDF_BOUNDARY) != 0,
941 			    ("td %p not on boundary", td2));
942 			KASSERT(TD_IS_SUSPENDED(td2),
943 			    ("td %p is not suspended", td2));
944 			thread_unlock(td2);
945 		}
946 	}
947 	PROC_SUNLOCK(p);
948 	return (0);
949 }
950 
951 bool
952 thread_suspend_check_needed(void)
953 {
954 	struct proc *p;
955 	struct thread *td;
956 
957 	td = curthread;
958 	p = td->td_proc;
959 	PROC_LOCK_ASSERT(p, MA_OWNED);
960 	return (P_SHOULDSTOP(p) || ((p->p_flag & P_TRACED) != 0 &&
961 	    (td->td_dbgflags & TDB_SUSPEND) != 0));
962 }
963 
964 /*
965  * Called in from locations that can safely check to see
966  * whether we have to suspend or at least throttle for a
967  * single-thread event (e.g. fork).
968  *
969  * Such locations include userret().
970  * If the "return_instead" argument is non zero, the thread must be able to
971  * accept 0 (caller may continue), or 1 (caller must abort) as a result.
972  *
973  * The 'return_instead' argument tells the function if it may do a
974  * thread_exit() or suspend, or whether the caller must abort and back
975  * out instead.
976  *
977  * If the thread that set the single_threading request has set the
978  * P_SINGLE_EXIT bit in the process flags then this call will never return
979  * if 'return_instead' is false, but will exit.
980  *
981  * P_SINGLE_EXIT | return_instead == 0| return_instead != 0
982  *---------------+--------------------+---------------------
983  *       0       | returns 0          |   returns 0 or 1
984  *               | when ST ends       |   immediately
985  *---------------+--------------------+---------------------
986  *       1       | thread exits       |   returns 1
987  *               |                    |  immediately
988  * 0 = thread_exit() or suspension ok,
989  * other = return error instead of stopping the thread.
990  *
991  * While a full suspension is under effect, even a single threading
992  * thread would be suspended if it made this call (but it shouldn't).
993  * This call should only be made from places where
994  * thread_exit() would be safe as that may be the outcome unless
995  * return_instead is set.
996  */
997 int
998 thread_suspend_check(int return_instead)
999 {
1000 	struct thread *td;
1001 	struct proc *p;
1002 	int wakeup_swapper;
1003 
1004 	td = curthread;
1005 	p = td->td_proc;
1006 	mtx_assert(&Giant, MA_NOTOWNED);
1007 	PROC_LOCK_ASSERT(p, MA_OWNED);
1008 	while (thread_suspend_check_needed()) {
1009 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1010 			KASSERT(p->p_singlethread != NULL,
1011 			    ("singlethread not set"));
1012 			/*
1013 			 * The only suspension in action is a
1014 			 * single-threading. Single threader need not stop.
1015 			 * It is safe to access p->p_singlethread unlocked
1016 			 * because it can only be set to our address by us.
1017 			 */
1018 			if (p->p_singlethread == td)
1019 				return (0);	/* Exempt from stopping. */
1020 		}
1021 		if ((p->p_flag & P_SINGLE_EXIT) && return_instead)
1022 			return (EINTR);
1023 
1024 		/* Should we goto user boundary if we didn't come from there? */
1025 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1026 		    (p->p_flag & P_SINGLE_BOUNDARY) && return_instead)
1027 			return (ERESTART);
1028 
1029 		/*
1030 		 * Ignore suspend requests if they are deferred.
1031 		 */
1032 		if ((td->td_flags & TDF_SBDRY) != 0) {
1033 			KASSERT(return_instead,
1034 			    ("TDF_SBDRY set for unsafe thread_suspend_check"));
1035 			KASSERT((td->td_flags & (TDF_SEINTR | TDF_SERESTART)) !=
1036 			    (TDF_SEINTR | TDF_SERESTART),
1037 			    ("both TDF_SEINTR and TDF_SERESTART"));
1038 			return (TD_SBDRY_INTR(td) ? TD_SBDRY_ERRNO(td) : 0);
1039 		}
1040 
1041 		/*
1042 		 * If the process is waiting for us to exit,
1043 		 * this thread should just suicide.
1044 		 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE.
1045 		 */
1046 		if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) {
1047 			PROC_UNLOCK(p);
1048 
1049 			/*
1050 			 * Allow Linux emulation layer to do some work
1051 			 * before thread suicide.
1052 			 */
1053 			if (__predict_false(p->p_sysent->sv_thread_detach != NULL))
1054 				(p->p_sysent->sv_thread_detach)(td);
1055 			umtx_thread_exit(td);
1056 			kern_thr_exit(td);
1057 			panic("stopped thread did not exit");
1058 		}
1059 
1060 		PROC_SLOCK(p);
1061 		thread_stopped(p);
1062 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
1063 			if (p->p_numthreads == p->p_suspcount + 1) {
1064 				thread_lock(p->p_singlethread);
1065 				wakeup_swapper = thread_unsuspend_one(
1066 				    p->p_singlethread, p, false);
1067 				if (wakeup_swapper)
1068 					kick_proc0();
1069 			}
1070 		}
1071 		PROC_UNLOCK(p);
1072 		thread_lock(td);
1073 		/*
1074 		 * When a thread suspends, it just
1075 		 * gets taken off all queues.
1076 		 */
1077 		thread_suspend_one(td);
1078 		if (return_instead == 0) {
1079 			p->p_boundary_count++;
1080 			td->td_flags |= TDF_BOUNDARY;
1081 		}
1082 		PROC_SUNLOCK(p);
1083 		mi_switch(SW_INVOL | SWT_SUSPEND);
1084 		PROC_LOCK(p);
1085 	}
1086 	return (0);
1087 }
1088 
1089 /*
1090  * Check for possible stops and suspensions while executing a
1091  * casueword or similar transiently failing operation.
1092  *
1093  * The sleep argument controls whether the function can handle a stop
1094  * request itself or it should return ERESTART and the request is
1095  * proceed at the kernel/user boundary in ast.
1096  *
1097  * Typically, when retrying due to casueword(9) failure (rv == 1), we
1098  * should handle the stop requests there, with exception of cases when
1099  * the thread owns a kernel resource, for instance busied the umtx
1100  * key, or when functions return immediately if thread_check_susp()
1101  * returned non-zero.  On the other hand, retrying the whole lock
1102  * operation, we better not stop there but delegate the handling to
1103  * ast.
1104  *
1105  * If the request is for thread termination P_SINGLE_EXIT, we cannot
1106  * handle it at all, and simply return EINTR.
1107  */
1108 int
1109 thread_check_susp(struct thread *td, bool sleep)
1110 {
1111 	struct proc *p;
1112 	int error;
1113 
1114 	/*
1115 	 * The check for TDF_NEEDSUSPCHK is racy, but it is enough to
1116 	 * eventually break the lockstep loop.
1117 	 */
1118 	if ((td->td_flags & TDF_NEEDSUSPCHK) == 0)
1119 		return (0);
1120 	error = 0;
1121 	p = td->td_proc;
1122 	PROC_LOCK(p);
1123 	if (p->p_flag & P_SINGLE_EXIT)
1124 		error = EINTR;
1125 	else if (P_SHOULDSTOP(p) ||
1126 	    ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND)))
1127 		error = sleep ? thread_suspend_check(0) : ERESTART;
1128 	PROC_UNLOCK(p);
1129 	return (error);
1130 }
1131 
1132 void
1133 thread_suspend_switch(struct thread *td, struct proc *p)
1134 {
1135 
1136 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1137 	PROC_LOCK_ASSERT(p, MA_OWNED);
1138 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1139 	/*
1140 	 * We implement thread_suspend_one in stages here to avoid
1141 	 * dropping the proc lock while the thread lock is owned.
1142 	 */
1143 	if (p == td->td_proc) {
1144 		thread_stopped(p);
1145 		p->p_suspcount++;
1146 	}
1147 	PROC_UNLOCK(p);
1148 	thread_lock(td);
1149 	td->td_flags &= ~TDF_NEEDSUSPCHK;
1150 	TD_SET_SUSPENDED(td);
1151 	sched_sleep(td, 0);
1152 	PROC_SUNLOCK(p);
1153 	DROP_GIANT();
1154 	mi_switch(SW_VOL | SWT_SUSPEND);
1155 	PICKUP_GIANT();
1156 	PROC_LOCK(p);
1157 	PROC_SLOCK(p);
1158 }
1159 
1160 void
1161 thread_suspend_one(struct thread *td)
1162 {
1163 	struct proc *p;
1164 
1165 	p = td->td_proc;
1166 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1167 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1168 	KASSERT(!TD_IS_SUSPENDED(td), ("already suspended"));
1169 	p->p_suspcount++;
1170 	td->td_flags &= ~TDF_NEEDSUSPCHK;
1171 	TD_SET_SUSPENDED(td);
1172 	sched_sleep(td, 0);
1173 }
1174 
1175 static int
1176 thread_unsuspend_one(struct thread *td, struct proc *p, bool boundary)
1177 {
1178 
1179 	THREAD_LOCK_ASSERT(td, MA_OWNED);
1180 	KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended"));
1181 	TD_CLR_SUSPENDED(td);
1182 	td->td_flags &= ~TDF_ALLPROCSUSP;
1183 	if (td->td_proc == p) {
1184 		PROC_SLOCK_ASSERT(p, MA_OWNED);
1185 		p->p_suspcount--;
1186 		if (boundary && (td->td_flags & TDF_BOUNDARY) != 0) {
1187 			td->td_flags &= ~TDF_BOUNDARY;
1188 			p->p_boundary_count--;
1189 		}
1190 	}
1191 	return (setrunnable(td, 0));
1192 }
1193 
1194 /*
1195  * Allow all threads blocked by single threading to continue running.
1196  */
1197 void
1198 thread_unsuspend(struct proc *p)
1199 {
1200 	struct thread *td;
1201 	int wakeup_swapper;
1202 
1203 	PROC_LOCK_ASSERT(p, MA_OWNED);
1204 	PROC_SLOCK_ASSERT(p, MA_OWNED);
1205 	wakeup_swapper = 0;
1206 	if (!P_SHOULDSTOP(p)) {
1207                 FOREACH_THREAD_IN_PROC(p, td) {
1208 			thread_lock(td);
1209 			if (TD_IS_SUSPENDED(td)) {
1210 				wakeup_swapper |= thread_unsuspend_one(td, p,
1211 				    true);
1212 			} else
1213 				thread_unlock(td);
1214 		}
1215 	} else if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE &&
1216 	    p->p_numthreads == p->p_suspcount) {
1217 		/*
1218 		 * Stopping everything also did the job for the single
1219 		 * threading request. Now we've downgraded to single-threaded,
1220 		 * let it continue.
1221 		 */
1222 		if (p->p_singlethread->td_proc == p) {
1223 			thread_lock(p->p_singlethread);
1224 			wakeup_swapper = thread_unsuspend_one(
1225 			    p->p_singlethread, p, false);
1226 		}
1227 	}
1228 	if (wakeup_swapper)
1229 		kick_proc0();
1230 }
1231 
1232 /*
1233  * End the single threading mode..
1234  */
1235 void
1236 thread_single_end(struct proc *p, int mode)
1237 {
1238 	struct thread *td;
1239 	int wakeup_swapper;
1240 
1241 	KASSERT(mode == SINGLE_EXIT || mode == SINGLE_BOUNDARY ||
1242 	    mode == SINGLE_ALLPROC || mode == SINGLE_NO_EXIT,
1243 	    ("invalid mode %d", mode));
1244 	PROC_LOCK_ASSERT(p, MA_OWNED);
1245 	KASSERT((mode == SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) != 0) ||
1246 	    (mode != SINGLE_ALLPROC && (p->p_flag & P_TOTAL_STOP) == 0),
1247 	    ("mode %d does not match P_TOTAL_STOP", mode));
1248 	KASSERT(mode == SINGLE_ALLPROC || p->p_singlethread == curthread,
1249 	    ("thread_single_end from other thread %p %p",
1250 	    curthread, p->p_singlethread));
1251 	KASSERT(mode != SINGLE_BOUNDARY ||
1252 	    (p->p_flag & P_SINGLE_BOUNDARY) != 0,
1253 	    ("mis-matched SINGLE_BOUNDARY flags %x", p->p_flag));
1254 	p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY |
1255 	    P_TOTAL_STOP);
1256 	PROC_SLOCK(p);
1257 	p->p_singlethread = NULL;
1258 	wakeup_swapper = 0;
1259 	/*
1260 	 * If there are other threads they may now run,
1261 	 * unless of course there is a blanket 'stop order'
1262 	 * on the process. The single threader must be allowed
1263 	 * to continue however as this is a bad place to stop.
1264 	 */
1265 	if (p->p_numthreads != remain_for_mode(mode) && !P_SHOULDSTOP(p)) {
1266                 FOREACH_THREAD_IN_PROC(p, td) {
1267 			thread_lock(td);
1268 			if (TD_IS_SUSPENDED(td)) {
1269 				wakeup_swapper |= thread_unsuspend_one(td, p,
1270 				    mode == SINGLE_BOUNDARY);
1271 			} else
1272 				thread_unlock(td);
1273 		}
1274 	}
1275 	KASSERT(mode != SINGLE_BOUNDARY || p->p_boundary_count == 0,
1276 	    ("inconsistent boundary count %d", p->p_boundary_count));
1277 	PROC_SUNLOCK(p);
1278 	if (wakeup_swapper)
1279 		kick_proc0();
1280 }
1281 
1282 struct thread *
1283 thread_find(struct proc *p, lwpid_t tid)
1284 {
1285 	struct thread *td;
1286 
1287 	PROC_LOCK_ASSERT(p, MA_OWNED);
1288 	FOREACH_THREAD_IN_PROC(p, td) {
1289 		if (td->td_tid == tid)
1290 			break;
1291 	}
1292 	return (td);
1293 }
1294 
1295 /* Locate a thread by number; return with proc lock held. */
1296 struct thread *
1297 tdfind(lwpid_t tid, pid_t pid)
1298 {
1299 #define RUN_THRESH	16
1300 	struct thread *td;
1301 	int run = 0;
1302 
1303 	td = curthread;
1304 	if (td->td_tid == tid) {
1305 		if (pid != -1 && td->td_proc->p_pid != pid)
1306 			return (NULL);
1307 		PROC_LOCK(td->td_proc);
1308 		return (td);
1309 	}
1310 
1311 	rw_rlock(&tidhash_lock);
1312 	LIST_FOREACH(td, TIDHASH(tid), td_hash) {
1313 		if (td->td_tid == tid) {
1314 			if (pid != -1 && td->td_proc->p_pid != pid) {
1315 				td = NULL;
1316 				break;
1317 			}
1318 			PROC_LOCK(td->td_proc);
1319 			if (td->td_proc->p_state == PRS_NEW) {
1320 				PROC_UNLOCK(td->td_proc);
1321 				td = NULL;
1322 				break;
1323 			}
1324 			if (run > RUN_THRESH) {
1325 				if (rw_try_upgrade(&tidhash_lock)) {
1326 					LIST_REMOVE(td, td_hash);
1327 					LIST_INSERT_HEAD(TIDHASH(td->td_tid),
1328 						td, td_hash);
1329 					rw_wunlock(&tidhash_lock);
1330 					return (td);
1331 				}
1332 			}
1333 			break;
1334 		}
1335 		run++;
1336 	}
1337 	rw_runlock(&tidhash_lock);
1338 	return (td);
1339 }
1340 
1341 void
1342 tidhash_add(struct thread *td)
1343 {
1344 	rw_wlock(&tidhash_lock);
1345 	LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash);
1346 	rw_wunlock(&tidhash_lock);
1347 }
1348 
1349 void
1350 tidhash_remove(struct thread *td)
1351 {
1352 	rw_wlock(&tidhash_lock);
1353 	LIST_REMOVE(td, td_hash);
1354 	rw_wunlock(&tidhash_lock);
1355 }
1356