1 /*- 2 * Copyright (C) 2001 Julian Elischer <julian@freebsd.org>. 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice(s), this list of conditions and the following disclaimer as 10 * the first lines of this file unmodified other than the possible 11 * addition of one or more copyright notices. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice(s), this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY 17 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 19 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE LIABLE FOR ANY 20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 23 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 26 * DAMAGE. 27 */ 28 29 #include "opt_witness.h" 30 #include "opt_hwpmc_hooks.h" 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/kernel.h> 38 #include <sys/lock.h> 39 #include <sys/mutex.h> 40 #include <sys/proc.h> 41 #include <sys/resourcevar.h> 42 #include <sys/smp.h> 43 #include <sys/sched.h> 44 #include <sys/sleepqueue.h> 45 #include <sys/selinfo.h> 46 #include <sys/turnstile.h> 47 #include <sys/ktr.h> 48 #include <sys/rwlock.h> 49 #include <sys/umtx.h> 50 #include <sys/cpuset.h> 51 #ifdef HWPMC_HOOKS 52 #include <sys/pmckern.h> 53 #endif 54 55 #include <security/audit/audit.h> 56 57 #include <vm/vm.h> 58 #include <vm/vm_extern.h> 59 #include <vm/uma.h> 60 #include <sys/eventhandler.h> 61 62 /* 63 * thread related storage. 64 */ 65 static uma_zone_t thread_zone; 66 67 TAILQ_HEAD(, thread) zombie_threads = TAILQ_HEAD_INITIALIZER(zombie_threads); 68 static struct mtx zombie_lock; 69 MTX_SYSINIT(zombie_lock, &zombie_lock, "zombie lock", MTX_SPIN); 70 71 static void thread_zombie(struct thread *); 72 73 #define TID_BUFFER_SIZE 1024 74 75 struct mtx tid_lock; 76 static struct unrhdr *tid_unrhdr; 77 static lwpid_t tid_buffer[TID_BUFFER_SIZE]; 78 static int tid_head, tid_tail; 79 static MALLOC_DEFINE(M_TIDHASH, "tidhash", "thread hash"); 80 81 struct tidhashhead *tidhashtbl; 82 u_long tidhash; 83 struct rwlock tidhash_lock; 84 85 static lwpid_t 86 tid_alloc(void) 87 { 88 lwpid_t tid; 89 90 tid = alloc_unr(tid_unrhdr); 91 if (tid != -1) 92 return (tid); 93 mtx_lock(&tid_lock); 94 if (tid_head == tid_tail) { 95 mtx_unlock(&tid_lock); 96 return (-1); 97 } 98 tid = tid_buffer[tid_head++]; 99 tid_head %= TID_BUFFER_SIZE; 100 mtx_unlock(&tid_lock); 101 return (tid); 102 } 103 104 static void 105 tid_free(lwpid_t tid) 106 { 107 lwpid_t tmp_tid = -1; 108 109 mtx_lock(&tid_lock); 110 if ((tid_tail + 1) % TID_BUFFER_SIZE == tid_head) { 111 tmp_tid = tid_buffer[tid_head++]; 112 tid_head = (tid_head + 1) % TID_BUFFER_SIZE; 113 } 114 tid_buffer[tid_tail++] = tid; 115 tid_tail %= TID_BUFFER_SIZE; 116 mtx_unlock(&tid_lock); 117 if (tmp_tid != -1) 118 free_unr(tid_unrhdr, tmp_tid); 119 } 120 121 /* 122 * Prepare a thread for use. 123 */ 124 static int 125 thread_ctor(void *mem, int size, void *arg, int flags) 126 { 127 struct thread *td; 128 129 td = (struct thread *)mem; 130 td->td_state = TDS_INACTIVE; 131 td->td_oncpu = NOCPU; 132 133 td->td_tid = tid_alloc(); 134 135 /* 136 * Note that td_critnest begins life as 1 because the thread is not 137 * running and is thereby implicitly waiting to be on the receiving 138 * end of a context switch. 139 */ 140 td->td_critnest = 1; 141 td->td_lend_user_pri = PRI_MAX; 142 EVENTHANDLER_INVOKE(thread_ctor, td); 143 #ifdef AUDIT 144 audit_thread_alloc(td); 145 #endif 146 umtx_thread_alloc(td); 147 return (0); 148 } 149 150 /* 151 * Reclaim a thread after use. 152 */ 153 static void 154 thread_dtor(void *mem, int size, void *arg) 155 { 156 struct thread *td; 157 158 td = (struct thread *)mem; 159 160 #ifdef INVARIANTS 161 /* Verify that this thread is in a safe state to free. */ 162 switch (td->td_state) { 163 case TDS_INHIBITED: 164 case TDS_RUNNING: 165 case TDS_CAN_RUN: 166 case TDS_RUNQ: 167 /* 168 * We must never unlink a thread that is in one of 169 * these states, because it is currently active. 170 */ 171 panic("bad state for thread unlinking"); 172 /* NOTREACHED */ 173 case TDS_INACTIVE: 174 break; 175 default: 176 panic("bad thread state"); 177 /* NOTREACHED */ 178 } 179 #endif 180 #ifdef AUDIT 181 audit_thread_free(td); 182 #endif 183 /* Free all OSD associated to this thread. */ 184 osd_thread_exit(td); 185 186 EVENTHANDLER_INVOKE(thread_dtor, td); 187 tid_free(td->td_tid); 188 } 189 190 /* 191 * Initialize type-stable parts of a thread (when newly created). 192 */ 193 static int 194 thread_init(void *mem, int size, int flags) 195 { 196 struct thread *td; 197 198 td = (struct thread *)mem; 199 200 td->td_sleepqueue = sleepq_alloc(); 201 td->td_turnstile = turnstile_alloc(); 202 EVENTHANDLER_INVOKE(thread_init, td); 203 td->td_sched = (struct td_sched *)&td[1]; 204 umtx_thread_init(td); 205 td->td_kstack = 0; 206 return (0); 207 } 208 209 /* 210 * Tear down type-stable parts of a thread (just before being discarded). 211 */ 212 static void 213 thread_fini(void *mem, int size) 214 { 215 struct thread *td; 216 217 td = (struct thread *)mem; 218 EVENTHANDLER_INVOKE(thread_fini, td); 219 turnstile_free(td->td_turnstile); 220 sleepq_free(td->td_sleepqueue); 221 umtx_thread_fini(td); 222 seltdfini(td); 223 } 224 225 /* 226 * For a newly created process, 227 * link up all the structures and its initial threads etc. 228 * called from: 229 * {arch}/{arch}/machdep.c ia64_init(), init386() etc. 230 * proc_dtor() (should go away) 231 * proc_init() 232 */ 233 void 234 proc_linkup0(struct proc *p, struct thread *td) 235 { 236 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 237 proc_linkup(p, td); 238 } 239 240 void 241 proc_linkup(struct proc *p, struct thread *td) 242 { 243 244 sigqueue_init(&p->p_sigqueue, p); 245 p->p_ksi = ksiginfo_alloc(1); 246 if (p->p_ksi != NULL) { 247 /* XXX p_ksi may be null if ksiginfo zone is not ready */ 248 p->p_ksi->ksi_flags = KSI_EXT | KSI_INS; 249 } 250 LIST_INIT(&p->p_mqnotifier); 251 p->p_numthreads = 0; 252 thread_link(td, p); 253 } 254 255 /* 256 * Initialize global thread allocation resources. 257 */ 258 void 259 threadinit(void) 260 { 261 262 mtx_init(&tid_lock, "TID lock", NULL, MTX_DEF); 263 /* leave one number for thread0 */ 264 tid_unrhdr = new_unrhdr(PID_MAX + 2, INT_MAX, &tid_lock); 265 266 thread_zone = uma_zcreate("THREAD", sched_sizeof_thread(), 267 thread_ctor, thread_dtor, thread_init, thread_fini, 268 16 - 1, 0); 269 tidhashtbl = hashinit(maxproc / 2, M_TIDHASH, &tidhash); 270 rw_init(&tidhash_lock, "tidhash"); 271 } 272 273 /* 274 * Place an unused thread on the zombie list. 275 * Use the slpq as that must be unused by now. 276 */ 277 void 278 thread_zombie(struct thread *td) 279 { 280 mtx_lock_spin(&zombie_lock); 281 TAILQ_INSERT_HEAD(&zombie_threads, td, td_slpq); 282 mtx_unlock_spin(&zombie_lock); 283 } 284 285 /* 286 * Release a thread that has exited after cpu_throw(). 287 */ 288 void 289 thread_stash(struct thread *td) 290 { 291 atomic_subtract_rel_int(&td->td_proc->p_exitthreads, 1); 292 thread_zombie(td); 293 } 294 295 /* 296 * Reap zombie resources. 297 */ 298 void 299 thread_reap(void) 300 { 301 struct thread *td_first, *td_next; 302 303 /* 304 * Don't even bother to lock if none at this instant, 305 * we really don't care about the next instant.. 306 */ 307 if (!TAILQ_EMPTY(&zombie_threads)) { 308 mtx_lock_spin(&zombie_lock); 309 td_first = TAILQ_FIRST(&zombie_threads); 310 if (td_first) 311 TAILQ_INIT(&zombie_threads); 312 mtx_unlock_spin(&zombie_lock); 313 while (td_first) { 314 td_next = TAILQ_NEXT(td_first, td_slpq); 315 if (td_first->td_ucred) 316 crfree(td_first->td_ucred); 317 thread_free(td_first); 318 td_first = td_next; 319 } 320 } 321 } 322 323 /* 324 * Allocate a thread. 325 */ 326 struct thread * 327 thread_alloc(int pages) 328 { 329 struct thread *td; 330 331 thread_reap(); /* check if any zombies to get */ 332 333 td = (struct thread *)uma_zalloc(thread_zone, M_WAITOK); 334 KASSERT(td->td_kstack == 0, ("thread_alloc got thread with kstack")); 335 if (!vm_thread_new(td, pages)) { 336 uma_zfree(thread_zone, td); 337 return (NULL); 338 } 339 cpu_thread_alloc(td); 340 return (td); 341 } 342 343 int 344 thread_alloc_stack(struct thread *td, int pages) 345 { 346 347 KASSERT(td->td_kstack == 0, 348 ("thread_alloc_stack called on a thread with kstack")); 349 if (!vm_thread_new(td, pages)) 350 return (0); 351 cpu_thread_alloc(td); 352 return (1); 353 } 354 355 /* 356 * Deallocate a thread. 357 */ 358 void 359 thread_free(struct thread *td) 360 { 361 362 lock_profile_thread_exit(td); 363 if (td->td_cpuset) 364 cpuset_rel(td->td_cpuset); 365 td->td_cpuset = NULL; 366 cpu_thread_free(td); 367 if (td->td_kstack != 0) 368 vm_thread_dispose(td); 369 uma_zfree(thread_zone, td); 370 } 371 372 /* 373 * Discard the current thread and exit from its context. 374 * Always called with scheduler locked. 375 * 376 * Because we can't free a thread while we're operating under its context, 377 * push the current thread into our CPU's deadthread holder. This means 378 * we needn't worry about someone else grabbing our context before we 379 * do a cpu_throw(). 380 */ 381 void 382 thread_exit(void) 383 { 384 uint64_t runtime, new_switchtime; 385 struct thread *td; 386 struct thread *td2; 387 struct proc *p; 388 int wakeup_swapper; 389 390 td = curthread; 391 p = td->td_proc; 392 393 PROC_SLOCK_ASSERT(p, MA_OWNED); 394 mtx_assert(&Giant, MA_NOTOWNED); 395 396 PROC_LOCK_ASSERT(p, MA_OWNED); 397 KASSERT(p != NULL, ("thread exiting without a process")); 398 CTR3(KTR_PROC, "thread_exit: thread %p (pid %ld, %s)", td, 399 (long)p->p_pid, td->td_name); 400 KASSERT(TAILQ_EMPTY(&td->td_sigqueue.sq_list), ("signal pending")); 401 402 #ifdef AUDIT 403 AUDIT_SYSCALL_EXIT(0, td); 404 #endif 405 umtx_thread_exit(td); 406 /* 407 * drop FPU & debug register state storage, or any other 408 * architecture specific resources that 409 * would not be on a new untouched process. 410 */ 411 cpu_thread_exit(td); /* XXXSMP */ 412 413 /* 414 * The last thread is left attached to the process 415 * So that the whole bundle gets recycled. Skip 416 * all this stuff if we never had threads. 417 * EXIT clears all sign of other threads when 418 * it goes to single threading, so the last thread always 419 * takes the short path. 420 */ 421 if (p->p_flag & P_HADTHREADS) { 422 if (p->p_numthreads > 1) { 423 thread_unlink(td); 424 td2 = FIRST_THREAD_IN_PROC(p); 425 sched_exit_thread(td2, td); 426 427 /* 428 * The test below is NOT true if we are the 429 * sole exiting thread. P_STOPPED_SINGLE is unset 430 * in exit1() after it is the only survivor. 431 */ 432 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 433 if (p->p_numthreads == p->p_suspcount) { 434 thread_lock(p->p_singlethread); 435 wakeup_swapper = thread_unsuspend_one( 436 p->p_singlethread); 437 thread_unlock(p->p_singlethread); 438 if (wakeup_swapper) 439 kick_proc0(); 440 } 441 } 442 443 atomic_add_int(&td->td_proc->p_exitthreads, 1); 444 PCPU_SET(deadthread, td); 445 } else { 446 /* 447 * The last thread is exiting.. but not through exit() 448 */ 449 panic ("thread_exit: Last thread exiting on its own"); 450 } 451 } 452 #ifdef HWPMC_HOOKS 453 /* 454 * If this thread is part of a process that is being tracked by hwpmc(4), 455 * inform the module of the thread's impending exit. 456 */ 457 if (PMC_PROC_IS_USING_PMCS(td->td_proc)) 458 PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT); 459 #endif 460 PROC_UNLOCK(p); 461 462 /* Do the same timestamp bookkeeping that mi_switch() would do. */ 463 new_switchtime = cpu_ticks(); 464 runtime = new_switchtime - PCPU_GET(switchtime); 465 td->td_runtime += runtime; 466 td->td_incruntime += runtime; 467 PCPU_SET(switchtime, new_switchtime); 468 PCPU_SET(switchticks, ticks); 469 PCPU_INC(cnt.v_swtch); 470 471 /* Save our resource usage in our process. */ 472 td->td_ru.ru_nvcsw++; 473 ruxagg(p, td); 474 rucollect(&p->p_ru, &td->td_ru); 475 476 thread_lock(td); 477 PROC_SUNLOCK(p); 478 td->td_state = TDS_INACTIVE; 479 #ifdef WITNESS 480 witness_thread_exit(td); 481 #endif 482 CTR1(KTR_PROC, "thread_exit: cpu_throw() thread %p", td); 483 sched_throw(td); 484 panic("I'm a teapot!"); 485 /* NOTREACHED */ 486 } 487 488 /* 489 * Do any thread specific cleanups that may be needed in wait() 490 * called with Giant, proc and schedlock not held. 491 */ 492 void 493 thread_wait(struct proc *p) 494 { 495 struct thread *td; 496 497 mtx_assert(&Giant, MA_NOTOWNED); 498 KASSERT((p->p_numthreads == 1), ("Multiple threads in wait1()")); 499 td = FIRST_THREAD_IN_PROC(p); 500 /* Lock the last thread so we spin until it exits cpu_throw(). */ 501 thread_lock(td); 502 thread_unlock(td); 503 /* Wait for any remaining threads to exit cpu_throw(). */ 504 while (p->p_exitthreads) 505 sched_relinquish(curthread); 506 lock_profile_thread_exit(td); 507 cpuset_rel(td->td_cpuset); 508 td->td_cpuset = NULL; 509 cpu_thread_clean(td); 510 crfree(td->td_ucred); 511 thread_reap(); /* check for zombie threads etc. */ 512 } 513 514 /* 515 * Link a thread to a process. 516 * set up anything that needs to be initialized for it to 517 * be used by the process. 518 */ 519 void 520 thread_link(struct thread *td, struct proc *p) 521 { 522 523 /* 524 * XXX This can't be enabled because it's called for proc0 before 525 * its lock has been created. 526 * PROC_LOCK_ASSERT(p, MA_OWNED); 527 */ 528 td->td_state = TDS_INACTIVE; 529 td->td_proc = p; 530 td->td_flags = TDF_INMEM; 531 532 LIST_INIT(&td->td_contested); 533 LIST_INIT(&td->td_lprof[0]); 534 LIST_INIT(&td->td_lprof[1]); 535 sigqueue_init(&td->td_sigqueue, p); 536 callout_init(&td->td_slpcallout, CALLOUT_MPSAFE); 537 TAILQ_INSERT_HEAD(&p->p_threads, td, td_plist); 538 p->p_numthreads++; 539 } 540 541 /* 542 * Convert a process with one thread to an unthreaded process. 543 */ 544 void 545 thread_unthread(struct thread *td) 546 { 547 struct proc *p = td->td_proc; 548 549 KASSERT((p->p_numthreads == 1), ("Unthreading with >1 threads")); 550 p->p_flag &= ~P_HADTHREADS; 551 } 552 553 /* 554 * Called from: 555 * thread_exit() 556 */ 557 void 558 thread_unlink(struct thread *td) 559 { 560 struct proc *p = td->td_proc; 561 562 PROC_LOCK_ASSERT(p, MA_OWNED); 563 TAILQ_REMOVE(&p->p_threads, td, td_plist); 564 p->p_numthreads--; 565 /* could clear a few other things here */ 566 /* Must NOT clear links to proc! */ 567 } 568 569 static int 570 calc_remaining(struct proc *p, int mode) 571 { 572 int remaining; 573 574 PROC_LOCK_ASSERT(p, MA_OWNED); 575 PROC_SLOCK_ASSERT(p, MA_OWNED); 576 if (mode == SINGLE_EXIT) 577 remaining = p->p_numthreads; 578 else if (mode == SINGLE_BOUNDARY) 579 remaining = p->p_numthreads - p->p_boundary_count; 580 else if (mode == SINGLE_NO_EXIT) 581 remaining = p->p_numthreads - p->p_suspcount; 582 else 583 panic("calc_remaining: wrong mode %d", mode); 584 return (remaining); 585 } 586 587 /* 588 * Enforce single-threading. 589 * 590 * Returns 1 if the caller must abort (another thread is waiting to 591 * exit the process or similar). Process is locked! 592 * Returns 0 when you are successfully the only thread running. 593 * A process has successfully single threaded in the suspend mode when 594 * There are no threads in user mode. Threads in the kernel must be 595 * allowed to continue until they get to the user boundary. They may even 596 * copy out their return values and data before suspending. They may however be 597 * accelerated in reaching the user boundary as we will wake up 598 * any sleeping threads that are interruptable. (PCATCH). 599 */ 600 int 601 thread_single(int mode) 602 { 603 struct thread *td; 604 struct thread *td2; 605 struct proc *p; 606 int remaining, wakeup_swapper; 607 608 td = curthread; 609 p = td->td_proc; 610 mtx_assert(&Giant, MA_NOTOWNED); 611 PROC_LOCK_ASSERT(p, MA_OWNED); 612 KASSERT((td != NULL), ("curthread is NULL")); 613 614 if ((p->p_flag & P_HADTHREADS) == 0) 615 return (0); 616 617 /* Is someone already single threading? */ 618 if (p->p_singlethread != NULL && p->p_singlethread != td) 619 return (1); 620 621 if (mode == SINGLE_EXIT) { 622 p->p_flag |= P_SINGLE_EXIT; 623 p->p_flag &= ~P_SINGLE_BOUNDARY; 624 } else { 625 p->p_flag &= ~P_SINGLE_EXIT; 626 if (mode == SINGLE_BOUNDARY) 627 p->p_flag |= P_SINGLE_BOUNDARY; 628 else 629 p->p_flag &= ~P_SINGLE_BOUNDARY; 630 } 631 p->p_flag |= P_STOPPED_SINGLE; 632 PROC_SLOCK(p); 633 p->p_singlethread = td; 634 remaining = calc_remaining(p, mode); 635 while (remaining != 1) { 636 if (P_SHOULDSTOP(p) != P_STOPPED_SINGLE) 637 goto stopme; 638 wakeup_swapper = 0; 639 FOREACH_THREAD_IN_PROC(p, td2) { 640 if (td2 == td) 641 continue; 642 thread_lock(td2); 643 td2->td_flags |= TDF_ASTPENDING | TDF_NEEDSUSPCHK; 644 if (TD_IS_INHIBITED(td2)) { 645 switch (mode) { 646 case SINGLE_EXIT: 647 if (TD_IS_SUSPENDED(td2)) 648 wakeup_swapper |= 649 thread_unsuspend_one(td2); 650 if (TD_ON_SLEEPQ(td2) && 651 (td2->td_flags & TDF_SINTR)) 652 wakeup_swapper |= 653 sleepq_abort(td2, EINTR); 654 break; 655 case SINGLE_BOUNDARY: 656 if (TD_IS_SUSPENDED(td2) && 657 !(td2->td_flags & TDF_BOUNDARY)) 658 wakeup_swapper |= 659 thread_unsuspend_one(td2); 660 if (TD_ON_SLEEPQ(td2) && 661 (td2->td_flags & TDF_SINTR)) 662 wakeup_swapper |= 663 sleepq_abort(td2, ERESTART); 664 break; 665 case SINGLE_NO_EXIT: 666 if (TD_IS_SUSPENDED(td2) && 667 !(td2->td_flags & TDF_BOUNDARY)) 668 wakeup_swapper |= 669 thread_unsuspend_one(td2); 670 if (TD_ON_SLEEPQ(td2) && 671 (td2->td_flags & TDF_SINTR)) 672 wakeup_swapper |= 673 sleepq_abort(td2, ERESTART); 674 break; 675 default: 676 break; 677 } 678 } 679 #ifdef SMP 680 else if (TD_IS_RUNNING(td2) && td != td2) { 681 forward_signal(td2); 682 } 683 #endif 684 thread_unlock(td2); 685 } 686 if (wakeup_swapper) 687 kick_proc0(); 688 remaining = calc_remaining(p, mode); 689 690 /* 691 * Maybe we suspended some threads.. was it enough? 692 */ 693 if (remaining == 1) 694 break; 695 696 stopme: 697 /* 698 * Wake us up when everyone else has suspended. 699 * In the mean time we suspend as well. 700 */ 701 thread_suspend_switch(td); 702 remaining = calc_remaining(p, mode); 703 } 704 if (mode == SINGLE_EXIT) { 705 /* 706 * We have gotten rid of all the other threads and we 707 * are about to either exit or exec. In either case, 708 * we try our utmost to revert to being a non-threaded 709 * process. 710 */ 711 p->p_singlethread = NULL; 712 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT); 713 thread_unthread(td); 714 } 715 PROC_SUNLOCK(p); 716 return (0); 717 } 718 719 /* 720 * Called in from locations that can safely check to see 721 * whether we have to suspend or at least throttle for a 722 * single-thread event (e.g. fork). 723 * 724 * Such locations include userret(). 725 * If the "return_instead" argument is non zero, the thread must be able to 726 * accept 0 (caller may continue), or 1 (caller must abort) as a result. 727 * 728 * The 'return_instead' argument tells the function if it may do a 729 * thread_exit() or suspend, or whether the caller must abort and back 730 * out instead. 731 * 732 * If the thread that set the single_threading request has set the 733 * P_SINGLE_EXIT bit in the process flags then this call will never return 734 * if 'return_instead' is false, but will exit. 735 * 736 * P_SINGLE_EXIT | return_instead == 0| return_instead != 0 737 *---------------+--------------------+--------------------- 738 * 0 | returns 0 | returns 0 or 1 739 * | when ST ends | immediatly 740 *---------------+--------------------+--------------------- 741 * 1 | thread exits | returns 1 742 * | | immediatly 743 * 0 = thread_exit() or suspension ok, 744 * other = return error instead of stopping the thread. 745 * 746 * While a full suspension is under effect, even a single threading 747 * thread would be suspended if it made this call (but it shouldn't). 748 * This call should only be made from places where 749 * thread_exit() would be safe as that may be the outcome unless 750 * return_instead is set. 751 */ 752 int 753 thread_suspend_check(int return_instead) 754 { 755 struct thread *td; 756 struct proc *p; 757 int wakeup_swapper; 758 759 td = curthread; 760 p = td->td_proc; 761 mtx_assert(&Giant, MA_NOTOWNED); 762 PROC_LOCK_ASSERT(p, MA_OWNED); 763 while (P_SHOULDSTOP(p) || 764 ((p->p_flag & P_TRACED) && (td->td_dbgflags & TDB_SUSPEND))) { 765 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 766 KASSERT(p->p_singlethread != NULL, 767 ("singlethread not set")); 768 /* 769 * The only suspension in action is a 770 * single-threading. Single threader need not stop. 771 * XXX Should be safe to access unlocked 772 * as it can only be set to be true by us. 773 */ 774 if (p->p_singlethread == td) 775 return (0); /* Exempt from stopping. */ 776 } 777 if ((p->p_flag & P_SINGLE_EXIT) && return_instead) 778 return (EINTR); 779 780 /* Should we goto user boundary if we didn't come from there? */ 781 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE && 782 (p->p_flag & P_SINGLE_BOUNDARY) && return_instead) 783 return (ERESTART); 784 785 /* 786 * If the process is waiting for us to exit, 787 * this thread should just suicide. 788 * Assumes that P_SINGLE_EXIT implies P_STOPPED_SINGLE. 789 */ 790 if ((p->p_flag & P_SINGLE_EXIT) && (p->p_singlethread != td)) { 791 PROC_UNLOCK(p); 792 tidhash_remove(td); 793 PROC_LOCK(p); 794 tdsigcleanup(td); 795 PROC_SLOCK(p); 796 thread_stopped(p); 797 thread_exit(); 798 } 799 800 PROC_SLOCK(p); 801 thread_stopped(p); 802 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 803 if (p->p_numthreads == p->p_suspcount + 1) { 804 thread_lock(p->p_singlethread); 805 wakeup_swapper = 806 thread_unsuspend_one(p->p_singlethread); 807 thread_unlock(p->p_singlethread); 808 if (wakeup_swapper) 809 kick_proc0(); 810 } 811 } 812 PROC_UNLOCK(p); 813 thread_lock(td); 814 /* 815 * When a thread suspends, it just 816 * gets taken off all queues. 817 */ 818 thread_suspend_one(td); 819 if (return_instead == 0) { 820 p->p_boundary_count++; 821 td->td_flags |= TDF_BOUNDARY; 822 } 823 PROC_SUNLOCK(p); 824 mi_switch(SW_INVOL | SWT_SUSPEND, NULL); 825 if (return_instead == 0) 826 td->td_flags &= ~TDF_BOUNDARY; 827 thread_unlock(td); 828 PROC_LOCK(p); 829 if (return_instead == 0) { 830 PROC_SLOCK(p); 831 p->p_boundary_count--; 832 PROC_SUNLOCK(p); 833 } 834 } 835 return (0); 836 } 837 838 void 839 thread_suspend_switch(struct thread *td) 840 { 841 struct proc *p; 842 843 p = td->td_proc; 844 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 845 PROC_LOCK_ASSERT(p, MA_OWNED); 846 PROC_SLOCK_ASSERT(p, MA_OWNED); 847 /* 848 * We implement thread_suspend_one in stages here to avoid 849 * dropping the proc lock while the thread lock is owned. 850 */ 851 thread_stopped(p); 852 p->p_suspcount++; 853 PROC_UNLOCK(p); 854 thread_lock(td); 855 td->td_flags &= ~TDF_NEEDSUSPCHK; 856 TD_SET_SUSPENDED(td); 857 sched_sleep(td, 0); 858 PROC_SUNLOCK(p); 859 DROP_GIANT(); 860 mi_switch(SW_VOL | SWT_SUSPEND, NULL); 861 thread_unlock(td); 862 PICKUP_GIANT(); 863 PROC_LOCK(p); 864 PROC_SLOCK(p); 865 } 866 867 void 868 thread_suspend_one(struct thread *td) 869 { 870 struct proc *p = td->td_proc; 871 872 PROC_SLOCK_ASSERT(p, MA_OWNED); 873 THREAD_LOCK_ASSERT(td, MA_OWNED); 874 KASSERT(!TD_IS_SUSPENDED(td), ("already suspended")); 875 p->p_suspcount++; 876 td->td_flags &= ~TDF_NEEDSUSPCHK; 877 TD_SET_SUSPENDED(td); 878 sched_sleep(td, 0); 879 } 880 881 int 882 thread_unsuspend_one(struct thread *td) 883 { 884 struct proc *p = td->td_proc; 885 886 PROC_SLOCK_ASSERT(p, MA_OWNED); 887 THREAD_LOCK_ASSERT(td, MA_OWNED); 888 KASSERT(TD_IS_SUSPENDED(td), ("Thread not suspended")); 889 TD_CLR_SUSPENDED(td); 890 p->p_suspcount--; 891 return (setrunnable(td)); 892 } 893 894 /* 895 * Allow all threads blocked by single threading to continue running. 896 */ 897 void 898 thread_unsuspend(struct proc *p) 899 { 900 struct thread *td; 901 int wakeup_swapper; 902 903 PROC_LOCK_ASSERT(p, MA_OWNED); 904 PROC_SLOCK_ASSERT(p, MA_OWNED); 905 wakeup_swapper = 0; 906 if (!P_SHOULDSTOP(p)) { 907 FOREACH_THREAD_IN_PROC(p, td) { 908 thread_lock(td); 909 if (TD_IS_SUSPENDED(td)) { 910 wakeup_swapper |= thread_unsuspend_one(td); 911 } 912 thread_unlock(td); 913 } 914 } else if ((P_SHOULDSTOP(p) == P_STOPPED_SINGLE) && 915 (p->p_numthreads == p->p_suspcount)) { 916 /* 917 * Stopping everything also did the job for the single 918 * threading request. Now we've downgraded to single-threaded, 919 * let it continue. 920 */ 921 thread_lock(p->p_singlethread); 922 wakeup_swapper = thread_unsuspend_one(p->p_singlethread); 923 thread_unlock(p->p_singlethread); 924 } 925 if (wakeup_swapper) 926 kick_proc0(); 927 } 928 929 /* 930 * End the single threading mode.. 931 */ 932 void 933 thread_single_end(void) 934 { 935 struct thread *td; 936 struct proc *p; 937 int wakeup_swapper; 938 939 td = curthread; 940 p = td->td_proc; 941 PROC_LOCK_ASSERT(p, MA_OWNED); 942 p->p_flag &= ~(P_STOPPED_SINGLE | P_SINGLE_EXIT | P_SINGLE_BOUNDARY); 943 PROC_SLOCK(p); 944 p->p_singlethread = NULL; 945 wakeup_swapper = 0; 946 /* 947 * If there are other threads they may now run, 948 * unless of course there is a blanket 'stop order' 949 * on the process. The single threader must be allowed 950 * to continue however as this is a bad place to stop. 951 */ 952 if ((p->p_numthreads != 1) && (!P_SHOULDSTOP(p))) { 953 FOREACH_THREAD_IN_PROC(p, td) { 954 thread_lock(td); 955 if (TD_IS_SUSPENDED(td)) { 956 wakeup_swapper |= thread_unsuspend_one(td); 957 } 958 thread_unlock(td); 959 } 960 } 961 PROC_SUNLOCK(p); 962 if (wakeup_swapper) 963 kick_proc0(); 964 } 965 966 struct thread * 967 thread_find(struct proc *p, lwpid_t tid) 968 { 969 struct thread *td; 970 971 PROC_LOCK_ASSERT(p, MA_OWNED); 972 FOREACH_THREAD_IN_PROC(p, td) { 973 if (td->td_tid == tid) 974 break; 975 } 976 return (td); 977 } 978 979 /* Locate a thread by number; return with proc lock held. */ 980 struct thread * 981 tdfind(lwpid_t tid, pid_t pid) 982 { 983 #define RUN_THRESH 16 984 struct thread *td; 985 int run = 0; 986 987 rw_rlock(&tidhash_lock); 988 LIST_FOREACH(td, TIDHASH(tid), td_hash) { 989 if (td->td_tid == tid) { 990 if (pid != -1 && td->td_proc->p_pid != pid) { 991 td = NULL; 992 break; 993 } 994 PROC_LOCK(td->td_proc); 995 if (td->td_proc->p_state == PRS_NEW) { 996 PROC_UNLOCK(td->td_proc); 997 td = NULL; 998 break; 999 } 1000 if (run > RUN_THRESH) { 1001 if (rw_try_upgrade(&tidhash_lock)) { 1002 LIST_REMOVE(td, td_hash); 1003 LIST_INSERT_HEAD(TIDHASH(td->td_tid), 1004 td, td_hash); 1005 rw_wunlock(&tidhash_lock); 1006 return (td); 1007 } 1008 } 1009 break; 1010 } 1011 run++; 1012 } 1013 rw_runlock(&tidhash_lock); 1014 return (td); 1015 } 1016 1017 void 1018 tidhash_add(struct thread *td) 1019 { 1020 rw_wlock(&tidhash_lock); 1021 LIST_INSERT_HEAD(TIDHASH(td->td_tid), td, td_hash); 1022 rw_wunlock(&tidhash_lock); 1023 } 1024 1025 void 1026 tidhash_remove(struct thread *td) 1027 { 1028 rw_wlock(&tidhash_lock); 1029 LIST_REMOVE(td, td_hash); 1030 rw_wunlock(&tidhash_lock); 1031 } 1032