1 /* 2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice(s), this list of conditions and the following disclaimer as 10 * the first lines of this file unmodified other than the possible 11 * addition of one or more copyright notices. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice(s), this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY 17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 19 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY 20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 26 * DAMAGE. 27 * 28 * $FreeBSD$ 29 */ 30 31 #include <sys/param.h> 32 #include <sys/systm.h> 33 #include <sys/kernel.h> 34 #include <sys/lock.h> 35 #include <sys/malloc.h> 36 #include <sys/mutex.h> 37 #include <sys/proc.h> 38 #include <sys/smp.h> 39 #include <sys/sysctl.h> 40 #include <sys/sysproto.h> 41 #include <sys/filedesc.h> 42 #include <sys/sched.h> 43 #include <sys/signalvar.h> 44 #include <sys/sx.h> 45 #include <sys/tty.h> 46 #include <sys/user.h> 47 #include <sys/jail.h> 48 #include <sys/kse.h> 49 #include <sys/ktr.h> 50 #include <sys/ucontext.h> 51 52 #include <vm/vm.h> 53 #include <vm/vm_object.h> 54 #include <vm/pmap.h> 55 #include <vm/uma.h> 56 #include <vm/vm_map.h> 57 58 #include <machine/frame.h> 59 60 /* 61 * KSEGRP related storage. 62 */ 63 static uma_zone_t ksegrp_zone; 64 static uma_zone_t kse_zone; 65 static uma_zone_t thread_zone; 66 static uma_zone_t upcall_zone; 67 68 /* DEBUG ONLY */ 69 SYSCTL_NODE(_kern, OID_AUTO, threads, CTLFLAG_RW, 0, "thread allocation"); 70 static int thread_debug = 0; 71 SYSCTL_INT(_kern_threads, OID_AUTO, debug, CTLFLAG_RW, 72 &thread_debug, 0, "thread debug"); 73 74 static int max_threads_per_proc = 30; 75 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_per_proc, CTLFLAG_RW, 76 &max_threads_per_proc, 0, "Limit on threads per proc"); 77 78 static int max_groups_per_proc = 5; 79 SYSCTL_INT(_kern_threads, OID_AUTO, max_groups_per_proc, CTLFLAG_RW, 80 &max_groups_per_proc, 0, "Limit on thread groups per proc"); 81 82 static int max_threads_hits; 83 SYSCTL_INT(_kern_threads, OID_AUTO, max_threads_hits, CTLFLAG_RD, 84 &max_threads_hits, 0, ""); 85 86 static int virtual_cpu; 87 88 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start)) 89 90 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads); 91 TAILQ_HEAD(, kse) zombie_kses = TAILQ_HEAD_INITIALIZER(zombie_kses); 92 TAILQ_HEAD(, ksegrp) zombie_ksegrps = TAILQ_HEAD_INITIALIZER(zombie_ksegrps); 93 TAILQ_HEAD(, kse_upcall) zombie_upcalls = 94 TAILQ_HEAD_INITIALIZER(zombie_upcalls); 95 struct mtx kse_zombie_lock; 96 MTX_SYSINIT(kse_zombie_lock, &kse_zombie_lock, "kse zombie lock", MTX_SPIN); 97 98 static void kse_purge(struct proc *p, struct thread *td); 99 static void kse_purge_group(struct thread *td); 100 static int thread_update_usr_ticks(struct thread *td, int user); 101 static void thread_alloc_spare(struct thread *td, struct thread *spare); 102 103 static int 104 sysctl_kse_virtual_cpu(SYSCTL_HANDLER_ARGS) 105 { 106 int error, new_val; 107 int def_val; 108 109 #ifdef SMP 110 def_val = mp_ncpus; 111 #else 112 def_val = 1; 113 #endif 114 if (virtual_cpu == 0) 115 new_val = def_val; 116 else 117 new_val = virtual_cpu; 118 error = sysctl_handle_int(oidp, &new_val, 0, req); 119 if (error != 0 || req->newptr == NULL) 120 return (error); 121 if (new_val < 0) 122 return (EINVAL); 123 virtual_cpu = new_val; 124 return (0); 125 } 126 127 /* DEBUG ONLY */ 128 SYSCTL_PROC(_kern_threads, OID_AUTO, virtual_cpu, CTLTYPE_INT|CTLFLAG_RW, 129 0, sizeof(virtual_cpu), sysctl_kse_virtual_cpu, "I", 130 "debug virtual cpus"); 131 132 /* 133 * Prepare a thread for use. 134 */ 135 static void 136 thread_ctor(void *mem, int size, void *arg) 137 { 138 struct thread *td; 139 140 td = (struct thread *)mem; 141 td->td_state = TDS_INACTIVE; 142 } 143 144 /* 145 * Reclaim a thread after use. 146 */ 147 static void 148 thread_dtor(void *mem, int size, void *arg) 149 { 150 struct thread *td; 151 152 td = (struct thread *)mem; 153 154 #ifdef INVARIANTS 155 /* Verify that this thread is in a safe state to free. */ 156 switch (td->td_state) { 157 case TDS_INHIBITED: 158 case TDS_RUNNING: 159 case TDS_CAN_RUN: 160 case TDS_RUNQ: 161 /* 162 * We must never unlink a thread that is in one of 163 * these states, because it is currently active. 164 */ 165 panic("bad state for thread unlinking"); 166 /* NOTREACHED */ 167 case TDS_INACTIVE: 168 break; 169 default: 170 panic("bad thread state"); 171 /* NOTREACHED */ 172 } 173 #endif 174 } 175 176 /* 177 * Initialize type-stable parts of a thread (when newly created). 178 */ 179 static void 180 thread_init(void *mem, int size) 181 { 182 struct thread *td; 183 184 td = (struct thread *)mem; 185 mtx_lock(&Giant); 186 pmap_new_thread(td, 0); 187 mtx_unlock(&Giant); 188 cpu_thread_setup(td); 189 td->td_sched = (struct td_sched *)&td[1]; 190 } 191 192 /* 193 * Tear down type-stable parts of a thread (just before being discarded). 194 */ 195 static void 196 thread_fini(void *mem, int size) 197 { 198 struct thread *td; 199 200 td = (struct thread *)mem; 201 pmap_dispose_thread(td); 202 } 203 204 /* 205 * Initialize type-stable parts of a kse (when newly created). 206 */ 207 static void 208 kse_init(void *mem, int size) 209 { 210 struct kse *ke; 211 212 ke = (struct kse *)mem; 213 ke->ke_sched = (struct ke_sched *)&ke[1]; 214 } 215 216 /* 217 * Initialize type-stable parts of a ksegrp (when newly created). 218 */ 219 static void 220 ksegrp_init(void *mem, int size) 221 { 222 struct ksegrp *kg; 223 224 kg = (struct ksegrp *)mem; 225 kg->kg_sched = (struct kg_sched *)&kg[1]; 226 } 227 228 /* 229 * KSE is linked into kse group. 230 */ 231 void 232 kse_link(struct kse *ke, struct ksegrp *kg) 233 { 234 struct proc *p = kg->kg_proc; 235 236 TAILQ_INSERT_HEAD(&kg->kg_kseq, ke, ke_kglist); 237 kg->kg_kses++; 238 ke->ke_state = KES_UNQUEUED; 239 ke->ke_proc = p; 240 ke->ke_ksegrp = kg; 241 ke->ke_thread = NULL; 242 ke->ke_oncpu = NOCPU; 243 ke->ke_flags = 0; 244 } 245 246 void 247 kse_unlink(struct kse *ke) 248 { 249 struct ksegrp *kg; 250 251 mtx_assert(&sched_lock, MA_OWNED); 252 kg = ke->ke_ksegrp; 253 TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist); 254 if (ke->ke_state == KES_IDLE) { 255 TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist); 256 kg->kg_idle_kses--; 257 } 258 if (--kg->kg_kses == 0) 259 ksegrp_unlink(kg); 260 /* 261 * Aggregate stats from the KSE 262 */ 263 kse_stash(ke); 264 } 265 266 void 267 ksegrp_link(struct ksegrp *kg, struct proc *p) 268 { 269 270 TAILQ_INIT(&kg->kg_threads); 271 TAILQ_INIT(&kg->kg_runq); /* links with td_runq */ 272 TAILQ_INIT(&kg->kg_slpq); /* links with td_runq */ 273 TAILQ_INIT(&kg->kg_kseq); /* all kses in ksegrp */ 274 TAILQ_INIT(&kg->kg_iq); /* all idle kses in ksegrp */ 275 TAILQ_INIT(&kg->kg_upcalls); /* all upcall structure in ksegrp */ 276 kg->kg_proc = p; 277 /* 278 * the following counters are in the -zero- section 279 * and may not need clearing 280 */ 281 kg->kg_numthreads = 0; 282 kg->kg_runnable = 0; 283 kg->kg_kses = 0; 284 kg->kg_runq_kses = 0; /* XXXKSE change name */ 285 kg->kg_idle_kses = 0; 286 kg->kg_numupcalls = 0; 287 /* link it in now that it's consistent */ 288 p->p_numksegrps++; 289 TAILQ_INSERT_HEAD(&p->p_ksegrps, kg, kg_ksegrp); 290 } 291 292 void 293 ksegrp_unlink(struct ksegrp *kg) 294 { 295 struct proc *p; 296 297 mtx_assert(&sched_lock, MA_OWNED); 298 KASSERT((kg->kg_numthreads == 0), ("ksegrp_unlink: residual threads")); 299 KASSERT((kg->kg_kses == 0), ("ksegrp_unlink: residual kses")); 300 KASSERT((kg->kg_numupcalls == 0), ("ksegrp_unlink: residual upcalls")); 301 302 p = kg->kg_proc; 303 TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp); 304 p->p_numksegrps--; 305 /* 306 * Aggregate stats from the KSE 307 */ 308 ksegrp_stash(kg); 309 } 310 311 struct kse_upcall * 312 upcall_alloc(void) 313 { 314 struct kse_upcall *ku; 315 316 ku = uma_zalloc(upcall_zone, M_WAITOK); 317 bzero(ku, sizeof(*ku)); 318 return (ku); 319 } 320 321 void 322 upcall_free(struct kse_upcall *ku) 323 { 324 325 uma_zfree(upcall_zone, ku); 326 } 327 328 void 329 upcall_link(struct kse_upcall *ku, struct ksegrp *kg) 330 { 331 332 mtx_assert(&sched_lock, MA_OWNED); 333 TAILQ_INSERT_TAIL(&kg->kg_upcalls, ku, ku_link); 334 ku->ku_ksegrp = kg; 335 kg->kg_numupcalls++; 336 } 337 338 void 339 upcall_unlink(struct kse_upcall *ku) 340 { 341 struct ksegrp *kg = ku->ku_ksegrp; 342 343 mtx_assert(&sched_lock, MA_OWNED); 344 KASSERT(ku->ku_owner == NULL, ("%s: have owner", __func__)); 345 TAILQ_REMOVE(&kg->kg_upcalls, ku, ku_link); 346 kg->kg_numupcalls--; 347 upcall_stash(ku); 348 } 349 350 void 351 upcall_remove(struct thread *td) 352 { 353 354 if (td->td_upcall) { 355 td->td_upcall->ku_owner = NULL; 356 upcall_unlink(td->td_upcall); 357 td->td_upcall = 0; 358 } 359 } 360 361 /* 362 * For a newly created process, 363 * link up all the structures and its initial threads etc. 364 */ 365 void 366 proc_linkup(struct proc *p, struct ksegrp *kg, 367 struct kse *ke, struct thread *td) 368 { 369 370 TAILQ_INIT(&p->p_ksegrps); /* all ksegrps in proc */ 371 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 372 TAILQ_INIT(&p->p_suspended); /* Threads suspended */ 373 p->p_numksegrps = 0; 374 p->p_numthreads = 0; 375 376 ksegrp_link(kg, p); 377 kse_link(ke, kg); 378 thread_link(td, kg); 379 } 380 381 /* 382 struct kse_thr_interrupt_args { 383 struct kse_thr_mailbox * tmbx; 384 }; 385 */ 386 int 387 kse_thr_interrupt(struct thread *td, struct kse_thr_interrupt_args *uap) 388 { 389 struct proc *p; 390 struct thread *td2; 391 392 p = td->td_proc; 393 if (!(p->p_flag & P_THREADED) || (uap->tmbx == NULL)) 394 return (EINVAL); 395 mtx_lock_spin(&sched_lock); 396 FOREACH_THREAD_IN_PROC(p, td2) { 397 if (td2->td_mailbox == uap->tmbx) { 398 td2->td_flags |= TDF_INTERRUPT; 399 if (TD_ON_SLEEPQ(td2) && (td2->td_flags & TDF_SINTR)) { 400 if (td2->td_flags & TDF_CVWAITQ) 401 cv_abort(td2); 402 else 403 abortsleep(td2); 404 } 405 mtx_unlock_spin(&sched_lock); 406 return (0); 407 } 408 } 409 mtx_unlock_spin(&sched_lock); 410 return (ESRCH); 411 } 412 413 /* 414 struct kse_exit_args { 415 register_t dummy; 416 }; 417 */ 418 int 419 kse_exit(struct thread *td, struct kse_exit_args *uap) 420 { 421 struct proc *p; 422 struct ksegrp *kg; 423 struct kse *ke; 424 425 p = td->td_proc; 426 /* 427 * Only UTS can call the syscall and current group 428 * should be a threaded group. 429 */ 430 if ((td->td_mailbox != NULL) || (td->td_ksegrp->kg_numupcalls == 0)) 431 return (EINVAL); 432 KASSERT((td->td_upcall != NULL), ("%s: not own an upcall", __func__)); 433 434 kg = td->td_ksegrp; 435 /* Serialize removing upcall */ 436 PROC_LOCK(p); 437 mtx_lock_spin(&sched_lock); 438 if ((kg->kg_numupcalls == 1) && (kg->kg_numthreads > 1)) { 439 mtx_unlock_spin(&sched_lock); 440 PROC_UNLOCK(p); 441 return (EDEADLK); 442 } 443 ke = td->td_kse; 444 upcall_remove(td); 445 if (p->p_numthreads == 1) { 446 kse_purge(p, td); 447 p->p_flag &= ~P_THREADED; 448 mtx_unlock_spin(&sched_lock); 449 PROC_UNLOCK(p); 450 } else { 451 if (kg->kg_numthreads == 1) { /* Shutdown a group */ 452 kse_purge_group(td); 453 ke->ke_flags |= KEF_EXIT; 454 } 455 thread_stopped(p); 456 thread_exit(); 457 /* NOTREACHED */ 458 } 459 return (0); 460 } 461 462 /* 463 * Either becomes an upcall or waits for an awakening event and 464 * then becomes an upcall. Only error cases return. 465 */ 466 /* 467 struct kse_release_args { 468 struct timespec *timeout; 469 }; 470 */ 471 int 472 kse_release(struct thread *td, struct kse_release_args *uap) 473 { 474 struct proc *p; 475 struct ksegrp *kg; 476 struct timespec ts, ts2, ts3, timeout; 477 struct timeval tv; 478 int error; 479 480 p = td->td_proc; 481 kg = td->td_ksegrp; 482 /* 483 * Only UTS can call the syscall and current group 484 * should be a threaded group. 485 */ 486 if ((td->td_mailbox != NULL) || (td->td_ksegrp->kg_numupcalls == 0)) 487 return (EINVAL); 488 KASSERT((td->td_upcall != NULL), ("%s: not own an upcall", __func__)); 489 if (uap->timeout != NULL) { 490 if ((error = copyin(uap->timeout, &timeout, sizeof(timeout)))) 491 return (error); 492 getnanouptime(&ts); 493 timespecadd(&ts, &timeout); 494 TIMESPEC_TO_TIMEVAL(&tv, &timeout); 495 } 496 mtx_lock_spin(&sched_lock); 497 /* Change OURSELF to become an upcall. */ 498 td->td_flags = TDF_UPCALLING; 499 if (p->p_sflag & PS_NEEDSIGCHK) 500 td->td_flags |= TDF_ASTPENDING; 501 mtx_unlock_spin(&sched_lock); 502 PROC_LOCK(p); 503 while ((td->td_upcall->ku_flags & KUF_DOUPCALL) == 0 && 504 (kg->kg_completed == NULL)) { 505 kg->kg_upsleeps++; 506 error = msleep(&kg->kg_completed, &p->p_mtx, PPAUSE|PCATCH, 507 "kse_rel", (uap->timeout ? tvtohz(&tv) : 0)); 508 kg->kg_upsleeps--; 509 PROC_UNLOCK(p); 510 if (uap->timeout == NULL || error != EWOULDBLOCK) 511 return (0); 512 getnanouptime(&ts2); 513 if (timespeccmp(&ts2, &ts, >=)) 514 return (0); 515 ts3 = ts; 516 timespecsub(&ts3, &ts2); 517 TIMESPEC_TO_TIMEVAL(&tv, &ts3); 518 PROC_LOCK(p); 519 } 520 PROC_UNLOCK(p); 521 return (0); 522 } 523 524 /* struct kse_wakeup_args { 525 struct kse_mailbox *mbx; 526 }; */ 527 int 528 kse_wakeup(struct thread *td, struct kse_wakeup_args *uap) 529 { 530 struct proc *p; 531 struct ksegrp *kg; 532 struct kse_upcall *ku; 533 struct thread *td2; 534 535 p = td->td_proc; 536 td2 = NULL; 537 ku = NULL; 538 /* KSE-enabled processes only, please. */ 539 if (!(p->p_flag & P_THREADED)) 540 return (EINVAL); 541 PROC_LOCK(p); 542 mtx_lock_spin(&sched_lock); 543 if (uap->mbx) { 544 FOREACH_KSEGRP_IN_PROC(p, kg) { 545 FOREACH_UPCALL_IN_GROUP(kg, ku) { 546 if (ku->ku_mailbox == uap->mbx) 547 break; 548 } 549 if (ku) 550 break; 551 } 552 } else { 553 kg = td->td_ksegrp; 554 if (kg->kg_upsleeps) { 555 wakeup_one(&kg->kg_completed); 556 mtx_unlock_spin(&sched_lock); 557 PROC_UNLOCK(p); 558 return (0); 559 } 560 ku = TAILQ_FIRST(&kg->kg_upcalls); 561 } 562 if (ku) { 563 if ((td2 = ku->ku_owner) == NULL) { 564 panic("%s: no owner", __func__); 565 } else if (TD_ON_SLEEPQ(td2) && 566 (td2->td_wchan == &kg->kg_completed)) { 567 abortsleep(td2); 568 } else { 569 ku->ku_flags |= KUF_DOUPCALL; 570 } 571 mtx_unlock_spin(&sched_lock); 572 PROC_UNLOCK(p); 573 return (0); 574 } 575 mtx_unlock_spin(&sched_lock); 576 PROC_UNLOCK(p); 577 return (ESRCH); 578 } 579 580 /* 581 * No new KSEG: first call: use current KSE, don't schedule an upcall 582 * All other situations, do allocate max new KSEs and schedule an upcall. 583 */ 584 /* struct kse_create_args { 585 struct kse_mailbox *mbx; 586 int newgroup; 587 }; */ 588 int 589 kse_create(struct thread *td, struct kse_create_args *uap) 590 { 591 struct kse *newke; 592 struct ksegrp *newkg; 593 struct ksegrp *kg; 594 struct proc *p; 595 struct kse_mailbox mbx; 596 struct kse_upcall *newku; 597 int err, ncpus; 598 599 p = td->td_proc; 600 if ((err = copyin(uap->mbx, &mbx, sizeof(mbx)))) 601 return (err); 602 603 /* Too bad, why hasn't kernel always a cpu counter !? */ 604 #ifdef SMP 605 ncpus = mp_ncpus; 606 #else 607 ncpus = 1; 608 #endif 609 if (thread_debug && virtual_cpu != 0) 610 ncpus = virtual_cpu; 611 612 /* Easier to just set it than to test and set */ 613 PROC_LOCK(p); 614 p->p_flag |= P_THREADED; 615 PROC_UNLOCK(p); 616 kg = td->td_ksegrp; 617 if (uap->newgroup) { 618 /* Have race condition but it is cheap */ 619 if (p->p_numksegrps >= max_groups_per_proc) 620 return (EPROCLIM); 621 /* 622 * If we want a new KSEGRP it doesn't matter whether 623 * we have already fired up KSE mode before or not. 624 * We put the process in KSE mode and create a new KSEGRP. 625 */ 626 newkg = ksegrp_alloc(); 627 bzero(&newkg->kg_startzero, RANGEOF(struct ksegrp, 628 kg_startzero, kg_endzero)); 629 bcopy(&kg->kg_startcopy, &newkg->kg_startcopy, 630 RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy)); 631 mtx_lock_spin(&sched_lock); 632 if (p->p_numksegrps >= max_groups_per_proc) { 633 mtx_unlock_spin(&sched_lock); 634 ksegrp_free(newkg); 635 return (EPROCLIM); 636 } 637 ksegrp_link(newkg, p); 638 mtx_unlock_spin(&sched_lock); 639 } else { 640 newkg = kg; 641 } 642 643 /* 644 * Creating upcalls more than number of physical cpu does 645 * not help performance. 646 */ 647 if (newkg->kg_numupcalls >= ncpus) 648 return (EPROCLIM); 649 650 if (newkg->kg_numupcalls == 0) { 651 /* 652 * Initialize KSE group, optimized for MP. 653 * Create KSEs as many as physical cpus, this increases 654 * concurrent even if userland is not MP safe and can only run 655 * on single CPU (for early version of libpthread, it is true). 656 * In ideal world, every physical cpu should execute a thread. 657 * If there is enough KSEs, threads in kernel can be 658 * executed parallel on different cpus with full speed, 659 * Concurrent in kernel shouldn't be restricted by number of 660 * upcalls userland provides. 661 * Adding more upcall structures only increases concurrent 662 * in userland. 663 * Highest performance configuration is: 664 * N kses = N upcalls = N phyiscal cpus 665 */ 666 while (newkg->kg_kses < ncpus) { 667 newke = kse_alloc(); 668 bzero(&newke->ke_startzero, RANGEOF(struct kse, 669 ke_startzero, ke_endzero)); 670 #if 0 671 mtx_lock_spin(&sched_lock); 672 bcopy(&ke->ke_startcopy, &newke->ke_startcopy, 673 RANGEOF(struct kse, ke_startcopy, ke_endcopy)); 674 mtx_unlock_spin(&sched_lock); 675 #endif 676 mtx_lock_spin(&sched_lock); 677 kse_link(newke, newkg); 678 /* Add engine */ 679 kse_reassign(newke); 680 mtx_unlock_spin(&sched_lock); 681 } 682 } 683 newku = upcall_alloc(); 684 newku->ku_mailbox = uap->mbx; 685 newku->ku_func = mbx.km_func; 686 bcopy(&mbx.km_stack, &newku->ku_stack, sizeof(stack_t)); 687 688 /* For the first call this may not have been set */ 689 if (td->td_standin == NULL) 690 thread_alloc_spare(td, NULL); 691 692 mtx_lock_spin(&sched_lock); 693 if (newkg->kg_numupcalls >= ncpus) { 694 mtx_unlock_spin(&sched_lock); 695 upcall_free(newku); 696 return (EPROCLIM); 697 } 698 upcall_link(newku, newkg); 699 if (mbx.km_quantum) 700 newkg->kg_upquantum = max(1, mbx.km_quantum/tick); 701 702 /* 703 * Each upcall structure has an owner thread, find which 704 * one owns it. 705 */ 706 if (uap->newgroup) { 707 /* 708 * Because new ksegrp hasn't thread, 709 * create an initial upcall thread to own it. 710 */ 711 thread_schedule_upcall(td, newku); 712 } else { 713 /* 714 * If current thread hasn't an upcall structure, 715 * just assign the upcall to it. 716 */ 717 if (td->td_upcall == NULL) { 718 newku->ku_owner = td; 719 td->td_upcall = newku; 720 } else { 721 /* 722 * Create a new upcall thread to own it. 723 */ 724 thread_schedule_upcall(td, newku); 725 } 726 } 727 mtx_unlock_spin(&sched_lock); 728 return (0); 729 } 730 731 /* 732 * Fill a ucontext_t with a thread's context information. 733 * 734 * This is an analogue to getcontext(3). 735 */ 736 void 737 thread_getcontext(struct thread *td, ucontext_t *uc) 738 { 739 740 /* 741 * XXX this is declared in a MD include file, i386/include/ucontext.h but 742 * is used in MI code. 743 */ 744 #ifdef __i386__ 745 get_mcontext(td, &uc->uc_mcontext); 746 #endif 747 uc->uc_sigmask = td->td_proc->p_sigmask; 748 } 749 750 /* 751 * Set a thread's context from a ucontext_t. 752 * 753 * This is an analogue to setcontext(3). 754 */ 755 int 756 thread_setcontext(struct thread *td, ucontext_t *uc) 757 { 758 int ret; 759 760 /* 761 * XXX this is declared in a MD include file, i386/include/ucontext.h but 762 * is used in MI code. 763 */ 764 #ifdef __i386__ 765 ret = set_mcontext(td, &uc->uc_mcontext); 766 #else 767 ret = ENOSYS; 768 #endif 769 if (ret == 0) { 770 SIG_CANTMASK(uc->uc_sigmask); 771 PROC_LOCK(td->td_proc); 772 td->td_proc->p_sigmask = uc->uc_sigmask; 773 PROC_UNLOCK(td->td_proc); 774 } 775 return (ret); 776 } 777 778 /* 779 * Initialize global thread allocation resources. 780 */ 781 void 782 threadinit(void) 783 { 784 785 #ifndef __ia64__ 786 thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(), 787 thread_ctor, thread_dtor, thread_init, thread_fini, 788 UMA_ALIGN_CACHE, 0); 789 #else 790 /* 791 * XXX the ia64 kstack allocator is really lame and is at the mercy 792 * of contigmallloc(). This hackery is to pre-construct a whole 793 * pile of thread structures with associated kernel stacks early 794 * in the system startup while contigmalloc() still works. Once we 795 * have them, keep them. Sigh. 796 */ 797 thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(), 798 thread_ctor, thread_dtor, thread_init, thread_fini, 799 UMA_ALIGN_CACHE, UMA_ZONE_NOFREE); 800 uma_prealloc(thread_zone, 512); /* XXX arbitary */ 801 #endif 802 ksegrp_zone = uma_zcreate("KSEGRP", sched_sizeof_ksegrp(), 803 NULL, NULL, ksegrp_init, NULL, 804 UMA_ALIGN_CACHE, 0); 805 kse_zone = uma_zcreate("KSE", sched_sizeof_kse(), 806 NULL, NULL, kse_init, NULL, 807 UMA_ALIGN_CACHE, 0); 808 upcall_zone = uma_zcreate("UPCALL", sizeof(struct kse_upcall), 809 NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0); 810 } 811 812 /* 813 * Stash an embarasingly extra thread into the zombie thread queue. 814 */ 815 void 816 thread_stash(struct thread *td) 817 { 818 mtx_lock_spin(&kse_zombie_lock); 819 TAILQ_INSERT_HEAD(&zombie_threads, td, td_runq); 820 mtx_unlock_spin(&kse_zombie_lock); 821 } 822 823 /* 824 * Stash an embarasingly extra kse into the zombie kse queue. 825 */ 826 void 827 kse_stash(struct kse *ke) 828 { 829 mtx_lock_spin(&kse_zombie_lock); 830 TAILQ_INSERT_HEAD(&zombie_kses, ke, ke_procq); 831 mtx_unlock_spin(&kse_zombie_lock); 832 } 833 834 /* 835 * Stash an embarasingly extra upcall into the zombie upcall queue. 836 */ 837 838 void 839 upcall_stash(struct kse_upcall *ku) 840 { 841 mtx_lock_spin(&kse_zombie_lock); 842 TAILQ_INSERT_HEAD(&zombie_upcalls, ku, ku_link); 843 mtx_unlock_spin(&kse_zombie_lock); 844 } 845 846 /* 847 * Stash an embarasingly extra ksegrp into the zombie ksegrp queue. 848 */ 849 void 850 ksegrp_stash(struct ksegrp *kg) 851 { 852 mtx_lock_spin(&kse_zombie_lock); 853 TAILQ_INSERT_HEAD(&zombie_ksegrps, kg, kg_ksegrp); 854 mtx_unlock_spin(&kse_zombie_lock); 855 } 856 857 /* 858 * Reap zombie kse resource. 859 */ 860 void 861 thread_reap(void) 862 { 863 struct thread *td_first, *td_next; 864 struct kse *ke_first, *ke_next; 865 struct ksegrp *kg_first, * kg_next; 866 struct kse_upcall *ku_first, *ku_next; 867 868 /* 869 * Don't even bother to lock if none at this instant, 870 * we really don't care about the next instant.. 871 */ 872 if ((!TAILQ_EMPTY(&zombie_threads)) 873 || (!TAILQ_EMPTY(&zombie_kses)) 874 || (!TAILQ_EMPTY(&zombie_ksegrps)) 875 || (!TAILQ_EMPTY(&zombie_upcalls))) { 876 mtx_lock_spin(&kse_zombie_lock); 877 td_first = TAILQ_FIRST(&zombie_threads); 878 ke_first = TAILQ_FIRST(&zombie_kses); 879 kg_first = TAILQ_FIRST(&zombie_ksegrps); 880 ku_first = TAILQ_FIRST(&zombie_upcalls); 881 if (td_first) 882 TAILQ_INIT(&zombie_threads); 883 if (ke_first) 884 TAILQ_INIT(&zombie_kses); 885 if (kg_first) 886 TAILQ_INIT(&zombie_ksegrps); 887 if (ku_first) 888 TAILQ_INIT(&zombie_upcalls); 889 mtx_unlock_spin(&kse_zombie_lock); 890 while (td_first) { 891 td_next = TAILQ_NEXT(td_first, td_runq); 892 if (td_first->td_ucred) 893 crfree(td_first->td_ucred); 894 thread_free(td_first); 895 td_first = td_next; 896 } 897 while (ke_first) { 898 ke_next = TAILQ_NEXT(ke_first, ke_procq); 899 kse_free(ke_first); 900 ke_first = ke_next; 901 } 902 while (kg_first) { 903 kg_next = TAILQ_NEXT(kg_first, kg_ksegrp); 904 ksegrp_free(kg_first); 905 kg_first = kg_next; 906 } 907 while (ku_first) { 908 ku_next = TAILQ_NEXT(ku_first, ku_link); 909 upcall_free(ku_first); 910 ku_first = ku_next; 911 } 912 } 913 } 914 915 /* 916 * Allocate a ksegrp. 917 */ 918 struct ksegrp * 919 ksegrp_alloc(void) 920 { 921 return (uma_zalloc(ksegrp_zone, M_WAITOK)); 922 } 923 924 /* 925 * Allocate a kse. 926 */ 927 struct kse * 928 kse_alloc(void) 929 { 930 return (uma_zalloc(kse_zone, M_WAITOK)); 931 } 932 933 /* 934 * Allocate a thread. 935 */ 936 struct thread * 937 thread_alloc(void) 938 { 939 thread_reap(); /* check if any zombies to get */ 940 return (uma_zalloc(thread_zone, M_WAITOK)); 941 } 942 943 /* 944 * Deallocate a ksegrp. 945 */ 946 void 947 ksegrp_free(struct ksegrp *td) 948 { 949 uma_zfree(ksegrp_zone, td); 950 } 951 952 /* 953 * Deallocate a kse. 954 */ 955 void 956 kse_free(struct kse *td) 957 { 958 uma_zfree(kse_zone, td); 959 } 960 961 /* 962 * Deallocate a thread. 963 */ 964 void 965 thread_free(struct thread *td) 966 { 967 968 cpu_thread_clean(td); 969 uma_zfree(thread_zone, td); 970 } 971 972 /* 973 * Store the thread context in the UTS's mailbox. 974 * then add the mailbox at the head of a list we are building in user space. 975 * The list is anchored in the ksegrp structure. 976 */ 977 int 978 thread_export_context(struct thread *td) 979 { 980 struct proc *p; 981 struct ksegrp *kg; 982 uintptr_t mbx; 983 void *addr; 984 int error,temp; 985 ucontext_t uc; 986 987 p = td->td_proc; 988 kg = td->td_ksegrp; 989 990 /* Export the user/machine context. */ 991 addr = (void *)(&td->td_mailbox->tm_context); 992 error = copyin(addr, &uc, sizeof(ucontext_t)); 993 if (error) 994 goto bad; 995 996 thread_getcontext(td, &uc); 997 error = copyout(&uc, addr, sizeof(ucontext_t)); 998 if (error) 999 goto bad; 1000 1001 /* Exports clock ticks in kernel mode */ 1002 addr = (caddr_t)(&td->td_mailbox->tm_sticks); 1003 temp = fuword(addr) + td->td_usticks; 1004 if (suword(addr, temp)) 1005 goto bad; 1006 1007 /* Get address in latest mbox of list pointer */ 1008 addr = (void *)(&td->td_mailbox->tm_next); 1009 /* 1010 * Put the saved address of the previous first 1011 * entry into this one 1012 */ 1013 for (;;) { 1014 mbx = (uintptr_t)kg->kg_completed; 1015 if (suword(addr, mbx)) { 1016 error = EFAULT; 1017 goto bad; 1018 } 1019 PROC_LOCK(p); 1020 if (mbx == (uintptr_t)kg->kg_completed) { 1021 kg->kg_completed = td->td_mailbox; 1022 /* 1023 * The thread context may be taken away by 1024 * other upcall threads when we unlock 1025 * process lock. it's no longer valid to 1026 * use it again in any other places. 1027 */ 1028 td->td_mailbox = NULL; 1029 PROC_UNLOCK(p); 1030 break; 1031 } 1032 PROC_UNLOCK(p); 1033 } 1034 td->td_usticks = 0; 1035 return (0); 1036 1037 bad: 1038 PROC_LOCK(p); 1039 psignal(p, SIGSEGV); 1040 PROC_UNLOCK(p); 1041 /* The mailbox is bad, don't use it */ 1042 td->td_mailbox = NULL; 1043 td->td_usticks = 0; 1044 return (error); 1045 } 1046 1047 /* 1048 * Take the list of completed mailboxes for this KSEGRP and put them on this 1049 * upcall's mailbox as it's the next one going up. 1050 */ 1051 static int 1052 thread_link_mboxes(struct ksegrp *kg, struct kse_upcall *ku) 1053 { 1054 struct proc *p = kg->kg_proc; 1055 void *addr; 1056 uintptr_t mbx; 1057 1058 addr = (void *)(&ku->ku_mailbox->km_completed); 1059 for (;;) { 1060 mbx = (uintptr_t)kg->kg_completed; 1061 if (suword(addr, mbx)) { 1062 PROC_LOCK(p); 1063 psignal(p, SIGSEGV); 1064 PROC_UNLOCK(p); 1065 return (EFAULT); 1066 } 1067 PROC_LOCK(p); 1068 if (mbx == (uintptr_t)kg->kg_completed) { 1069 kg->kg_completed = NULL; 1070 PROC_UNLOCK(p); 1071 break; 1072 } 1073 PROC_UNLOCK(p); 1074 } 1075 return (0); 1076 } 1077 1078 /* 1079 * This function should be called at statclock interrupt time 1080 */ 1081 int 1082 thread_statclock(int user) 1083 { 1084 struct thread *td = curthread; 1085 1086 if (td->td_ksegrp->kg_numupcalls == 0) 1087 return (-1); 1088 if (user) { 1089 /* Current always do via ast() */ 1090 mtx_lock_spin(&sched_lock); 1091 td->td_flags |= (TDF_USTATCLOCK|TDF_ASTPENDING); 1092 mtx_unlock_spin(&sched_lock); 1093 td->td_uuticks++; 1094 } else { 1095 if (td->td_mailbox != NULL) 1096 td->td_usticks++; 1097 else { 1098 /* XXXKSE 1099 * We will call thread_user_enter() for every 1100 * kernel entry in future, so if the thread mailbox 1101 * is NULL, it must be a UTS kernel, don't account 1102 * clock ticks for it. 1103 */ 1104 } 1105 } 1106 return (0); 1107 } 1108 1109 /* 1110 * Export state clock ticks for userland 1111 */ 1112 static int 1113 thread_update_usr_ticks(struct thread *td, int user) 1114 { 1115 struct proc *p = td->td_proc; 1116 struct kse_thr_mailbox *tmbx; 1117 struct kse_upcall *ku; 1118 struct ksegrp *kg; 1119 caddr_t addr; 1120 uint uticks; 1121 1122 if ((ku = td->td_upcall) == NULL) 1123 return (-1); 1124 1125 tmbx = (void *)fuword((void *)&ku->ku_mailbox->km_curthread); 1126 if ((tmbx == NULL) || (tmbx == (void *)-1)) 1127 return (-1); 1128 if (user) { 1129 uticks = td->td_uuticks; 1130 td->td_uuticks = 0; 1131 addr = (caddr_t)&tmbx->tm_uticks; 1132 } else { 1133 uticks = td->td_usticks; 1134 td->td_usticks = 0; 1135 addr = (caddr_t)&tmbx->tm_sticks; 1136 } 1137 if (uticks) { 1138 if (suword(addr, uticks+fuword(addr))) { 1139 PROC_LOCK(p); 1140 psignal(p, SIGSEGV); 1141 PROC_UNLOCK(p); 1142 return (-2); 1143 } 1144 } 1145 kg = td->td_ksegrp; 1146 if (kg->kg_upquantum && ticks >= kg->kg_nextupcall) { 1147 mtx_lock_spin(&sched_lock); 1148 td->td_upcall->ku_flags |= KUF_DOUPCALL; 1149 mtx_unlock_spin(&sched_lock); 1150 } 1151 return (0); 1152 } 1153 1154 /* 1155 * Discard the current thread and exit from its context. 1156 * 1157 * Because we can't free a thread while we're operating under its context, 1158 * push the current thread into our CPU's deadthread holder. This means 1159 * we needn't worry about someone else grabbing our context before we 1160 * do a cpu_throw(). 1161 */ 1162 void 1163 thread_exit(void) 1164 { 1165 struct thread *td; 1166 struct kse *ke; 1167 struct proc *p; 1168 struct ksegrp *kg; 1169 1170 td = curthread; 1171 kg = td->td_ksegrp; 1172 p = td->td_proc; 1173 ke = td->td_kse; 1174 1175 mtx_assert(&sched_lock, MA_OWNED); 1176 KASSERT(p != NULL, ("thread exiting without a process")); 1177 KASSERT(ke != NULL, ("thread exiting without a kse")); 1178 KASSERT(kg != NULL, ("thread exiting without a kse group")); 1179 PROC_LOCK_ASSERT(p, MA_OWNED); 1180 CTR1(KTR_PROC, "thread_exit: thread %p", td); 1181 KASSERT(!mtx_owned(&Giant), ("dying thread owns giant")); 1182 1183 if (td->td_standin != NULL) { 1184 thread_stash(td->td_standin); 1185 td->td_standin = NULL; 1186 } 1187 1188 cpu_thread_exit(td); /* XXXSMP */ 1189 1190 /* 1191 * The last thread is left attached to the process 1192 * So that the whole bundle gets recycled. Skip 1193 * all this stuff. 1194 */ 1195 if (p->p_numthreads > 1) { 1196 /* 1197 * Unlink this thread from its proc and the kseg. 1198 * In keeping with the other structs we probably should 1199 * have a thread_unlink() that does some of this but it 1200 * would only be called from here (I think) so it would 1201 * be a waste. (might be useful for proc_fini() as well.) 1202 */ 1203 TAILQ_REMOVE(&p->p_threads, td, td_plist); 1204 p->p_numthreads--; 1205 TAILQ_REMOVE(&kg->kg_threads, td, td_kglist); 1206 kg->kg_numthreads--; 1207 if (p->p_maxthrwaits) 1208 wakeup(&p->p_numthreads); 1209 /* 1210 * The test below is NOT true if we are the 1211 * sole exiting thread. P_STOPPED_SNGL is unset 1212 * in exit1() after it is the only survivor. 1213 */ 1214 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 1215 if (p->p_numthreads == p->p_suspcount) { 1216 thread_unsuspend_one(p->p_singlethread); 1217 } 1218 } 1219 1220 /* 1221 * Because each upcall structure has an owner thread, 1222 * owner thread exits only when process is in exiting 1223 * state, so upcall to userland is no longer needed, 1224 * deleting upcall structure is safe here. 1225 * So when all threads in a group is exited, all upcalls 1226 * in the group should be automatically freed. 1227 */ 1228 if (td->td_upcall) 1229 upcall_remove(td); 1230 1231 ke->ke_state = KES_UNQUEUED; 1232 ke->ke_thread = NULL; 1233 /* 1234 * Decide what to do with the KSE attached to this thread. 1235 */ 1236 if (ke->ke_flags & KEF_EXIT) 1237 kse_unlink(ke); 1238 else 1239 kse_reassign(ke); 1240 PROC_UNLOCK(p); 1241 td->td_kse = NULL; 1242 td->td_state = TDS_INACTIVE; 1243 td->td_proc = NULL; 1244 td->td_ksegrp = NULL; 1245 td->td_last_kse = NULL; 1246 PCPU_SET(deadthread, td); 1247 } else { 1248 PROC_UNLOCK(p); 1249 } 1250 cpu_throw(); 1251 /* NOTREACHED */ 1252 } 1253 1254 /* 1255 * Do any thread specific cleanups that may be needed in wait() 1256 * called with Giant held, proc and schedlock not held. 1257 */ 1258 void 1259 thread_wait(struct proc *p) 1260 { 1261 struct thread *td; 1262 1263 KASSERT((p->p_numthreads == 1), ("Muliple threads in wait1()")); 1264 KASSERT((p->p_numksegrps == 1), ("Muliple ksegrps in wait1()")); 1265 FOREACH_THREAD_IN_PROC(p, td) { 1266 if (td->td_standin != NULL) { 1267 thread_free(td->td_standin); 1268 td->td_standin = NULL; 1269 } 1270 cpu_thread_clean(td); 1271 } 1272 thread_reap(); /* check for zombie threads etc. */ 1273 } 1274 1275 /* 1276 * Link a thread to a process. 1277 * set up anything that needs to be initialized for it to 1278 * be used by the process. 1279 * 1280 * Note that we do not link to the proc's ucred here. 1281 * The thread is linked as if running but no KSE assigned. 1282 */ 1283 void 1284 thread_link(struct thread *td, struct ksegrp *kg) 1285 { 1286 struct proc *p; 1287 1288 p = kg->kg_proc; 1289 td->td_state = TDS_INACTIVE; 1290 td->td_proc = p; 1291 td->td_ksegrp = kg; 1292 td->td_last_kse = NULL; 1293 td->td_flags = 0; 1294 td->td_kse = NULL; 1295 1296 LIST_INIT(&td->td_contested); 1297 callout_init(&td->td_slpcallout, 1); 1298 TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist); 1299 TAILQ_INSERT_HEAD(&kg->kg_threads, td, td_kglist); 1300 p->p_numthreads++; 1301 kg->kg_numthreads++; 1302 } 1303 1304 /* 1305 * Purge a ksegrp resource. When a ksegrp is preparing to 1306 * exit, it calls this function. 1307 */ 1308 void 1309 kse_purge_group(struct thread *td) 1310 { 1311 struct ksegrp *kg; 1312 struct kse *ke; 1313 1314 kg = td->td_ksegrp; 1315 KASSERT(kg->kg_numthreads == 1, ("%s: bad thread number", __func__)); 1316 while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) { 1317 KASSERT(ke->ke_state == KES_IDLE, 1318 ("%s: wrong idle KSE state", __func__)); 1319 kse_unlink(ke); 1320 } 1321 KASSERT((kg->kg_kses == 1), 1322 ("%s: ksegrp still has %d KSEs", __func__, kg->kg_kses)); 1323 KASSERT((kg->kg_numupcalls == 0), 1324 ("%s: ksegrp still has %d upcall datas", 1325 __func__, kg->kg_numupcalls)); 1326 } 1327 1328 /* 1329 * Purge a process's KSE resource. When a process is preparing to 1330 * exit, it calls kse_purge to release any extra KSE resources in 1331 * the process. 1332 */ 1333 void 1334 kse_purge(struct proc *p, struct thread *td) 1335 { 1336 struct ksegrp *kg; 1337 struct kse *ke; 1338 1339 KASSERT(p->p_numthreads == 1, ("bad thread number")); 1340 mtx_lock_spin(&sched_lock); 1341 while ((kg = TAILQ_FIRST(&p->p_ksegrps)) != NULL) { 1342 TAILQ_REMOVE(&p->p_ksegrps, kg, kg_ksegrp); 1343 p->p_numksegrps--; 1344 /* 1345 * There is no ownership for KSE, after all threads 1346 * in the group exited, it is possible that some KSEs 1347 * were left in idle queue, gc them now. 1348 */ 1349 while ((ke = TAILQ_FIRST(&kg->kg_iq)) != NULL) { 1350 KASSERT(ke->ke_state == KES_IDLE, 1351 ("%s: wrong idle KSE state", __func__)); 1352 TAILQ_REMOVE(&kg->kg_iq, ke, ke_kgrlist); 1353 kg->kg_idle_kses--; 1354 TAILQ_REMOVE(&kg->kg_kseq, ke, ke_kglist); 1355 kg->kg_kses--; 1356 kse_stash(ke); 1357 } 1358 KASSERT(((kg->kg_kses == 0) && (kg != td->td_ksegrp)) || 1359 ((kg->kg_kses == 1) && (kg == td->td_ksegrp)), 1360 ("ksegrp has wrong kg_kses: %d", kg->kg_kses)); 1361 KASSERT((kg->kg_numupcalls == 0), 1362 ("%s: ksegrp still has %d upcall datas", 1363 __func__, kg->kg_numupcalls)); 1364 1365 if (kg != td->td_ksegrp) 1366 ksegrp_stash(kg); 1367 } 1368 TAILQ_INSERT_HEAD(&p->p_ksegrps, td->td_ksegrp, kg_ksegrp); 1369 p->p_numksegrps++; 1370 mtx_unlock_spin(&sched_lock); 1371 } 1372 1373 /* 1374 * This function is intended to be used to initialize a spare thread 1375 * for upcall. Initialize thread's large data area outside sched_lock 1376 * for thread_schedule_upcall(). 1377 */ 1378 void 1379 thread_alloc_spare(struct thread *td, struct thread *spare) 1380 { 1381 if (td->td_standin) 1382 return; 1383 if (spare == NULL) 1384 spare = thread_alloc(); 1385 td->td_standin = spare; 1386 bzero(&spare->td_startzero, 1387 (unsigned)RANGEOF(struct thread, td_startzero, td_endzero)); 1388 spare->td_proc = td->td_proc; 1389 /* Setup PCB and fork address */ 1390 cpu_set_upcall(spare, td->td_pcb); 1391 /* 1392 * XXXKSE do we really need this? (default values for the 1393 * frame). 1394 */ 1395 bcopy(td->td_frame, spare->td_frame, sizeof(struct trapframe)); 1396 spare->td_ucred = crhold(td->td_ucred); 1397 } 1398 1399 /* 1400 * Create a thread and schedule it for upcall on the KSE given. 1401 * Use our thread's standin so that we don't have to allocate one. 1402 */ 1403 struct thread * 1404 thread_schedule_upcall(struct thread *td, struct kse_upcall *ku) 1405 { 1406 struct thread *td2; 1407 1408 mtx_assert(&sched_lock, MA_OWNED); 1409 1410 /* 1411 * Schedule an upcall thread on specified kse_upcall, 1412 * the kse_upcall must be free. 1413 * td must have a spare thread. 1414 */ 1415 KASSERT(ku->ku_owner == NULL, ("%s: upcall has owner", __func__)); 1416 if ((td2 = td->td_standin) != NULL) { 1417 td->td_standin = NULL; 1418 } else { 1419 panic("no reserve thread when scheduling an upcall"); 1420 return (NULL); 1421 } 1422 CTR3(KTR_PROC, "thread_schedule_upcall: thread %p (pid %d, %s)", 1423 td2, td->td_proc->p_pid, td->td_proc->p_comm); 1424 bcopy(&td->td_startcopy, &td2->td_startcopy, 1425 (unsigned) RANGEOF(struct thread, td_startcopy, td_endcopy)); 1426 thread_link(td2, ku->ku_ksegrp); 1427 /* Let the new thread become owner of the upcall */ 1428 ku->ku_owner = td2; 1429 td2->td_upcall = ku; 1430 td2->td_flags = TDF_UPCALLING; 1431 if (td->td_proc->p_sflag & PS_NEEDSIGCHK) 1432 td2->td_flags |= TDF_ASTPENDING; 1433 td2->td_kse = NULL; 1434 td2->td_state = TDS_CAN_RUN; 1435 td2->td_inhibitors = 0; 1436 setrunqueue(td2); 1437 return (td2); /* bogus.. should be a void function */ 1438 } 1439 1440 void 1441 thread_signal_add(struct thread *td, int sig) 1442 { 1443 struct kse_upcall *ku; 1444 struct proc *p; 1445 sigset_t ss; 1446 int error; 1447 1448 PROC_LOCK_ASSERT(td->td_proc, MA_OWNED); 1449 td = curthread; 1450 ku = td->td_upcall; 1451 p = td->td_proc; 1452 1453 PROC_UNLOCK(p); 1454 error = copyin(&ku->ku_mailbox->km_sigscaught, &ss, sizeof(sigset_t)); 1455 if (error) 1456 goto error; 1457 1458 SIGADDSET(ss, sig); 1459 1460 error = copyout(&ss, &ku->ku_mailbox->km_sigscaught, sizeof(sigset_t)); 1461 if (error) 1462 goto error; 1463 1464 PROC_LOCK(p); 1465 return; 1466 error: 1467 PROC_LOCK(p); 1468 sigexit(td, SIGILL); 1469 } 1470 1471 1472 /* 1473 * Schedule an upcall to notify a KSE process recieved signals. 1474 * 1475 */ 1476 void 1477 thread_signal_upcall(struct thread *td) 1478 { 1479 mtx_lock_spin(&sched_lock); 1480 td->td_flags |= TDF_UPCALLING; 1481 mtx_unlock_spin(&sched_lock); 1482 1483 return; 1484 } 1485 1486 void 1487 thread_switchout(struct thread *td) 1488 { 1489 struct kse_upcall *ku; 1490 1491 mtx_assert(&sched_lock, MA_OWNED); 1492 1493 /* 1494 * If the outgoing thread is in threaded group and has never 1495 * scheduled an upcall, decide whether this is a short 1496 * or long term event and thus whether or not to schedule 1497 * an upcall. 1498 * If it is a short term event, just suspend it in 1499 * a way that takes its KSE with it. 1500 * Select the events for which we want to schedule upcalls. 1501 * For now it's just sleep. 1502 * XXXKSE eventually almost any inhibition could do. 1503 */ 1504 if (TD_CAN_UNBIND(td) && (td->td_standin) && TD_ON_SLEEPQ(td)) { 1505 /* 1506 * Release ownership of upcall, and schedule an upcall 1507 * thread, this new upcall thread becomes the owner of 1508 * the upcall structure. 1509 */ 1510 ku = td->td_upcall; 1511 ku->ku_owner = NULL; 1512 td->td_upcall = NULL; 1513 td->td_flags &= ~TDF_CAN_UNBIND; 1514 thread_schedule_upcall(td, ku); 1515 } 1516 } 1517 1518 /* 1519 * Setup done on the thread when it enters the kernel. 1520 * XXXKSE Presently only for syscalls but eventually all kernel entries. 1521 */ 1522 void 1523 thread_user_enter(struct proc *p, struct thread *td) 1524 { 1525 struct ksegrp *kg; 1526 struct kse_upcall *ku; 1527 1528 kg = td->td_ksegrp; 1529 /* 1530 * First check that we shouldn't just abort. 1531 * But check if we are the single thread first! 1532 * XXX p_singlethread not locked, but should be safe. 1533 */ 1534 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) { 1535 PROC_LOCK(p); 1536 mtx_lock_spin(&sched_lock); 1537 thread_stopped(p); 1538 thread_exit(); 1539 /* NOTREACHED */ 1540 } 1541 1542 /* 1543 * If we are doing a syscall in a KSE environment, 1544 * note where our mailbox is. There is always the 1545 * possibility that we could do this lazily (in kse_reassign()), 1546 * but for now do it every time. 1547 */ 1548 kg = td->td_ksegrp; 1549 if (kg->kg_numupcalls) { 1550 ku = td->td_upcall; 1551 KASSERT(ku, ("%s: no upcall owned", __func__)); 1552 KASSERT((ku->ku_owner == td), ("%s: wrong owner", __func__)); 1553 td->td_mailbox = 1554 (void *)fuword((void *)&ku->ku_mailbox->km_curthread); 1555 if ((td->td_mailbox == NULL) || 1556 (td->td_mailbox == (void *)-1)) { 1557 /* Don't schedule upcall when blocked */ 1558 td->td_mailbox = NULL; 1559 mtx_lock_spin(&sched_lock); 1560 td->td_flags &= ~TDF_CAN_UNBIND; 1561 mtx_unlock_spin(&sched_lock); 1562 } else { 1563 if (td->td_standin == NULL) 1564 thread_alloc_spare(td, NULL); 1565 mtx_lock_spin(&sched_lock); 1566 td->td_flags |= TDF_CAN_UNBIND; 1567 mtx_unlock_spin(&sched_lock); 1568 } 1569 } 1570 } 1571 1572 /* 1573 * The extra work we go through if we are a threaded process when we 1574 * return to userland. 1575 * 1576 * If we are a KSE process and returning to user mode, check for 1577 * extra work to do before we return (e.g. for more syscalls 1578 * to complete first). If we were in a critical section, we should 1579 * just return to let it finish. Same if we were in the UTS (in 1580 * which case the mailbox's context's busy indicator will be set). 1581 * The only traps we suport will have set the mailbox. 1582 * We will clear it here. 1583 */ 1584 int 1585 thread_userret(struct thread *td, struct trapframe *frame) 1586 { 1587 int error = 0, upcalls; 1588 struct kse_upcall *ku; 1589 struct ksegrp *kg, *kg2; 1590 struct proc *p; 1591 struct timespec ts; 1592 1593 p = td->td_proc; 1594 kg = td->td_ksegrp; 1595 1596 /* Nothing to do with non-threaded group/process */ 1597 if (td->td_ksegrp->kg_numupcalls == 0) 1598 return (0); 1599 1600 /* 1601 * Stat clock interrupt hit in userland, it 1602 * is returning from interrupt, charge thread's 1603 * userland time for UTS. 1604 */ 1605 if (td->td_flags & TDF_USTATCLOCK) { 1606 thread_update_usr_ticks(td, 1); 1607 mtx_lock_spin(&sched_lock); 1608 td->td_flags &= ~TDF_USTATCLOCK; 1609 mtx_unlock_spin(&sched_lock); 1610 if (kg->kg_completed || 1611 (td->td_upcall->ku_flags & KUF_DOUPCALL)) 1612 thread_user_enter(p, td); 1613 } 1614 1615 /* 1616 * Optimisation: 1617 * This thread has not started any upcall. 1618 * If there is no work to report other than ourself, 1619 * then it can return direct to userland. 1620 */ 1621 if (TD_CAN_UNBIND(td)) { 1622 mtx_lock_spin(&sched_lock); 1623 td->td_flags &= ~TDF_CAN_UNBIND; 1624 mtx_unlock_spin(&sched_lock); 1625 ku = td->td_upcall; 1626 if ((p->p_sflag & PS_NEEDSIGCHK) == 0 && 1627 (kg->kg_completed == NULL) && 1628 (ku->ku_flags & KUF_DOUPCALL) == 0 && 1629 (kg->kg_upquantum && ticks >= kg->kg_nextupcall)) { 1630 thread_update_usr_ticks(td, 0); 1631 nanotime(&ts); 1632 error = copyout(&ts, 1633 (caddr_t)&ku->ku_mailbox->km_timeofday, 1634 sizeof(ts)); 1635 td->td_mailbox = 0; 1636 if (error) 1637 goto out; 1638 return (0); 1639 } 1640 error = thread_export_context(td); 1641 if (error) { 1642 /* 1643 * Failing to do the KSE operation just defaults 1644 * back to synchonous operation, so just return from 1645 * the syscall. 1646 */ 1647 return (0); 1648 } 1649 /* 1650 * There is something to report, and we own an upcall 1651 * strucuture, we can go to userland. 1652 * Turn ourself into an upcall thread. 1653 */ 1654 mtx_lock_spin(&sched_lock); 1655 td->td_flags |= TDF_UPCALLING; 1656 mtx_unlock_spin(&sched_lock); 1657 } else if (td->td_mailbox) { 1658 error = thread_export_context(td); 1659 /* possibly upcall with error? */ 1660 PROC_LOCK(p); 1661 /* 1662 * There are upcall threads waiting for 1663 * work to do, wake one of them up. 1664 * XXXKSE Maybe wake all of them up. 1665 */ 1666 if (!error && kg->kg_upsleeps) 1667 wakeup_one(&kg->kg_completed); 1668 mtx_lock_spin(&sched_lock); 1669 thread_stopped(p); 1670 thread_exit(); 1671 /* NOTREACHED */ 1672 } 1673 1674 KASSERT(TD_CAN_UNBIND(td) == 0, ("can unbind")); 1675 1676 if (p->p_numthreads > max_threads_per_proc) { 1677 max_threads_hits++; 1678 PROC_LOCK(p); 1679 while (p->p_numthreads > max_threads_per_proc) { 1680 if (P_SHOULDSTOP(p)) 1681 break; 1682 upcalls = 0; 1683 mtx_lock_spin(&sched_lock); 1684 FOREACH_KSEGRP_IN_PROC(p, kg2) { 1685 if (kg2->kg_numupcalls == 0) 1686 upcalls++; 1687 else 1688 upcalls += kg2->kg_numupcalls; 1689 } 1690 mtx_unlock_spin(&sched_lock); 1691 if (upcalls >= max_threads_per_proc) 1692 break; 1693 p->p_maxthrwaits++; 1694 msleep(&p->p_numthreads, &p->p_mtx, PPAUSE|PCATCH, 1695 "maxthreads", NULL); 1696 p->p_maxthrwaits--; 1697 } 1698 PROC_UNLOCK(p); 1699 } 1700 1701 if (td->td_flags & TDF_UPCALLING) { 1702 kg->kg_nextupcall = ticks+kg->kg_upquantum; 1703 ku = td->td_upcall; 1704 /* 1705 * There is no more work to do and we are going to ride 1706 * this thread up to userland as an upcall. 1707 * Do the last parts of the setup needed for the upcall. 1708 */ 1709 CTR3(KTR_PROC, "userret: upcall thread %p (pid %d, %s)", 1710 td, td->td_proc->p_pid, td->td_proc->p_comm); 1711 1712 /* 1713 * Set user context to the UTS. 1714 * Will use Giant in cpu_thread_clean() because it uses 1715 * kmem_free(kernel_map, ...) 1716 */ 1717 cpu_set_upcall_kse(td, ku); 1718 mtx_lock_spin(&sched_lock); 1719 td->td_flags &= ~TDF_UPCALLING; 1720 if (ku->ku_flags & KUF_DOUPCALL) 1721 ku->ku_flags &= ~KUF_DOUPCALL; 1722 mtx_unlock_spin(&sched_lock); 1723 1724 /* 1725 * Unhook the list of completed threads. 1726 * anything that completes after this gets to 1727 * come in next time. 1728 * Put the list of completed thread mailboxes on 1729 * this KSE's mailbox. 1730 */ 1731 error = thread_link_mboxes(kg, ku); 1732 if (error) 1733 goto out; 1734 1735 /* 1736 * Set state and clear the thread mailbox pointer. 1737 * From now on we are just a bound outgoing process. 1738 * **Problem** userret is often called several times. 1739 * it would be nice if this all happenned only on the first 1740 * time through. (the scan for extra work etc.) 1741 */ 1742 error = suword((caddr_t)&ku->ku_mailbox->km_curthread, 0); 1743 if (error) 1744 goto out; 1745 1746 /* Export current system time */ 1747 nanotime(&ts); 1748 error = copyout(&ts, (caddr_t)&ku->ku_mailbox->km_timeofday, 1749 sizeof(ts)); 1750 } 1751 1752 out: 1753 if (error) { 1754 /* 1755 * Things are going to be so screwed we should just kill 1756 * the process. 1757 * how do we do that? 1758 */ 1759 PROC_LOCK(td->td_proc); 1760 psignal(td->td_proc, SIGSEGV); 1761 PROC_UNLOCK(td->td_proc); 1762 } else { 1763 /* 1764 * Optimisation: 1765 * Ensure that we have a spare thread available, 1766 * for when we re-enter the kernel. 1767 */ 1768 if (td->td_standin == NULL) 1769 thread_alloc_spare(td, NULL); 1770 } 1771 1772 /* 1773 * Clear thread mailbox first, then clear system tick count. 1774 * The order is important because thread_statclock() use 1775 * mailbox pointer to see if it is an userland thread or 1776 * an UTS kernel thread. 1777 */ 1778 td->td_mailbox = NULL; 1779 td->td_usticks = 0; 1780 return (error); /* go sync */ 1781 } 1782 1783 /* 1784 * Enforce single-threading. 1785 * 1786 * Returns 1 if the caller must abort (another thread is waiting to 1787 * exit the process or similar). Process is locked! 1788 * Returns 0 when you are successfully the only thread running. 1789 * A process has successfully single threaded in the suspend mode when 1790 * There are no threads in user mode. Threads in the kernel must be 1791 * allowed to continue until they get to the user boundary. They may even 1792 * copy out their return values and data before suspending. They may however be 1793 * accellerated in reaching the user boundary as we will wake up 1794 * any sleeping threads that are interruptable. (PCATCH). 1795 */ 1796 int 1797 thread_single(int force_exit) 1798 { 1799 struct thread *td; 1800 struct thread *td2; 1801 struct proc *p; 1802 1803 td = curthread; 1804 p = td->td_proc; 1805 mtx_assert(&Giant, MA_OWNED); 1806 PROC_LOCK_ASSERT(p, MA_OWNED); 1807 KASSERT((td != NULL), ("curthread is NULL")); 1808 1809 if ((p->p_flag & P_THREADED) == 0) 1810 return (0); 1811 1812 /* Is someone already single threading? */ 1813 if (p->p_singlethread) 1814 return (1); 1815 1816 if (force_exit == SINGLE_EXIT) { 1817 p->p_flag |= P_SINGLE_EXIT; 1818 } else 1819 p->p_flag &= ~P_SINGLE_EXIT; 1820 p->p_flag |= P_STOPPED_SINGLE; 1821 p->p_singlethread = td; 1822 /* XXXKSE Which lock protects the below values? */ 1823 while ((p->p_numthreads - p->p_suspcount) != 1) { 1824 mtx_lock_spin(&sched_lock); 1825 FOREACH_THREAD_IN_PROC(p, td2) { 1826 if (td2 == td) 1827 continue; 1828 td->td_flags |= TDF_ASTPENDING; 1829 if (TD_IS_INHIBITED(td2)) { 1830 if (force_exit == SINGLE_EXIT) { 1831 if (TD_IS_SUSPENDED(td2)) { 1832 thread_unsuspend_one(td2); 1833 } 1834 if (TD_ON_SLEEPQ(td2) && 1835 (td2->td_flags & TDF_SINTR)) { 1836 if (td2->td_flags & TDF_CVWAITQ) 1837 cv_abort(td2); 1838 else 1839 abortsleep(td2); 1840 } 1841 } else { 1842 if (TD_IS_SUSPENDED(td2)) 1843 continue; 1844 /* 1845 * maybe other inhibitted states too? 1846 * XXXKSE Is it totally safe to 1847 * suspend a non-interruptable thread? 1848 */ 1849 if (td2->td_inhibitors & 1850 (TDI_SLEEPING | TDI_SWAPPED)) 1851 thread_suspend_one(td2); 1852 } 1853 } 1854 } 1855 /* 1856 * Maybe we suspended some threads.. was it enough? 1857 */ 1858 if ((p->p_numthreads - p->p_suspcount) == 1) { 1859 mtx_unlock_spin(&sched_lock); 1860 break; 1861 } 1862 1863 /* 1864 * Wake us up when everyone else has suspended. 1865 * In the mean time we suspend as well. 1866 */ 1867 thread_suspend_one(td); 1868 mtx_unlock(&Giant); 1869 PROC_UNLOCK(p); 1870 p->p_stats->p_ru.ru_nvcsw++; 1871 mi_switch(); 1872 mtx_unlock_spin(&sched_lock); 1873 mtx_lock(&Giant); 1874 PROC_LOCK(p); 1875 } 1876 if (force_exit == SINGLE_EXIT) { 1877 if (td->td_upcall) { 1878 mtx_lock_spin(&sched_lock); 1879 upcall_remove(td); 1880 mtx_unlock_spin(&sched_lock); 1881 } 1882 kse_purge(p, td); 1883 } 1884 return (0); 1885 } 1886 1887 /* 1888 * Called in from locations that can safely check to see 1889 * whether we have to suspend or at least throttle for a 1890 * single-thread event (e.g. fork). 1891 * 1892 * Such locations include userret(). 1893 * If the "return_instead" argument is non zero, the thread must be able to 1894 * accept 0 (caller may continue), or 1 (caller must abort) as a result. 1895 * 1896 * The 'return_instead' argument tells the function if it may do a 1897 * thread_exit() or suspend, or whether the caller must abort and back 1898 * out instead. 1899 * 1900 * If the thread that set the single_threading request has set the 1901 * P_SINGLE_EXIT bit in the process flags then this call will never return 1902 * if 'return_instead' is false, but will exit. 1903 * 1904 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0 1905 *---------------+--------------------+--------------------- 1906 * 0 | returns 0 | returns 0 or 1 1907 * | when ST ends | immediatly 1908 *---------------+--------------------+--------------------- 1909 * 1 | thread exits | returns 1 1910 * | | immediatly 1911 * 0 = thread_exit() or suspension ok, 1912 * other = return error instead of stopping the thread. 1913 * 1914 * While a full suspension is under effect, even a single threading 1915 * thread would be suspended if it made this call (but it shouldn't). 1916 * This call should only be made from places where 1917 * thread_exit() would be safe as that may be the outcome unless 1918 * return_instead is set. 1919 */ 1920 int 1921 thread_suspend_check(int return_instead) 1922 { 1923 struct thread *td; 1924 struct proc *p; 1925 struct ksegrp *kg; 1926 1927 td = curthread; 1928 p = td->td_proc; 1929 kg = td->td_ksegrp; 1930 PROC_LOCK_ASSERT(p, MA_OWNED); 1931 while (P_SHOULDSTOP(p)) { 1932 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 1933 KASSERT(p->p_singlethread != NULL, 1934 ("singlethread not set")); 1935 /* 1936 * The only suspension in action is a 1937 * single-threading. Single threader need not stop. 1938 * XXX Should be safe to access unlocked 1939 * as it can only be set to be true by us. 1940 */ 1941 if (p->p_singlethread == td) 1942 return (0); /* Exempt from stopping. */ 1943 } 1944 if (return_instead) 1945 return (1); 1946 1947 mtx_lock_spin(&sched_lock); 1948 thread_stopped(p); 1949 /* 1950 * If the process is waiting for us to exit, 1951 * this thread should just suicide. 1952 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE. 1953 */ 1954 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) { 1955 while (mtx_owned(&Giant)) 1956 mtx_unlock(&Giant); 1957 thread_exit(); 1958 } 1959 1960 /* 1961 * When a thread suspends, it just 1962 * moves to the processes's suspend queue 1963 * and stays there. 1964 */ 1965 mtx_assert(&Giant, MA_NOTOWNED); 1966 thread_suspend_one(td); 1967 PROC_UNLOCK(p); 1968 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 1969 if (p->p_numthreads == p->p_suspcount) { 1970 thread_unsuspend_one(p->p_singlethread); 1971 } 1972 } 1973 p->p_stats->p_ru.ru_nivcsw++; 1974 mi_switch(); 1975 mtx_unlock_spin(&sched_lock); 1976 PROC_LOCK(p); 1977 } 1978 return (0); 1979 } 1980 1981 void 1982 thread_suspend_one(struct thread *td) 1983 { 1984 struct proc *p = td->td_proc; 1985 1986 mtx_assert(&sched_lock, MA_OWNED); 1987 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 1988 p->p_suspcount++; 1989 TD_SET_SUSPENDED(td); 1990 TAILQ_INSERT_TAIL(&p->p_suspended, td, td_runq); 1991 /* 1992 * Hack: If we are suspending but are on the sleep queue 1993 * then we are in msleep or the cv equivalent. We 1994 * want to look like we have two Inhibitors. 1995 * May already be set.. doesn't matter. 1996 */ 1997 if (TD_ON_SLEEPQ(td)) 1998 TD_SET_SLEEPING(td); 1999 } 2000 2001 void 2002 thread_unsuspend_one(struct thread *td) 2003 { 2004 struct proc *p = td->td_proc; 2005 2006 mtx_assert(&sched_lock, MA_OWNED); 2007 TAILQ_REMOVE(&p->p_suspended, td, td_runq); 2008 TD_CLR_SUSPENDED(td); 2009 p->p_suspcount--; 2010 setrunnable(td); 2011 } 2012 2013 /* 2014 * Allow all threads blocked by single threading to continue running. 2015 */ 2016 void 2017 thread_unsuspend(struct proc *p) 2018 { 2019 struct thread *td; 2020 2021 mtx_assert(&sched_lock, MA_OWNED); 2022 PROC_LOCK_ASSERT(p, MA_OWNED); 2023 if (!P_SHOULDSTOP(p)) { 2024 while (( td = TAILQ_FIRST(&p->p_suspended))) { 2025 thread_unsuspend_one(td); 2026 } 2027 } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) && 2028 (p->p_numthreads == p->p_suspcount)) { 2029 /* 2030 * Stopping everything also did the job for the single 2031 * threading request. Now we've downgraded to single-threaded, 2032 * let it continue. 2033 */ 2034 thread_unsuspend_one(p->p_singlethread); 2035 } 2036 } 2037 2038 void 2039 thread_single_end(void) 2040 { 2041 struct thread *td; 2042 struct proc *p; 2043 2044 td = curthread; 2045 p = td->td_proc; 2046 PROC_LOCK_ASSERT(p, MA_OWNED); 2047 p->p_flag &= ~P_STOPPED_SINGLE; 2048 p->p_singlethread = NULL; 2049 /* 2050 * If there are other threads they mey now run, 2051 * unless of course there is a blanket 'stop order' 2052 * on the process. The single threader must be allowed 2053 * to continue however as this is a bad place to stop. 2054 */ 2055 if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) { 2056 mtx_lock_spin(&sched_lock); 2057 while (( td = TAILQ_FIRST(&p->p_suspended))) { 2058 thread_unsuspend_one(td); 2059 } 2060 mtx_unlock_spin(&sched_lock); 2061 } 2062 } 2063 2064 2065